
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. C. Sandi, présidente du jury
Prof. W. Gerstner, directeur de thèse

Prof. A. Ijspeert, rapporteur 
Prof. W. Senn, rapporteur 

Prof. M. Van Rossum, rapporteur 

Synaptic Learning Rules with Consolidation

THÈSE NO 6126 (2014)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 10 AVRIL 2014

À LA  FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE CALCUL NEUROMIMÉTIQUE (IC/SV)

PROGRAMME DOCTORAL EN NEUROSCIENCES

Suisse
2014

PAR

Lorric ZIEGLER





En réalité nous sommes tous morts !

Mais c’est camouflé par la vie ! . . .

— Jean-Luc Coudray





ACKNOWLEDGEMENTS
I wish to thank all the lab members who shared parts of their lives and experiences with me

at the LCN. A special thanks goes to Friedemann who, albeit a constant grumpiness, was

always here to listen to my neverending questioning, especially on nerdy technical matters. I

should also acknowledge all my colleagues for offering an escape door to pure work related

environment.

All of this of course would not have been possible without the precious help of my adviser

Wulfram Gerstner, who always found time and perspicacity to give insightful advices when I

needed to see him.

Most importantly I thank my parents Michèle and Marco for giving me life. My two brothers

Mathieu and Benoît were always a source of inspiration to me but have also become the closest

to real friends one could have become to me. I would also like to thank all my friends (the list

would probably be too long, but people belonging in it would know) for making my life what it

is and helping me cope with some lengthy periods of my PhD experience.

Lausanne, le 20 mars 2014 L. Z.

v





ABSTRACT
How do we remember the past ? By what means can we make sense of our environment and

store its most relevant aspects ? Learning and memory is very important for the existence of

complex behaviours in living animals since it is what enables the creation of an internal model

of the world in order to take the best possible decisions.

The theory of synaptic tagging and capture (STC) represents a possible implementation of

learning and memory at the level of cellular neurobiology. This framework proposes that

memory engrams be first encoded in the synapses of relevant brain networks, tagged for future

maintenance, and finally consolidated after their pertinence has been assessed by other brain

networks. These processes are highly dependent on neuromodulation of synaptic plasticity, a

phenomenon that originates from higher level cognitive concepts such as attention or emo-

tions.

But the hypothesis that STC is indeed underlying learning and memory remains to be eval-

uated. I use theory and simulations to do so in a behavioural experimental paradigm. I first

introduce synapse models that include internal variables representing the properties of the

synaptic weight, the tag and the consolidation process. Along with these models I propose

learning rules exhibiting metaplasticity that can account for experimental findings. Finally I

assess the consequences of such learning rules on memory traces in neural networks.

I find that increasing the number of internal variables is necessary for the implementation of

several metaplasticity phenomena observed experimentally. I also show that synaptic plastic-

ity together with tagging and capture could be an explanation to behavioural observations on

live rats undergoing inhibitory avoidance training, thereby refining the link between cellular

mechanisms and behaviour.

Keywords Synaptic plasticity, metaplasticity, neuromodulation, dopamine, tagging, consol-

idation, behavioural tagging, memory
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RÉSUMÉ
Comment nous rappelons-nous notre passé ? Par quels biais sommes-nous capables de don-

ner un sens à notre environnement et d’enregistrer ses caractéristiques pertinentes ? L’ap-

prentissage et la mémoire sont deux aspects importants pour l’existence de comportements

complexes chez les animaux vivants car ils rendent possible la création d’un modèle interne

du monde afin de prendre les meilleures décisions possible.

La théorie de l’étiquetage synaptique et de la capture (synaptic tagging and capture ou STC

en anglais) représente une possible implémentation de l’apprentissage et de la mémoire au

niveau de la neurobiologie cellulaire. Ce cadre théorique suggère que les engrammes mé-

moriels soient tout d’abord encodés dans les synapses de réseaux neuronaux adéquats dans le

cerveau, étiquetés pour un futur maintien, et finalement consolidés après que sa pertinence a

pu être jugée par un autre réseau de neurones. Ces processus dépendent de la neuromodula-

tion de la plasticité synaptique, un phénomène qui prend racine dans des concepts cognitifs

de plus haut niveau tels que l’attention ou les émotions.

Cependant, l’hypothèse de la théorie du STC comme étant effectivement à la base de l’ap-

prentissage et de la mémoire reste encore à être évaluée. Pour ce faire, j’utilise de la théorie

et des simulations dans le cadre d’un paradigme expérimental comportemental. J’introduis

tout d’abord des modèles de synapse qui incluent des variables internes représentant les pro-

priétés que sont le poids synaptique, l’étiquette et le processus de consolidation. En addition,

je propose des règles d’apprentissage qui montrent de la métaplasticité et qui sont capables

d’expliquer certains résultats expérimentaux. Enfin, j’évalue les conséquences de telles règles

d’apprentissage sur la mémoire dans les réseaux neuronaux.

J’arrive à la conclusion que l’augmentation du nombre de variables internes est nécessaire à

l’implémentation de plusieurs phénomènes dans le domaine de la métaplasticité observés

expérimentalement. Je montre également que la plasticité synaptique de concert avec l’éti-

quetage et la capture peut former une explication aux observations comportementales sur

des rats sujets à une expérience d’évitement inhibitoire (en anglais inhibitory avoidance task),

affinant ainsi le lien entre les mécanismes cellulaires et le comportement.

Mots clefs Plasticité synaptique, métaplasticité, neuromodulation, dopamine, tagging, con-

solidation, tagging comportemental, mémoire
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1 INTRODUCTION

One has to know the size of one’s

stomach.
— FRIEDRICH NIETZSCHE

We are in the 6th century B.C. Apollo rules on Delphi and the Oracle, which radiates its

teachings throughout the whole Greek empire. “Know thyself !”, the principal aphorism of

the Delphic maxims, resonates in all minds, revealing what should be the aim of anyone’s

inquiries about reality.

Since these ancient times, the understanding of our minds has always been an essential enigma

to the great philosophers — from Socrates to Descartes and to Freud. This self-awareness

is what defines us as human beings. But how would we exhibit metacognition without our

ability to acquire knowledge about the world and to store it? Gabriel García Márquez in his

novel “One hundred years of solitude” tells us about a mysterious plague erasing all sense of

memory. His protagonist resolves to label all objects in his house, temporarily putting a halt

to the effects of the disease. But he soon finds himself forgetting the meaning of these labels,

rendering his life hopeless.

This metaphor exposes the extent to which our self is predicated on memory and learning.

Without our ability to learn about the world and memorize this information, we would forget

our home, our language, the sad or happy moments of our existence, our motor skills and

even our personal identity.

Thus, understanding memory is a key to elucidating our minds. Yet, how can one define

memory? What are its intrinsic mechanisms? In the 6th century B.C., under the watch of

the Greek goddess of memory Mnemosyne living alongside Apollo on Olympus, the poet

Simonides invented the art of mnemonics, or method of loci. Loci is the plural of locus, the

Greek word for place or location. This method consists in associating facts or names with the

different rooms of a building, or the different places of a map, in order to better remember

them. Cicero, the philosopher of the early 1st century B.C., was renowned as a great orator
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Chapter 1. Introduction

who used the method of loci for his discourses. Referring to a tragic event where a roof fell

on the guests of a banquet in which Simonides took part but survived and later remembered

the places where all the guests were seated – constituting the origin of the invention of the

method of loci – Cicero wrote in his De oratore

He [Simonides] inferred that persons desiring to train this faculty (of memory)

must select places and form mental images of the things they wish to remember

and store those images in the places, so that the order of the places will pre-

serve the order of the things, and the images of the things will denote the things

themselves, and we shall employ the places and images respectively as a wax

writing-tablet and the letters written on it.

This excerpt entails all core constituents of a modern theory of memory. Cicero starts by

saying that persons must “form mental images”, which denotes what we would refer to as the

encoding of memory. This is the process by which we receive and combine information about

the external world. He then goes on with the words “store those images”, which reflects the

creation of a permanent record of the encoded information, called the storage of memory.

Finally these persons “shall employ the places and images”, constituting the final phase of

retrieval where one has to recall the stored information.

In addition, there exists the notion of associativity, which refers to the process whereby things

are to be stored in “places” and to the fact that “the images of the things will denote the things

themselves”. We will see that this concept plays a very important role in the study of memory

and of its underlying processes. Finally, the fact the method of loci was inspired by a tragic

event will also transpire to be significant in the sense that strong emotions can help memorize

unrelated coinciding events.

Nowadays, much and more is known about the fundamental principles forming the basis

of learning and memory. We know, for instance, that it takes place in the brain in dedicated

subsystems formed by densely interconnected neurons. However, it remains unclear what are

the details of the implementation of learning and memory in the brain. Neither is it known

whether we humans are able to fully understand this idea and replicate it on an arbitrary

substrate. 1

The aim of this thesis is to give a tentative explanation of the foundations of memory or

behaviour by means of computational neuroscience. I aim to construct a bridge from cellular

mechanisms taking place at the level of the brain, to the behaviour of rodents involving

memory. I do this using mathematical models of these phenomena while also relying on

computer simulations of these models.

In this chapter I introduce the concepts, both neurobiological and theoretical, required for the

comprehension of the main results of this thesis. For the reader interested in more in-depth

1. But maybe it should stay in the hands of the Greek gods like Apollo and Mnemosyne. . .
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1.1. General concepts

descriptions, a number of highly recommended textbooks are available in the domain of

neuroscience (Kandel et al., 2000), and computational neuroscience (Dayan and Abbott, 2001;

Gerstner and Kistler, 2002; Izhikevich, 2006). The site www.scholarpedia.org constitutes also a

very comprehensive source of information.

1.1 General concepts

I start by introducing the concept of behaviour, the motivation of this work, on a broad

perspective. I then turn to the two closely related notions of learning and memory since

they constitute the key to behaviour instantiation. Finally I give an overview of the field of

computational neuroscience, representing the tool of investigation of this thesis.

1.1.1 Behaviour

In this work, I focus on unconscious phenomena such as emotions or homeostasis, which con-

stitute a substantial part of animal behaviour (Kandel et al., 2000). One drive of unconscious

behaviour is homeostasis, i.e. the need to maintain essential physiological variables within a

certain range in order to sustain life, for example body temperature or nutrient availability. The

motivational states that lead to such behaviours depend both on internal input, the difference

between the current physiological state of the animal and the target value it needs to achieve,

and external input in the form of incentive stimuli. Going to a cafeteria to buy a coffee or a tea

and getting a chocolate cake instead (supposedly because the sugar concentration level in the

blood was too low) is an example of being affected by an incentive stimulus (the cake).

Unlike Pavlov’s view of behaviour as a complex chain of associations between stimuli and

responses (Pavlov, 1927), a current theory of goal directed behaviour states that an animal

needs to create a model of the world and to maximize the outcome of external rewarding

signals (or to minimize the difference between internal variables and the representation of this

signal) (Dickinson and Balleine, 1994-03-01; Robbins and Everitt, 1996). This maximization

process would not be possible without the capacity to learn, encode and store new associations

between internal states or actions and the reward that followed.

1.1.2 Learning and memory

Kandel et al. (2000) define learning as being a “change in behaviour that results from acquiring

knowledge about the world”, and memory as the “process by which that knowledge is encoded,

stored and later retrieved”. But where do these processes take place? The first person to give

the beginning of an answer to this question was Pierre Paul Broca, a french physician who

realized after a postmortem autopsy in 1861 on a patient who, during his lifetime was able to

comprehend language but was unable to speak, that the patient had a lesion in the frontal

lobe region of the left hemisphere of the brain. Following that discovery, the theory that brain

3
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Chapter 1. Introduction

functions are localized started to convince scientists and spread to the field of memory.

Thus, different types of memory are localized in different brain regions. Two aspects classify

the different memory types, (i) the time course of storage and (ii) the nature of the stored

information. Concerning the time scales we distinguish working memory from short-term

memory (STM) and long-term memory (LTM). Working memory ranges from milliseconds to

minutes and obeys somewhat different rules than the two other forms (Miller et al., 1986). STM

however, can last up to days and LTM for months or even a lifetime. Since working memory

is outside the scope of this thesis, I will directly proceed to the description of short and long

term memories.

STM consists of transient representations serving immediate goals. In order to be remembered

for an extended time, such a memory has to undergo a consolidation process. Both these

processes, encoding and consolidation, were found to take place in the hippocampal region of

the medial temporal lobe. This was first discovered by the psychologist Brenda Milner and

the surgeon William Scoville who performed a study on epileptic and schizophrenic patients

(Scoville and Milner, 1957) who suffered a segmentectomy in the medial temporal lobe. They

observed that these patients could remember things like phone numbers for a certain period

but were unable to recall day-to-day facts such as their way to the bathroom or the identities

of the nursing staff. They concluded that the hippocampal region of the human brain must

have an essential function in the transfer of STM into LTM. Further studies have confirmed

this hypothesis (Marr, 1970; McClelland et al., 1995; O’Keefe and Burgess, 1996).

Note that there exists different types of memories, mainly separated into two groups, declara-

tive and procedural memories (Dudai, 1989). Declarative memories have a very large range of

association between multiple pieces of information. They encompass an important subgroup,

the so-called episodic memories which represent personal experiences or facts often associ-

ated to a specific context (Tulving and Markowitsch, 1998). Procedural memories on the other

hand, are related to skill learning, habit or conditioning.

Fear learning, famously discovered by Pavlov in 1927 (Pavlov, 1927) 2, was one of the first

paradigms used to study the way procedural memories are learned. Following studies showed

the implication of the amygdala for fear memory (Davis, 1992; Fanselow and LeDoux, 1999).

This region of the brain associates information about unconscious fear responses (the emo-

tional state) and about its cognitive processing (the feelings).

1.1.3 General anatomy

At this point we know that behaviour in mammals is related to maintaining certain physiologi-

cal variables as close as possible to a objective value in order to sustain life. We also know that

this cannot occur without learning and memory which take place in specific and functionally

defined regions of the brain. The question remains of the actual implementation of these

2. It was actually co-discovered by Freud.
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1.1. General concepts

phenomena. Therefore I now introduce basic anatomy, required for the understanding of

memory and behaviour.

The brain is composed, among many other constituents, of a large quantity of densely inter-

connected cells called neurons (Kandel et al., 2000). Those communicate to each other via

chemical or electrical synapses, which are the connections between neurons. A difference

between internal and external concentration of charged ions (mainly Sodium, Chloride and

Calcium) is maintained in the cell. This gives rise to a membrane potential due to a tight

balance induced by ion pumps and ion channels. This function is well described by a simple

RC circuit as long as the potential remains under a spiking threshold, where highly non linear

dynamics intervenes (Hodgkin, 1948).

Communication between neurons occurs via the mechanism described above; through the

propagation of short pulses of membrane potential along the axon of the sender neuron

connecting to the dendrites of the receiver. A pulse or action potential, triggers the release of

neurotransmitters which bind to receptors on the receiver side of the synapse (the postsynaptic

site), which in turn let different ions in or out of the cell, thereby altering the membrane

potential. A cell has only one type of neurotransmitter that can have either a positive or a

negative effect on the postsynaptic potential. The main neurotransmitters are glutamate,

which upon binding to its associated receptor lets Ca2+ enter the cell, or gamma-aminobutyric

acid (GABA) triggering an inflow of Cl−.

The strength of these synapses is not constant in time. A change in presynaptic release of neu-

rotransmitter or in the amount of postsynaptic receptors for example can enhance or diminish

the efficacy of a synapse. Detailed descriptions can be found in (Lisman and Zhabotinsky,

2001; Rubin et al., 2005) This phenomenon is called synaptic plasticity and is thought to be

crucial for learning and memory. Several experimental studies show a clear link between these

two aspects, and this thesis will, I hope, play one’s part in the refinement of this link.

First connections were established by pharmacologically blocking plasticity and realizing that

it impaired learning in rats (Abraham and Mason, 1988; Morris et al., 1982). The same was

shown for memory (Pastalkova et al., 2006; Steele and Morris, 1999). Moreover the transposed

logical implication was also shown in the sense that learning was proved to actually trigger

plastic changes in the brain of living animals (Rogan et al., 1997; Sigurdsson et al., 2007;

Whitlock et al., 2006).

1.1.4 Computational neuroscience

Now that I have introduced the main biological concepts necessary to an understanding of

this work, I turn to its core, namely computational neuroscience.

Computational neuroscience consists in creating mathematical models of the brain, its neu-

rons, their connections and assemblies of these neurons. These models can be both analyzed

analytically and simulated via computer programs. A beautiful article by Abbott (2008) exposes
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the ways theoretical models can have a beneficial impact on the field of neuroscience. He

argues that models are intrinsically precise and self-consistent so that all their implications can

be derived. They help getting a clearer view of the biological phenomena and diffusing ideas

that are clear enough to be analyzed and understood. And this process doesn’t necessarily

has to be pioneering research but can also come after the explained mechanism has been

discovered. Abbott writes

Many of the most celebrated moments in quantitative science – the gravitational

basis of the shape of planetary orbits, the quantum basis of the spectrum of

the hydrogen atom, and the relativistic origin of the precession of the orbit of

Mercury – involved postdictions of known and well-characterized phenomena.

The main focus of computational neuroscience is how neurons integrate information and

communicate with each other. Very good textbooks on the subject are available (Dayan and

Abbott, 2001; Gerstner and Kistler, 2002; Izhikevich, 2006). The way the connections between

neurons change according to neuronal activity and how this affects information transmission

is also a widely analyzed topic.

Another important research subject is how connecting a large amount of modeled neurons,

their connections obeying models of synaptic plasticity, affects neural network dynamics

(Vogels et al., 2005). A more thorough description can be found in Section 1.3.

1.2 Neurobiological basis of synaptic plasticity

So far I explained that neurons and the change in their connections efficacy are crucial to

learning and memory and hence to behaviour. Thus, in this section, I want to focus on the

neurobiological basis of synaptic plasticity. I first give a short historical introduction and move

to the different forms of plasticity, including some theoretical work that was biophysically

inspired. I also introduce the concept of metaplasticity which will turn out to be essential for

goal oriented learning and for memory.

1.2.1 History of synaptic plasticity

One of the founders of modern neuroscience is the Spanish histologist Santiago Ramón y

Cajal, who conducted pioneering investigations on the delicate arborizations of brain cells.

He inferred that, in the absence of postnatal neurogenesis, learning must happen through

modifications of the connections between neurons (Ramòn y Cajal, 1909). This was the first

time the idea that synaptic plasticity might underlie learning and memory was articulated. A

refinement of the concept came later with the Canadian psychologist Donald O. Hebb who

wrote in his book (Hebb, 1949) the now famous sentence

When an axon of cell A [. . .] excites cell B and repeatedly or persistently takes part

in firing it, some growth process or metabolic change takes place in one or both

cells so that A’s efficiency as one of the cells firing B is increased.
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1.2. Neurobiological basis of synaptic plasticity

This contains three important notions, that of causality, in order to induce any change firing

of A must precede firing of B; the notion of associativity, the activity of the two cells must be

co-occurring within a certain time window; and finally these changes only depend on local

variables, such as the activity of A and B.

Hebb’s postulate was later confirmed by Bliss and Lomo (1973) (see also Bliss and Gardner-

Medwin (1973)). They looked at connection strengths of neurons in the hippocampal region

of rabbit brains and measured changes depending on the stimulation they applied. This

phenomenon was called long-term potentiation (LTP). 3 Along with this discovery, it was

suggested that an inverse mechanism must exist to avoid a runaway in the strengths of

synaptic connections (Stent, 1973). This was confirmed a few years later by Lynch et al. (1977)

in a phenomenon named long-term depression (LTD).

The first ways to interpret the hebbian concept were using neurons as rate units, where a high

presynaptic rate occurring at the same time as a high postsynaptic rate leads to an increase

in the connection strength. But eminent scientists wondered about the utility of the action

potentials giving rise to these rates. Are they only an epiphenomenon due to energy efficiency

constraints? Or does their timing encode information? If the second idea revealed to be true

this would lead to a dramatic increase in the dimensionality of information space and hence

could be a key to solving the complexity of the brain.

Such a form of plasticity was first postulated (Gerstner et al., 1993, 1996) and then measured

by electrophysiology (Bi and Poo, 1998; Markram et al., 1997). It was measured that a pair

of pre- and postsynaptic spikes elicits a different change in synaptic efficacy depending on

the time lag between the two. A ‘pre-before-post’ pair gives rise to potentiation if the time

difference is under a certain limit and a ‘post-before-pre’ pair induces depression. The name

spike-timing dependent plasticity (STDP) appeared in Song and Abbott (2001) and is since

then widely accepted. For a review see Markram et al. (2011).

1.2.2 Short to intermediate time scales of plasticity

Synaptic plasticity exhibits phenomena spanning different time scales. The shortest form is

short-term plasticity (STP), a type of plasticity whose time scale lies between that of fast neural

signaling (on the order of milliseconds) and of experience-induced learning (on the order

of minutes). It is presynaptically expressed by a change in neurotransmitter release (Gupta

et al., 2000; Markram et al., 1998) and can be both facilitating or depressing. A model wins

unanimous support (Abbott et al., 1997; Markram and Tsodyks, 1996).

Long-term potentiation and depression are extending over longer periods of time up to several

hours. 4 Many different protocols are known to induce these sorts of plasticity, by varying

3. We will see that this had tragic consequences for nomenclature in the field of plasticity when phenomena
lasting longer than long-term potentiation were observed. . .

4. I called those intermediate time scales, because we will see in Section 1.2.4 that even longer ones exist.
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the presynaptic firing rate (Dudek and Bear, 1992; Kelso et al., 1986; O’Connor et al., 2005b);

by spike timing pairings with different time lags (Magee and Johnston, 1997; Markram et al.,

1997); by voltage clamp on the postsynaptic cell and stimulation of the presynaptic cell (Artola

et al., 1990; Ling et al., 2002; Ngezahayo et al., 2000); by bursts, triplets or quadruplets of spikes

(Froemke and Dan, 2002; Nevian and Sakmann, 2006; Wang et al., 2005); or by natural stimuli

(Froemke and Dan, 2002).

On a molecular level, LTP and LTD occur mainly via chemical reaction cascades triggered by

the calcium that entered the postsynaptic density (PSD) via N-methyl-D-aspartate (NMDA) re-

ceptors (Neveu and Zucker, 1996; Yang and Schulman, 1999). These include kinases and phos-

phatases (Lisman et al., 2002) and act mainly by inserting more α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid (AMPA) receptors in the membrane of the PSD. Co-activation of

AMPA and NMDA receptors is necessary (Herron et al., 1986). For a review on the matter see

(Malenka and Nicoll, 1999).

There exists many biophysically inspired models of LTP and LTD which try to capture the

details of biochemical signaling occurring in and around the synapses at the time of induction

of plastic changes. Some model the postsynaptic voltage (Abarbanel et al., 2002); others

calcium levels (Abarbanel et al., 2003; Cai et al., 2007; Karmarkar and Buonomano, 2002;

Karmarkar et al., 2002; Rubin et al., 2005; Shouval et al., 2002); or finally AMPA (Saudargiene

et al., 2003) or NMDA receptors (Senn et al., 2001).

Notably, a subgroup of models looking at calcium levels focus on the question of how can

a synapse maintain an elevated efficacy for several hours despite the constant turnover of

AMPARs being endocytosed to or exocytosed from the postsynaptic membrane. The idea

that this could occur via bistability of certain molecules in the PSD was introduced by Crick

(1984). This was later measured by minimal stimulation protocols, supposedly acting on

single synapses (O’Connor et al. (2005a); Petersen et al. (1998); see also Bagal et al. (2005);

Blitzer et al. (1998)). Synaptic bistability is shown to depend on feedback loops in the protein

network (Bhalla and Iyengar, 1999; Hayer and Bhalla, 2005) or on a balance between auto- and

dephosphorylation of chemical compounds (Lisman, 1985; Miller et al., 2005; Okamoto and

Ichikawa, 2000; Zhabotinsky, 2000).

1.2.3 Metaplasticity

The mechanisms and models reviewed so far give a very good insight into a large panel of brain

mechanisms such as early sensory streams or receptive field formation where neurons have to

adapt to, process and encode the statistical properties of the external world being observed.

However, when it comes to goal-oriented behaviours the restriction of the synaptic change

inducing parameters to sole local variables such as presynaptic neurotransmitter release or

postsynaptic ion concentration is not sufficient. The global homeostatic signal or the reward

need to be available to the neurons somehow.
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1.2. Neurobiological basis of synaptic plasticity

A way to incorporate these features into the framework of synaptic plasticity is via metaplas-

ticity. This term (from the Greek preposition meta, “beyond” or “adjacent”) can be rephrased

as the ‘plasticity of plasticity’ (Abraham and Bear, 1996). For a review on metaplasticity see

(Abraham, 2008). 5

The first study on this matter consisted in letting rats self administrate stimuli targeting the

hypothalamus in a so-called intra-cranial self stimulation paradigm (Olds and Milner, 1954).

Rats were found to self stimulate up to sixty times per second, halting only out of exhaustion.

This raised the question of what could be responsible for such a destructive behaviour.

It was later established that one of the key to this puzzle was dopamine (Yokel and Wise, 1975),

a neuromodulator discovered in 1957 by a Swedish pharmacologist (Carlsson et al., 1957).

Later, in the 90’s, Schultz and colleagues thoroughly investigated this question and showed

that dopamine encoded reward, or more precisely the deviation of the reward with respect to

an internally encoded signal (Hollerman and Schultz, 1998). This resonates with the fact that

behaviour is driven by a homeostatic signal, as I explained in Section 1.1.1.

Dopamine is known to interact with plasticity in at least two different ways, one consisting

in a gating of plasticity and the other inducing a consolidation process. The first process is

important in learning and the second one in memory, the main distinction between those two

phenomena being that memory implies a following retrieval at later stages. As already stated,

the focus in this thesis is on memory. However, since metaplasticity is a key feature when it

comes to its modeling, I give a short overview of the gating of plasticity by dopamine.

Kerr and Wickens (2001) showed by pharmacologically blocking dopamine D1/D5 receptors

in corticostriatal synapses 6 that dopamine was necessary for the induction of LTP in this brain

region. More experiments were conducted and overall the results of rate-based simulations

modulated by dopamine were confusing, since many factors seemed to influence the outcome

of given stimuli. However Reynolds and Wickens (2002) suggested an interpretation, proposing

that very low levels of dopamine do not enable any plasticity, intermediate levels causing

LTD and higher levels LTP. It turned out that again spike timing was decisive in giving an

explanation to the phenomena, with dopamine having modulatory effect at the level of the

learning window (Pawlak and Kerr (2008); for a review see Pawlak et al. (2010)).

Note that dopamine is not the only known neuromodulator affecting learning in mammal

brains. Acetylcholine has been shown to increase the threshold for STDP in prefrontal cortex

by its action on nicotinic receptors (Couey et al., 2007). Noradrenaline on the other hand

relaxes the time constraints of the pre-before-post pairings in the rat hippocampus (Lin et al.,

2003). Another very complete study looked at spike timings and also at neuromodulators

5. Note that there is some confusion about the terminology (not surprising when one thinks about the com-
plexity of this field and the way names and titles are to be invented in a chronological manner). Historically,
metaplasticity referred to mechanisms preceding plasticity that would alter it. I myself use this term in a broader
sense, as in the Greek definition, for any modification of plasticity, that is also post induction.

6. Corticostriatal synapses connect the cortex, an important source of encoded sensory information, to the
striatum, a ‘gateway’ to the basal ganglia, involved in motor control and learning.
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concentration, but the fact that two of those were present (in this case noradrenaline and

acetylcholine) makes it hard to build precise links between causes and effects (Seol et al., 2007).

Serotonine is another major neuromodulator. 7 Note that acetylcholine and noradrenaline

mainly interact with plasticity by preceding the synaptic changes, hence they are mainly

related to higher level processes like attention or arousal.

The mechanisms underlying metaplasticity are mainly acting indirectly on the postsynaptic

potential via second messengers (Kandel et al., 2000). Two types of receptors can be distin-

guished in synapses, ionotropic receptors like AMPA and NMDA, and metabotropic receptors.

The later, when activated by neuromodulators, induce chemical reactions eventually acting

on ionotropic receptors, or control transcription factors that in turn control mRNA synthesis.

Examples of molecules involved are the kinases PKA, PKC or MAPK which can phosphorylate

CREB, one of those transcription factors (Malenka and Bear, 2004). These processes which

involve complex transduction cascades are intrinsically slow and can last for extended periods

of time. Which makes them good candidates as the mechanisms constituting a neurological

basis to memory.

1.2.4 Late stages of plasticity

The duration of plasticity effects described so far ranged from milliseconds in STP to hours

or days for LTP or LTD. But by what means can we humans, or other mammals, remember

facts or events for months or years? How, after its encoding, is information stored and later

retrieved? The answer to these questions lies in consolidation mechanisms, which I introduce

here.

A major theory accounting for such phenomena is that of synaptic tagging and capture (STC),

proposed by Frey and Morris in 1997. This theory suggests that, along with the initial expression

of plasticity, a synaptic tag is set that serves as a marker for potential further consolidation of

the changes in synaptic efficacy. There exist very good reviews on the subject, one by Reymann

and Frey (2007) gives insights on the temporal phases of STC and on the mechanisms involved.

Another by Lisman et al. (2011) focuses on dopamine interactions. Lisman suggested to

call this framework ‘neo Hebbian’ due to the importance of other factors than just pre- and

postsynaptic firing activities. Finally the review by Redondo and Morris (2011) analyzes the

experimental findings and the molecular basis on a functional perspective. 8

The phases of the process leading a synapse from a basal strength to a stronger one can be

summarized in this way, (i ) STP a decremental form of LTP dependent on NMDA activation and

on Ca2+ and calmodulin, (ii ) LTP1 dependent on metabotropic glutamate receptors (mGluR)

and phosphorylation of PKC and CaMKII (two kinases), also decaying without additional

7. Coffee lovers will be glad to learn that a very recent study showed an enhancement effect of caffeine on
human memory (Borota et al., 2014). Careful though! Past a certain threshold, too much caffeine has a detrimental
effect.

8. I gave here an example of a ‘metareview’.
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Figure 1.1 – Schematic illustration of the phases of LTP. (a) STP is a decremental form of LTP de-
pendent on NMDA activation and on Ca2+ and calmodulin (b) LTP1 depends on mGluR and phos-
phorylation of PKC and CaMKII (two kinases), and also decays without additional mechanisms (c)
LTP2 depends on the capture of proteins, this phase is stable for much longer times (past three hours)
(d) LTP3 depends on gene transcription and mRNA synthesis (Figure taken from (Reymann and Frey,
2007)).

mechanisms, (iii ) LTP2 dependent on the capture of proteins, this phase is stable for much

longer times (past three hours), (iv) LTP3 dependent on gene transcription (Reymann and

Frey, 2007). See Figure 1.1 for an illustration of the different phases and their requirements.

The first two phases together constitute the phase of early LTP (e-LTP) and the other two late

LTP (l-LTP). To be consistent throughout this work, I will not use the terminology LTP1/2/3

but will keep STP or LTP, and specify the phase explicitly.

Let me now give some more details about the biochemical implementation of the different

phases. Induction of LTP, as already stated in Section 1.2.2 depends on NMDA activation

which, if not completed by activation of other metabotropic or aminergic receptors, decays

within a few hours (Collingridge, 1985). Expression of LTP is mediated via AMPARs. It has

been shown that AMPAR antagonists block synaptic weight increases (Davies et al., 1989).

Studies using mGluR blockers on the other hand, showed that PKC, activated by mGluRs, is

necessary for the second phase of LTP (Anwyl, 1999; Bashir et al., 1993). Finally late stages

are mediated by a cAMP cascade which activates PKA, a reaction which is initiated only by

threefold tetanization, one of the standard stimulation protocol, in hippocampal CA1 cells

(Matthies and Reymann, 1993).

Note also that the functional effects described above are not the only consequences of

plasticity-inducing stimuli. They occur alongside structural modifications, via cytoskeleton

remodeling of the PSD (Redondo and Morris, 2011). These two mechanisms are independent
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and occur in parallel.

The key to consolidation of early synaptic efficacy modifications are the plasticity-related

proteins (PRP)s. Experiments where protein synthesis was blocked by anisomycin (a translation

inhibitor) revealed that no LTP longer than three hours was possible (Krug et al., 1984). Since

availability of these proteins is crucial for the transformation of e-LTP to l-LTP, there is a

temporal window around the time of induction of plastic changes within which synthesis

must occur. The extent of this temporal window is given by the protein half-life, on the order

of one to two hours (Korz and Frey, 2004), on one side and the extent to which these proteins

can be captured, around ninety minutes, on the other side

proteins capture
possible

st
im

ul
us

capture
possible proteins

st
im

ul
us

The synthesis of PRPs is triggered by phasic dopamine concentration increase (Lisman and

Grace, 2005). This dopamine signal can have many different causes such as novelty, reward

prediction error, aversive events or attention (Lisman et al., 2011). For the latest phases of

LTP synthesis of mRNA through transcription is necessary (Nguyen et al., 1994). Redondo

and Morris hence suggested that PRP should stand for plasticity related products, instead

of proteins. Notably, production of PRP can occur in different compartments and is not

necessarily spread throughout the whole neuron (Sajikumar et al., 2007). Different pathways

are triggering synthesis in different compartments, or even cell-wide in the case of stress

(Reymann and Frey, 2007), leading to different functional conclusions. One interpretation of

such a finding is the theory of ‘clustered plasticity engrams’ (Govindarajan et al., 2006) where

nearby synapses collaborate to form memory traces.

The second key aspect of the STC theory is the synaptic tag. This is what permits protein

capture and implements synapse specificity amidst the larger spatial range of PRP availabil-

ity (Frey and Morris, 1997). These tags represent somehow a hidden flag identifying what

synapses would be eligible to further consolidation via capture of proteins. They are also

the functional units actually enabling this mechanism. Involved in this process are the actin

network (Ramachandran and Frey, 2009) and autophosphorylation of CaMKII (Redondo et al.,

2010). The tags have been shown to have a limited lifetime of about ninety minutes (Frey and

Morris, 1997). Direct action on the tags, either pharmacologically (Gribkoff and Ashe, 1984;

Huang and Kandel, 1995; Navakkode et al., 2007) or via natural place cell replay (Isaac et al.,

2009), can produce a slow onset LTP, where synaptic efficacy rises gradually in the time course

of two to three hours.

It is important to note that the two mechanisms leading to consolidation of synaptic changes

do not have to be triggered by the same stimulus. This allows for heterosynaptic effects where
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a synapse that has been potentiated and tagged by an event can capture PRPs whose synthesis

has been triggered by another event. 9 An illustration of this phenomenon can be found in

Figure 1.2.

Figure 1.2 – Illustration of the interaction between tag and PRPs. Together with the initial expression
of synaptic plasticity, a tag is set that serves as a marker for potential further consolidation of those
changes. PRPs synthesis is triggered by neuromodulation and these proteins bind with the tag com-
pound to maintain previous changes in synaptic strength. Hence synaptic specificity is only available
through the tag, whereas the large spatial range of PRPs can lead to heterosynaptic effects (Figure taken
from Redondo and Morris (2011)).

All phenomena I exposed so far were LTP-related phenomena. Same conclusions hold in the

case of LTD, however with different signaling pathways (Kauderer and Kandel, 2000; Sajikumar

and Frey, 2004b; Sajikumar et al., 2005). A very recent article by Li et al. (2014) gives more

insights on the pathways involved and on priming of STP via ryanodine receptors activation.

For a summary of the main articles who were involved in the discovery or further refinement

of the different functions and phenomena introduced in this section, see Table 3.3.

1.2.5 Behavioural tagging

In the preceding section I described a mechanism likely capable of implementing a memory

storage function in the synaptic connections of hippocampal neurons. The question remains

9. This could be an explanation of the phenomenon of ‘flashbulb memories’, where very vivid memories of
irrelevant contexts can be formed. A good example is the fact that many people remember where they were during
the terrorist attack on New-York in 2011.
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whether there exists any link between STC and memory in living animals? A potential answer

to this question can be found in Behavioural tagging, a promising paradigm which I introduce

here.

Before a link between STC and behaviour could be made, it was already shown that consol-

idation was necessary for memory. A study showed in 2006 that spatial memory in rats is

mediated by PKMζ, an isoform of PKC involved in the consolidation process of LTP (Pastalkova

et al., 2006). They injected ZIP, a PKMζ inhibitor, in the hippocampus of rats and observed

retrograde amnesia, demonstrating that late forms of plasticity were necessary for LTM. The

same was shown in a non aversive task by Serrano et al. (2008).

Later a group in Argentina conducted the first experiment of behavioural tagging per se

(Moncada and Viola, 2007). The experimental paradigm was an inhibitory avoidance (IA) task

taking place in a cage with an elevated platform. When the rats jumped from the platform

they received an electrical foot shock eliciting a short term fear memory. The experimentalists

then tested the rats for different times between training and the test session, by measuring

the latencies from the moment the rats were put on the platform until they jumped down.

They measured high latencies fifteen minutes after training, but these were slowly decreasing

until being exactly the same as during training when measured twenty four hours later. Note

that the time course of this phenomenon resembles decremental e-LTP measured in vitro (see

Section 1.2.4).

Interestingly this decaying memory trace could be saved by giving a stronger foot shock at the

time of encoding. Rats who received a strong electrical shock showed high latencies even one

day after training. Since aversive stimuli can trigger dopamine release in the medial temporal

lobe due to sustained firing of ventral tegmental area (VTA) neurons (Lisman et al., 2011),

consolidation of previously potentiated synapses is a plausible explanation of how a stronger

stimulus induces LTM whereas a weaker one only induces STM.

But there is more, letting the rats explore a novel environment, either before or after the

training session, was able to rescue short into long term memory. Again compatible with the

time window allowing for capture of heterosynaptically induced plasticity proteins by tagged

synapses.

This is the experience I have modeled and simulated in order to show that STC can indeed be

a plausible explanation of this phenomenon. Details of the implementation and results can be

found in chapter 4.

Note that other paradigms have been used such as an object recognition task or a taste aversion

task by the same group two years later (Ballarini et al., 2009), or in a task closer to our day-to-

day experiences in a matching-to-place setup by the Morris group (Wang et al., 2010). It has

since then also been shown in humans (Ballarini et al., 2013; Bunzeck et al., 2010; Fenker et al.,

2008). 10

10. Even if not totally related, I would like to point to a wonderful experiment where researchers were able
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Finally a link between STC and STDP has also been established, however only in invertebrates

(Cassenaer and Laurent, 2007, 2012).

1.3 Our tools: models of synaptic plasticity and memory

Having introduced the biological concepts necessary for the understanding of this thesis,

and the putative neurological processes underlying them, I now go on with the tool I used to

perform my investigations, i.e. mathematical models of those processes. I start with models

of neurons which are the basic elements of neural dynamics, and continue with models of

plasticity which constitute the core of the implementation of a learning or memory mechanism.

I span the different time scales of plasticity, from STP to l-LTP. Finally I describe models looking

at network dynamics and abstract models of memory.

Good textbooks for this part are (Dayan and Abbott, 2001; Gerstner and Kistler, 2002; Izhike-

vich, 2006).

1.3.1 Neuron models

Neurons are well described by small electrical devices following the dynamic of a standard RC

circuit

τm
dV

d t
=−V (t )+Vr +RI (t ) (1.1)

V represents the membrane potential of the cell which tends to relax to Vr its resting value,

usually around -70 mV for the types of neurons found in the regions introduced in Section 1.2.

The time constant τm of a membrane is around 20 ms. As I explained earlier, this potential

arises from a difference in ion concentration inside and outside the cell.

A neuron receive inputs I (t ) through synapses distributed on its dendrites, whose AMPA and

NMDA receptors let ions enter the cell, thereby changing the voltage. Note that we leave out

the spatial distribution of those and model only point neurons, ignoring complex non linear

behaviours occurring at the level of dendrites. Incoming action potentials induce short pulses

of current called excitatory postsynaptic potential (EPSP) (they can also be inhibitory, in which

case the polarity is reversed). I define the spike train of neuron j as a sum of delta pulses

centered on its spike times

X j =
∑
k
δ

(
t − t k

j

)
(1.2)

From this point, there is two ways of describing the action of incoming spikes on the membrane

potential of a neuron The first way is by direct pulses of current modeled as Dirac deltas

modulated by the synaptic weights of individual synapses and acting directly on the voltage

V . In this case the input term can be written I (t ) =∑
j w j X j , where w j is the synaptic weight

to create a false memory in rats by optogenetically stimulating neurons in the hippocampus which had been
measured to take part in the encoding of a certain context (Ramirez et al., 2013). This, I believe, helps refining the
link between cell assemblies and context encoding in the hippocampus of rodents.
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coming from neuron j .

Another way consists in modeling the input as conductances g (t ) following a similar dynamic

as the membrane potential with a rest value of 0 and which tend to drive the voltage towards

their respective reversal potential. Equation 1.1 then becomes

τm
dV

d t
=−V (t )+Vr +

∑
α

gα (t ) (Vα−V ) (1.3)

whereα ∈ {AMPA,NMDA,GABA} represents the different sorts of receptors present in synapses.

In this case, the input term is acting on the variables gα, influencing the voltage only indirectly.

This method is more realistic, however it is computationally more costly since it requires

additional variables for the conductances.

This represents the behaviour of a cell in the so-called subthreshold regime. Past a certain

voltage, usually around -50 mV, neurons emit a spike, which is then propagated through its

axon and in turn excite or inhibit other downstream neurons. To model this behaviour we

add a threshold θ and say that a neuron spikes whenever its membrane voltage reaches this

threshold. The spike is then propagated to the other neurons, modeled by a Dirac delta, and

the voltage is reset to its rest value.

This model is called the leaky integrate and fire (LIF).

Spiking activity triggers several internal processes. First, there is a short time after a neuron

has emitted an action potential where it cannot fire again, called a refractory period. This

is often modeled by setting the threshold θ to a high value right after a spike, and letting it

relax to its rest value on a time scale of the order of the refractory period. There exists also a

spike triggered adaptation mechanism that we model by an additional inhibitory current or

conductance pulse following an internal spike. A theoretical study on adaptation mechanisms

showed that it could help neurons encode information in an optimal way (Pozzorini et al.,

2013).

This is one of the most simple ways of mathematically describing a neuron. Another standard

model is the Hodgkin-Huxley 11 model which is similar to a conductance-based LIF but which

adds to it other variables that represent the dynamic of opening and closing of ion channels.

This model is computationally much more costly but has an intrinsic explanation of a spike

and therefore doesn’t require a spiking threshold. There are ways of reducing a Hodgkin-Huxley

model to a LIF (Gerstner and Kistler, 2002).

There are also other kinds of model, not based on biological grounds but who nevertheless

perform well. One example is the Izhikevich neuron (Izhikevich, 2003). The way to assess

whether a neuron model is a good one is by verifying that it faithfully captures the responses

to arbitrary stimuli (Gerstner and Naud, 2009). A model from the family of integrate and fire

11. After the famous scientists Alan Lloyd Hodgkin and Andrew Huxley who designed their model in 1952 to
describe action potentials in the squid giant axon, and received a Nobel prize for it.
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1.3. Our tools: models of synaptic plasticity and memory

models that includes an exponential term in the voltage evolution equation and adaptation is

shown to be nearly as good as more complicated models (Brette and Gerstner, 2005).

1.3.2 Models of early phases of plasticity

I now turn to models of synaptic plasticity. STP 12 is very well captured by a model from

Tsodyks et al. (1998). It takes into account a release probability and a depletion variable, and is

able to capture both facilitating and depressing synapses. Theoretical studies show that it can

have frequency filtering effects on information transmission either for low or high frequencies

depending on the synapse type (Abbott et al., 1997).

I now turn to models of mechanisms showing longer time scales. There are two families of

models for LTP or LTD, rate and spiking models. In the simpler case, the rate versions, it is

straightforward to derive a rule that satisfies Hebb’s postulate (see Section 1.2.1) in an intuitive

fashion. It is by considering the following fact, a learning rule – the way synaptic weights are

changing in time – can only depend on pre- and postsynaptic activity ẇ = F
(
x, y

)
. Taking a

polynomial expansion of this function yields ẇ ∼ a0 +a1x +a3 y +a4x y + . . . Now setting all

coefficients but a4 to zero produces the rule ẇ ∝ x y , which reproduces Hebb’s statement in

that two neurons active together will wire together. Keeping a negative a0 will act as depression

whenever co-activity of two neurons is less than a baseline value (Sejnowski and Tesauro,

1989).

An example of weight modulated rule is Oja’s rule (Oja, 1982). It takes the form ẇ = a
(
x y − y2w

)
which can be shown to perform principal component analysis of its input stream. The BCM

rule (Bienenstock, Cooper, and Munro, 1982) has a dynamic threshold on the postsynaptic

activity ẇ = ay
(
y −θ)

x. If θ is a filtered version of a (high enough) power of y , then this rule

performs selectivity on the input and provides a mechanistic explanation to the formation

of receptive fields in the primary visual cortex. It is a very popular rule because it has the

advantage of being biologically plausible.

For obvious reasons, none of those models can reproduce the STDP learning window measured

by Bi and Poo (1998). For this we have to look at the second family, composed of spiking models.

The theoretical suggestion for such models was made by Gerstner et al. (1996). Many other

models were later proposed trying to reproduce data or looking at functional properties like

information transmission (Gütig et al., 2003; Karmarkar and Buonomano, 2002; Kempter

et al., 1999a; Rubin et al., 2001; Senn et al., 2001; Song et al., 2000). Multiplicative rules, i.e.

exhibiting weight dependence, were shown to be disastrous for synaptic memory by producing

a unimodal distribution of synaptic weights in the long run (Billings and van Rossum, 2009;

Gütig et al., 2003; van Rossum et al., 2000). In order to account for frequency effects observed

in experiments (Dudek and Bear, 1992), models incorporating higher order effects beyond

spike pairs were introduced (Froemke and Dan, 2002; Gutig and Sompolinsky, 2006; Pfister

and Gerstner, 2006b; Senn et al., 2001).

12. Here I mean the very short type of plasticity, not the version described in Section 1.2.4
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In this thesis I make use in chapter 3 and in chapter 4 of the triplet model by Pfister and

Gerstner (2006b) because it corresponds to the philosophy behind my work. It is a simple

model that captures the main features necessary for a good representation of experimental

findings and that enables interpretation and understanding. To account for triplet effects this

model makes use of filtered versions of the pre- and postsynaptic spike trains with various

time constants

τβẋβ =−xβ+X (1.4)

where X is the spike train of a neuron as defined in Equation 1.2. These traces are read at

spike times and enter the learning rule in a non linear fashion, allowing for spike interactions

beyond nearest neighbour effects.

1.3.3 Models with more than two factors

As I showed in Section 1.2.3, Hebbian learning is not enough to explain several behavioural

observations. In the theoretical community models incorporating other variables than the

two factors represented by pre- and postsynaptic activity are sometimes called third factor

rules. There exists different types of those models.

Optimal models are derived in a top-down approach. They define a value to maximize and

infer from it what the learning rule should look like. The first published model maximizing

reward by Xie and Seung (2004) used a policy gradient approach to derive the plasticity rule.

The result was later extended to neurons with refractory periods by Pfister et al. (2006) and then

re-derived by Florian (2007a). All three rules are very similar and lack somehow of biological

plausibility. Some were applied to learning task but this was limited to the XOR problem

in small networks. Other optimality models maximized information transmission (Bell and

Sejnowski, 1995; Toyoizumi et al., 2005), sparseness (Olshausen and Field, 1996) or slowness

(Sprekeler et al., 2007; Wiskott and Sejnowski, 2002).

The next family is composed of phenomenological models, called R-STDP models. They are

biologically more plausible than optimal models in the sense that they are based on the simple

assumption of modulating a Hebbian rule by a reward signal (Florian, 2007b; Izhikevich,

2007). 13 To bridge the gap between induction of synaptic changes and delivery of the reward

signal, they make use of an eligibility trace, a hidden variable that keeps track of potential

weight changes and that updates the weights only upon the presence of reward. Another

model by Farries and Fairhall (2007) has instantaneous weight updates but reward delivery via

extended kernels. It is interesting to remark that the theory of STC exposed in Section 1.2.4

combines these two mechanisms, an reward extended in time and a semblance of an eligibility

trace in the form of the synaptic tag – with the notable differences of the time scales involved,

much longer in the case of STC and of the eligibility trace as a hidden variable, whereas early

expression of plasticity represent a real change in synaptic efficacy.

13. Eugene Izhikevich actually has a patent on R-STDP.
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1.3. Our tools: models of synaptic plasticity and memory

The idea of an eligibility trace is also found in the field of reinforcement learning (RL) (Sutton

and Barto, 1998). This theory takes its roots in control theory and bases its algorithms on

the interaction of an agent with a set of available states and actions. It is based on Bellman

optimality principle (Bellman, 1957) stating that an agent should optimize the sum of all

future reward outcomes starting from the actual state. It has recently been applied successfully

to neural networks in various learning paradigms by Frémaux et al. (2013).

Finally the model by Urbanczik and Senn (2009) uses a binary decision task and compares

the local population decision, encoded via a second neuromodulator, to the global reward, in

order to make available to the neurons the information about their true contribution to the

final decision. It showed that it could make learning faster in large populations but this was

restricted to binary decision.

1.3.4 Consolidation, network and memory models

To this day, there exists only two models of synaptic consolidation. One of them is the one

presented in chapter 2 (Clopath et al., 2008). I briefly review here the second one, published at

the same time by Barrett et al. (2009).

This model is composed of six states, three states representing a high synaptic weight and

the other three a low one. Among each set of three states, one represents a neutral state, one

a tagged state and one a consolidated state. Transition probabilities between the different

states is adjusted in an ad hoc manner depending on the nature of the stimulus (potentiating,

depressing or consolidating) – in this sense, it is neither a spiking model nor a rate model, but

nevertheless captures well the basic phenomena inherent to STC theory. Moreover the authors

also made predictions on the statistical properties of the field EPSP.

A more detailed comparison of the two models can be found in Section 5.1.

An interesting line of research launched by Willshaw et al. in 1969 studies memory lifetimes

in neural networks by looking at the signal-to-noise ratio of a previously encoded memory

trace under constant stream of incoming information. These studies show that past a certain

capacity, growing linearly with the amount of synapses but decreasing with the square root of

the number of patterns to store, memory traces ineluctably decay. This was called the stability

versus plasticity dilemma (Abraham and Robins, 2005). Different ways of enhancing memory

times were proposed, unbounded synapses was one of them. But since it was necessary to

avoid a runaway of the synaptic weights, it reduced the capacity (Nadal et al., 1986). Another

way was via complex synapse models involving metaplastic states. These models delayed

forgetting but couldn’t avoid it (Fusi et al., 2005; Fusi and Senn, 2006; Rubin and Fusi, 2007).

Another group found that binary synapses showed the same capacity but that they were more

resistant to noise (Barrett and van Rossum, 2008).

Interestingly a recent paper by Elliott and Lagogiannis (2012) showed that a synapse model

integrating the plasticity inducing events before expressing an actual change in synaptic
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efficacy could help solve the oblivescence problem by inducing a period of enhanced memory

signal. This period was also followed by a forgetting of the memory trace but the authors

argued that a system mechanism of reconsolidation occurring at the right moment would

encode a memory trace for an indefinite period of time.

Finally I briefly introduce models of the hippocampal formation as they are important for

spatial information storage. The first computational model of the hippocampus was that

of Marr (1971). He postulated that its function was to store memories non specifically and

to retain them until their usefulness could be assessed. This is surprisingly in line with the

theory of STC. Later studies by Treves and Rolls (Treves and Rolls, 1992, 1994) looked at the

mechanisms responsible for CA3 and CA1 different firing patterns – CA3 involving several

assemblies and CA1 a unique, sparser representation of the information – and how to efficiently

convey information between these two structures. Orthogonalization of the input performing

pattern separation is an important feature accomplished by the hippocampus (O’reilly and

McClelland, 1994). Computational studies had suggested that this was the role of the dentate

gyrus and modeled it via an Oja type learning rule (Yassa and Stark, 2011).

1.4 Objective of the thesis

The main goal of this thesis is to refine the link from the cellular mechanisms of synaptic

plasticity to the behavioural effects of memory measured on living animals. This involves

creating a complex model of a synapse that accounts for neuromodulatory and metaplastic

effects that have been measured in the hippocampus region of the rat.

I first present a first version of such a model that I published together with Claudia Clopath in

2008 (Clopath et al.).

I then turn to a refined model that accounts for more experimental findings and that is

furthermore better suited for the analysis of functional aspects.

I also show an application of this refined model on a behavioural tagging experiment with the

claim that STC theory could bear explanatory power in the way memories are formed, stored

and recalled in living animals

Finally I discuss consequences and open questions inherent to the framework built throughout

this thesis.
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2 MODEL OF EARLY AND LATE LONG

TERM PLASTICITY

This chapter presents the following article:

Tag-Trigger-Consolidation: a Model of Early and Late Long-Term-Potentiation

and Depression

C. Clopath, L. Ziegler, E. Vasilaki, L. Büsing and W. Gerstner (2008) 1

PLoS Computational Biology, 4(12), e1000248

2.1 Introduction

Changes in the connection strength between neurons in response to appropriate stimulation

are thought to be the physiological basis for learning and memory formation (Bliss and

Collingridge, 1993; Malenka and Bear, 2004). A minimal requirement for proper memory

function is that these changes, once they are induced, persist for a long time. For several

decades, experimentalists have therefore focused on Long-Term Potentiation (LTP) and Long-

Term Depression (LTD) of synapses in hippocampus (Bliss and Gardner-Medwin, 1973; Dudek

and Bear, 1992) and cortical areas (Artola et al., 1990; Markram et al., 1997). LTP can be

induced at groups of synapses by strong ‘tetanic’ high-frequency stimulation of the presynaptic

pathway (Bliss and Gardner-Medwin, 1973) while stimulation at lower frequency leads to LTD

(Dudek and Bear, 1992). Both LTP and LTD can also be induced at a single synapse or a small

number of synaptic contacts if presynaptic activity is paired with either a depolarization

of the postsynaptic membrane (Artola et al., 1990; O’Connor et al., 2005a) or tightly timed

postsynaptic spikes (Bi and Poo, 2001; Markram et al., 1997).

While the induction protocol for LTP and LTD is often as short as a few seconds, the changes in

synaptic efficacy persist for much longer (Abraham, 2003). In typical slice experiments on LTP

[and similarly for LTD or Spike-Timing Dependent Plasticity (STDP)] the persistence of the

change is monitored for 30 minutes to 1 hour. Accumulating evidence suggests, however, that

after this early phase of LTP (E-LTP) different biochemical processes set in that are necessary

1. C. Clopath and I contributed equally to the work. C. Clopath performed the research on the induction of
early phase of plasticity.
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Chapter 2. Model of early and late Long Term Plasticity

for the further maintenance of potentiated synapses during the late phase of LTP (L-LTP) (Krug

et al., 1984; Sajikumar et al., 2005). For an understanding of the transition from early to late LTP,

the concept of ‘synaptic tagging and capture’ has become influential (Frey and Morris, 1997;

Reymann and Frey, 2007). During induction of the early phase of LTP, each potentiated synapse

sets a tag that marks that it has received a specific afferent signal. A candidate molecule,

involved in the tag signaling LTP induction in apical dendrites of hippocampal neurons, is

the calcium-calmodulin dependent kinase II (CaMKII) (Reymann and Frey, 2007). Newly

synthesized plasticity-related proteins are ‘captured’ by the tagged synapse and transform

E-LTP into L-LTP that can be maintained over hours or days. A candidate protein involved

in the maintenance of potentiated hippocampal synapses is the protein kinase Mζ (PKMζ)

(Pastalkova et al., 2006; Sajikumar et al., 2005).

The stabilization and maintenance of potentiated synapses poses a number of theoretical

challenges. First, on the level of single synapses we must require synaptic strength to remain

stable, despite the fact that AMPA channels in the postsynaptic membrane are continuously

exchanged and recycled (Crick, 1984; Lisman, 1985; Newpher and Ehlers, 2008). Thus the

synapse is not ‘frozen’ but part of a dynamic loop. Second, on the level of neuronal represen-

tation in cortical areas, one finds representations of input features that are stable but at the

same time sufficiently plastic to adjust to new situations (Buonomano and Merzenich, 1998).

In the theoretical community, this paradox has been termed the stability-plasticity dilemma

in unsupervised learning (Carpenter and Grossberg, 1987). Third, humans keep the ability

to memorize events during adulthood, but can also remember earlier episodes years back.

However, continued learning of new patterns in theoretical models of associative memory

networks forces the erasure or ‘overwriting’ of old ones, the so-called palimpsest property

(Amit and Fusi, 1994; Nadal et al., 1986). In the context of continued learning, theoretical

arguments show that synaptic plasticity on multiple time scales cannot prevent, but at most

delay the erasure of memories in the presence of ongoing synaptic activity (Fusi et al., 2005).

This suggests that additional mechanisms are necessary to further protect existing memories

and ‘gate’ the learning of new ones.

Despite these challenges for the long-term stability of synapses, most classical models of

synaptic plasticity focus on the induction and early phase of LTP or LTD and completely

ignore the question of maintenance. Traditional models of associative memories separate

the learning phase from the retrieval phase (Hopfield, 1982) and the same holds for standard

models of STDP (Gerstner et al., 1996; Kempter et al., 1999b; Song et al., 2000). Detailed

biophysical models of LTP and LTD describe calcium dynamics and Calcium/Calmodulin-

Dependent Protein Kinase II (CaMKII) phosphorylation during the induction and early phase

of LTP (Graupner and Brunel, 2007; Lisman, 1989; Miller et al., 2005). While these models show

that switches built of CaMKII proteins can be stable for years, they do not address aspects

of tagging leading to heterosynaptic interaction during L-LTP and L-LTD. Moreover, while

CaMKII phosphorylation is necessary for induction of LTP and mediate tags in the apical

dendrites of hippocampal CA1 neurons (Sajikumar et al., 2007), it is less clear whether it is

necessary for its maintenance (Otmakhov et al., 1997) . On the other hand protein kinase Mζ

22



2.2. Results

is essential for maintenance of some synapse types (Pastalkova et al., 2006; Reymann and Frey,

2007; Sajikumar et al., 2005) but the same molecule is potentially relevant for induction in

others (Sajikumar et al., 2007).

We wondered whether a simple model that connects the process of LTP induction with that

of maintenance would account for experimental results on tagging and ‘cross-tagging’ (Frey

and Morris, 1997; Reymann and Frey, 2007; Sajikumar and Frey, 2004b; Sajikumar et al., 2005)

without specific assumptions about the (partially unknown) molecular pathways involved in

the maintenance process. If so, the model should allow us to discuss functional consequences

that are generic to the tagging hypothesis independent of the details of a biophysical imple-

mentation in the cell. Even though we believe that the model principles are more general, we

focus on synapses from the Schaffer-Collaterals onto the CA1 neurons in hippocampus as

an experimentally well-studied reference system for synaptic plasticity. Since typical tagging

experiments involve the extracellular stimulation of one or several groups of synapses (rather

than single synapses), our model of early and late LTP/LTD is developed in the context of

a neuron model with hundreds of synapses. The application of the principles of synaptic

consolidation to experiments inducing E-LTP/E-LTD at single synapses is considered in the

discussion section.

2.2 Results

We study a model with a large number of synapses i onto a single postsynaptic neuron. To

be specific, we think of a pyramidal neuron in the CA1 area of hippocampus. Our model

combines features of traditional models for the induction of potentiation (Bienenstock et al.,

1982; Fusi, 2002; Gerstner and Kistler, 2002; Gerstner et al., 1996; Kempter et al., 1999b; Pfister

and Gerstner, 2006a; Song et al., 2000) with a simple description of tagging and synthesis of

plasticity related proteins that finally lead to the maintenance of the induced changes. The

section is organized as follows: We first introduce the essential components of the model step

by step (‘Constructing the Model’). We then test the performance of the model with a set of

stimuli typically used to induce long-term changes of synapses (‘Tests of the Model’).

2.2.1 Constructing the Model

Our model contains three elements (Figure 2.1). The first one sets the tag during the induction

of E-LTP or E-LTD. A tag is indicated by a value h = 1 for LTP or l = 1 for LTD. In the absence

of tags we have h = l = 0. The second one describes the process that triggers the synthesis of

plasticity related proteins. The final component describes the up-regulation of a maintenance-

related process from a low value (z = 0) to a high value (z ≈ 1). The dynamics of this component

is intrinsically bistable and leads to a consolidation of the previously induced change at the

labeled synapses upon interaction with the protein p (‘protein capture’). The total change

∆w of the synaptic strength reported in experiments contains contributions (Reymann and

Frey, 2007) of the early components l and h as well as the late component z. Since the model
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Figure 2.1 – The three components of the Tag-Trigger-Consolidation (TagTriC) model. A A synapse can
be in the non-tagged state N, the high state H or the low state L. A synapse i in H (or L) has a tag hi = 1
(or li = 1, respectively). Transitions to a tagged state occur with rates ρH for potentiation and ρL for
depression. The tag hi = 1 is indicated by a red flag in both the flow graph and the schematic drawing
below. B Synthesis of plasticity related proteins p (green squares) is triggered if the total number of
set tags is larger than a critical number Np . If the trigger threshold Np is not reached, the protein
concentration decays back to zero. C. The consolidation dynamics can be visualized as downward
motion in a potential surface E (z). The function f (z) (shown to the right) is the derivative of E and
characterizes the dynamics d z/d t = f (z). If a tag is set at the synapse (hi = 1) and protein synthesis
has been triggered (p ≈ 1), the dynamics can be imagined as downward motion into the right well of
the potential E (z). In this case, z ≈ 1 is the only fixed point of the dynamics (magenta circle). In the
absence of tags (hi = li = 0, below) the consolidation variable zi of synapse i is bistable and approaches
(direction of flow indicated by arrows) stable fixed points at zi = 0 or zi = 1 (magenta circles). The steps
of synaptic tagging and capture are indicated immediately below the flow diagram (Continued on next
page).
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describes a sequence of three steps ‘Tag-Trigger-Consolidation’ we call it in the following the

TagTriC-Model (Figure 2.1).

2.2.2 Tag and induction of LTP/LTD

Results from minimal stimulation protocols which putatively activate only a single synapse

suggest that the induction of LTP is a switch-like process (O’Connor et al., 2005a; Petersen

et al., 1998). We therefore model individual synapses as discrete quantities that can switch,

during the induction of LTP, from an initial ‘non-tagged state’ (N) to a ‘high state’ (H) with a

transition rate ρH that depends on the induction protocol. Similarly, induction of LTD moves

the synapse from the initial non-tagged state (N) to a ‘low state’ (L) at a rate ρL . If synapse i is

in the high state, the synaptic variable hi is equal to one. If it is in the low state, another local

variable li is set to one. These local variables hi and li do not only control the weight of the

synapse during E-LTP and E-LTD, but also serve as ‘tags’ for up- or down-regulation of the

synapse. Tags reset to zero stochastically with a rate kh and kl , respectively. If both tags are

zero, the synapse is in the non-tagged state N. Since the synapse is either up-regulated OR

down-regulated, at most one of the tags can be non-zero (Figure 2.1A).

The stochastic transitions from the initial state N with hi = 0 and li = 0 to the down-regulated

state li = 1 or an upregulated state hi = 1 depend in a Hebbian manner on presynaptic activity

and the state of the postsynaptic neuron. In the absence of presynaptic activity, the LTD rate

ρL vanishes. Presynaptic activity combined with a time-averaged membrane potential ū above

a critical value ϑLTD leads in the TagTriC model to a LTD transition rate ρL proportional to

[ū (t )−ϑLTD]. For a transition from the initial state to the high state, we require in addition that

the momentary membrane potential is above a second threshold ϑLTP. Hence the transition

rate ρH is proportional to [ū (t )−ϑLTD] [u −ϑLTP] whenever these threshold conditions are

satisfied; see Methods for details.

Our assumptions regarding the transition rates essentially summarize the qualitative voltage

dependence seen in the Artola-Bröcher-Singer experiments (Artola et al., 1990). Indeed, when

(Figure 2.1) D The tagging rates for depression (−ρL ,(magenta)) and for potentiation ρH (blue) are
shown as a function of the clamped voltage under the assumption that a presynaptic spike has arrived
less than 1 millisecond before. Note that for depression we plot the negative rate −ρL rather than ρL to
emphasize the fact that depression leads to a down-scaling of the synapse. E Voltage dependence of
early LTP and LTD. The weight change∆w/w (0) induced by a stimulation of 100 synapses at 2Hz during
50s while the postsynaptic voltage is clamped is shown as a function of voltage. The percent change
∆w/ŵ in simulations (circles) of LTP/LTD induction experiments can be predicted from a theory (solid
line) based on the difference in transition rates ρH −ρL . The simulation reflects the voltage dependence
seen in experiments (Artola et al., 1990; Ngezahayo et al., 2000). F and G. Frequency dependence of
early LTP and LTD. Simultaneous stimulation of 100 synapses by 3 trains (separated by 5 min) of 100
pulses at rates ranging 0.03 to 100 Hz shows LTD at low frequencies and LTP at frequencies above 30
Hz. G If LTP is blocked in the model, LTD (pink line) occurs up to high frequencies as in experiments
(O’Connor et al., 2005a). Blue line: LTP with blocked of LTD.
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100 synapses in the TagTriC model are stimulated at low frequency during 50 seconds while

the membrane voltage is kept fixed at different values (Figure 2.1D), the total weight change

summed across all synapses exhibits LTD at low voltage and LTP at high voltage (Artola

and Singer, 1993; Ngezahayo et al., 2000). As expected, the resulting weight changes in the

simulations of Figure 2.1E reflect the voltage dependence of the transition rates in Figure 2.1D.

2.2.3 Trigger for protein synthesis

Previously induced LTP or LTD needs to be consolidated in order to last for more than one hour.

Consolidation requires that protein synthesis is triggered. Experimental evidence indicates that

triggering of protein synthesis needs the presence of neuromodulators such as dopamine (in

the apical CA1 region) or other modulators (in other regions). In typical tagging experiments,

extracellular stimulation co-stimulates dopaminergic input leading to a phasic dopamine

signal (Frey et al., 1990; Reymann and Frey, 2007). In our model, induction of E-LTP or E-LTD

through appropriate stimulation protocols changes the synaptic efficacy and sets tags at the

modified synapses, both described by the variables hi = 1 or li = 1. Protein synthesis in the

model is triggered (see methods for details) if the total number of tags
∑

i (hi + li ) (which

indirectly reflects the phasic dopamine signal) reaches a threshold Np which depends on the

level of background dopamine (and other neuromodulators). More specifically, Np decreases

with the concentration of background dopamine so that the presence of dopamine facilitates

the trigger process (Sajikumar and Frey, 2004b).

If the trigger criterion is satisfied, the concentration p of synthesized plasticity related proteins

approaches with rate kp a value close to one. If the number of tags falls below the threshold

Np , the protein concentration p decays with a time constant τp back to zero. Further details

on the role of the trigger threshold and its relation to neuromodulators can be found in the

discussion section.

2.2.4 Consolidation and late LTP

The total weight wi of a synapse i depends on the present value of the tags hi or li as well

as on its long-term value zi . The slow variable zi is a continuous variable with one or two

stable states described by a generic model of bistable switches, that could be implemented by

suitable auto-catalytic processes (Lisman, 1985). While the concentration p of plasticity related

proteins is zero, the variable zi has two stable states at zi = 0 and zi = 1, respectively. If the

protein concentration takes a value of p ≈ 1, one of the stable states disappears and, depending

on the tag that was set, the long term-value of the synapse can be up- or down-regulated; see

methods and Figure 2.1C for details.

In order to illustrate the mechanism of induction of L-LTP, let us suppose that the synapse

has been initially close to the state zi = 0. The dynamics of the synapse can be imagined as

downward motion in a ‘potential’ E . The current stable state of the synapse is at the bottom
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of the left well in the potential pictured in Figure 2.1C. We assume that during a subsequent

LTP induction protocol the synapse has been tagged with hi = 1 and that the total number of

tags set during the LTP induction protocol surpasses the trigger threshold Np . If the protein

concentration p approaches one, the potential surface is tilted so that the synapse now moves

towards the remaining minimum at z ≈ 1. After decay of the tags, p returns to zero, and we

are back to the original potential, but now with the synapse trapped in the state z = 1. It can

be maintained in this state for a long time, until another strong tagging event occurs during

which the synapse is tagged with li = 1 as a result of LTD induction. In this case the potential

surface can be tilted towards the left so that the only equilibrium point is at z = 0. Since

consolidation is typically studied in animals that are more than 20 days old (Reymann and

Frey, 2007), we assume that before the beginning of the experiment 30 percent of the synapses

are already in the upregulated state z = 1 and the remaining 70 percent in the state z = 0; see

also (O’Connor et al., 2005a). Because of the bistable dynamics of consolidation, only synapses

that are initially in the upregulated state z = 1 can undergo L-LTD and only synapses that start

from z = 0 can undergo L-LTP; compare (O’Connor et al., 2005a). Note, however, that tags for

potentiation and depression can be set independently of the value of z. We may speculate

that the variable z is related to the activity of PKMζ (Pastalkova et al., 2006; Sajikumar et al.,

2005), or to the self-sustained clustering of AMPA receptors (Hayer and Bhalla, 2005), but the

exact biochemical signaling chain is irrelevant for the functional consequences of the model

discussed in the results section. In our model, the bistable dynamics of the z-variable captures

the essence of synaptic persistence despite molecular turnover (Crick, 1984; Lisman, 1985;

Miller et al., 2005) and mobility of AMPA receptors (Hayer and Bhalla, 2005).

2.2.5 Tests of the model

The TagTriC model has been tested on a series of stimulation protocols that reflect induction

of LTP and LTD as well as the consolidation of plasticity events.

2.2.6 Induction of synaptic changes

A typical LTP induction experiment starts with extracellular stimulation of a bundle of presy-

naptic fibers (i.e., the Schaffer collaterals leading from CA3 to CA1) that activate a large number

(typically hundreds (Reymann and Frey, 2007)) of presynaptic terminals. With an extracellular

probe electrode placed close to one of the postsynaptic neurons, a change in synaptic efficacy

is measured via the amplitude (or initial slope) of the evoked postsynaptic potential, repre-

senting the total response summed across all the stimulated synapses. In our simulations,

we mimic these experiments by simultaneous stimulation of 100 synapses. The state of the

postsynaptic neuron is described by the adaptive exponential integrate-and-fire model (Brette

and Gerstner, 2005) and can be manipulated by current injection.

In a preliminary set of simulation experiments done with presynaptic stimulation alone (no

manipulation of the postsynaptic neuron), the TagTriC model exhibits LTD or LTP depending
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on the frequency of the presynaptic stimulation (Figure 2.1F) in agreement with experimental

results (Dudek and Bear, 1992; O’Connor et al., 2005b). Moreover, under the assumption that

LTP has been blocked pharmacologically (ρH = 0 in the model), our model shows LTD even

for high stimulation frequencies (Figure 2.1G). This stems from the fact that LTD and LTP are

represented in the TagTriC model by two independent pathways (Figure 2.1A) which are under

control condition in competition with each other, but show up individually if one of the paths

is blocked (O’Connor et al., 2005b). Together with the voltage dependence of Figure 2.1E, the

above simulation results indicate that our model of LTP and LTD induction can account for

a range of experiments on excitatory synapses in the hippocampal CA1 region, in particular,

voltage and frequency dependence.

2.2.7 Consolidation of synaptic changes

In order to study whether consolidation of synaptic changes in our model follows the time

course seen in experiments, we simulate standard experimental stimulation protocols (Frey

and Morris, 1997; Reymann and Frey, 2007). A weak tetanus consisting of a stimulation of

100 synapses at 100Hz for 0.2 seconds (21 pulses) leads in our model to the induction of LTP

(change by +15 percent) which decays back to baseline over the time course of two hours

(Figure 2.2A). Thus, after the early phase of LTP the synapses are not consolidated. A stronger

stimulus consisting of stimulating the same group of hundred synapses by 100 pulses at 100Hz

(repeated 3 times every 10 minutes) yields stronger LTP that consolidates and remains elevated

(weight change by 22±5 percent) for as long as the simulations are continued (more than 10

hours, only the first 5 hours are shown in Figure 2.2B). Thus our model exhibits a transition

from early to late LTP if E-LTP is induced by the strong tetanic stimulation protocol, but not the

weak one, consistent with results in experiments (Frey and Morris, 1997; Reymann and Frey,

2007). If, however, the weak tetanus at a first group of 100 synapses is given 30 minutes before

or after a strong tetanus at a second group of 100 synapses, the synapses in both the weakly

and strongly stimulated groups are consolidated (Figure 2.2C and D). If the weak tetanus in

group one is given 120 minutes after the strong tetanus in group two, then consolidation of

the synapses in the weakly stimulated group does not occur (Figure 2.2E). Thus our model

exhibits a time course of heterosynaptic interaction between the two groups of synapses as

reported in classical tagging experiments (Frey and Morris, 1997; Reymann and Frey, 2007).

An advantage of a modeling approach is that we can study the dependence of the heterosy-

naptic interaction between the two groups of synapses upon model parameters. A critical

parameter in the model is the trigger threshold Np that needs to be reached in order to start

protein synthesis (Figure 2.1B). With our standard choice of parameters, where Np = 40, we

can plot the consolidated weight change ∆w/w (0) in the weakly stimulated group (measured

10 hours after the induction) as a function of the time difference between the stimulation of

the group receiving the strong tetanus and that receiving the weak tetanus. The curve in Fig-

ure 2.2F shows that for a time difference up to 1 hour there is significant interaction between

the two groups of synapses leading to synaptic consolidation, whereas for time differences
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Figure 2.2 – The model accounts for tagging paradigms. A A weak tetanus (21 pulses at 100 Hz) applied
at a group of 100 synapses at t = 10min (arrow) leads to an increased connection weight (w/w (0), blue
line) that decays back to baseline. B A strong tetanus (100 pulses at 100 Hz repeated three times, arrows)
leads to late LTP that is sustained for 5 hours (black line). C If the weak tetanus (blue arrow) in a first
group of synapses is followed thirty minutes later by a strong tetanus (black arrows) in a second group of
synapses, the weights in the first group (blue line) and the second group (black line) are stabilized above
baseline. D Stimulating a group of synapses by a weak tetanus (blue arrow) 30 minutes after the end of
the strong tetanic stimulation of a second group also leads to stabilization of the weights in both groups
above baseline. E If the weak tetanic stimulation occurs 2 hours after the strong tetanic stimulation
of the other group, only synapses in the strongly stimulated group will be stabilized (black line), but
not those in the weakly stimulated group (blue line). F Fraction of stabilized weights ∆w/w (0) in the
weakly stimulated group measured 10 hours after induction of LTP as a function of the time difference
between the weak stimulation and the end of the strong tetanic stimulation in the second group. Blue
line: normal set of parameters (Np = 40). Black line: protein trigger threshold increased to Np = 60. In
panels A-E, lines indicate the result averaged over 10 repetitions of the simulation experiments and
bars standard deviation. In panel F, line indicates the result averaged over 100 repetitions. 90 of the 100
individual trials stayed within the bounds indicated by the error bars.
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beyond 2 hours this is no longer the case. If the trigger threshold is increased to Np = 60

(corresponding to less available neuromodulator), then the maximal time difference that

still yields L-LTP in the weakly stimulated group of synapses is reduced to about 20 minutes

(Figure 2.2F) whereas a reduction of Np yields an increased time window of interaction (data

not shown). If Np is reduced much further, the weak tetanus alone will be sufficient to allow a

transition from the early to the late phase of LTP. We speculate that Np could depend on the

age of the animal as well as on the background level of dopamine or other neuromodulators

so as to enable a tuning of the degree of plasticity (see discussion for details).

2.2.8 LTD and Cross-tagging

We consider two experimental protocols known to induce LTD – a weak low-frequency pro-

tocol consisting of 900 pulses at 1 Hz and a strong low-frequency protocol consisting of 900

repetitions at 1 Hz of a short burst of three pulses at 20 Hz. This strong low-frequency protocol

applied to 100 model synapses leads to a significant level of LTD (reduction of weights to 70±4

percent of initial value) which is consolidated 5 hours later at a level of 83±3 percent of initial

value. If a group of 100 synapses is stimulated with the weak low-frequency protocol, an early

phase of LTD is induced that is not consolidated but decays over the time course of 3 hours

(Figure 2.3A and B). However, if the weak low-frequency stimulation occurs after another

group of 100 synapses had been stimulated by the strong low-frequency protocol, then the

group that has received the weak stimulation shows consolidated synapses (at 90±2 percent 5

hours after stimulus induction, Figure 2.3C). Moreover, consolidation of LTD (at 92±3 percent

5 hours after stimulus induction) in the group of synapses receiving the weak low-frequency

protocol also occurs if it was stimulated thirty minutes after the stimulation of a second group

of synapses by a strong tetanus, leading to LTP (Figure 2.3D). Thus, the TagTriC model exhibits

cross-tagging consistent with experiments (Sajikumar and Frey, 2004b; Sajikumar et al., 2005).

In our model, cross-tagging occurs because the tags for LTP and LTD (hi and li , respectively)

enter in a symmetric fashion into the trigger criterion for the synthesis of plasticity-related

proteins (see Figure 2.1 and Methods).

2.2.9 Model Mechanism for tagging, cross-tagging, and consolidation

In order to elucidate how the model gives rise to the series of results discussed in the preceding

paragraphs, we have analyzed the evolution of the model variables during and after induction

of LTP (Figure 2.4). Critical for consolidation is the synthesis of plasticity related proteins,

characterized by the variable p in the model. Synthesis is only possible while the total number

of tags
∑N

i hi + li is above the protein triggering threshold Np . For the strong tetanic stimulus

this criterion is met for about 90 minutes (shaded region in Figure 2.4A) leading to high levels

of plasticity related proteins. After 90 minutes the concentration of proteins starts to decay

back to baseline. While the level of proteins is sufficiently elevated the consolidation variable

zi of each tagged synapse moves towards zi ≈ 1 since this is the only stable fixed point of the

dynamics (Figure 2.1C). This leads to a consolidation time of about 2 hours, enough to switch
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Figure 2.3 – The model accounts for cross-tagging between LTP and LTD. A A strong low-frequency
stimulus (3 pulses at 20 Hz, repeated 900 times every second) applied to a group of N = 100 synapses
induces LTD with mean weights (w/w (0)) stabilized at 83 ±3% of initial value after 5 hours (black line).
B A weak low-frequency stimulus (1 pulse repeated 900 times at 1 Hz) induces early LTD, which is
not consolidated. C If the weak low-frequency stimulus is applied 30 minutes after a second group
of synapses has received the strong low-frequency protocol, the weights in both groups (blue, weak
stimulus; black, strong stimulus) are consolidated at values below baseline. D Consolidation of LTD in
the group receiving weak low-frequency stimulation (blue line) also happens if induction occurs 30
minutes after stimulating a second group of synapses with a strong tetanic protocol (see Figure 2.2)
inducing LTP (black line). Downward arrows indicated the period of weak (blue arrow) or strong (black
arrow) low-frequency protocols. The black upward arrows indicate strong tetanic stimulation. Lines
show mean results, averaged over 10 repetitions of the simulation experiment. Error bars are standard
deviation.

a large fraction of synapses into the up-regulated state z ≈ 1 (green line, Figure 2.4A). Hence

the average weight of the stimulated synapses stabilizes at a value above baseline, indicating

L-LTP (Figure 2.4A, solid line).

If, in a different experiment, 100 synapses are stimulated by the weak tetanus, the synthesis of

plasticity related proteins is only possible during a few minutes (Figure 2.4B, red line), which is

not sufficient to switch tagged synapses from z = 0 into the upregulated state z ≈ 1. Hence the

weights (Figure 2.4B, black line) decay together with the tags (Figure 2.4B, magenta line) back

to baseline and the transition from early to late LTP does not occur. The decay of the weights

is controlled by the rate kH at which tags stochastically return to zero. The evolution of the

protein concentration p and the consolidation variable z after a strong tetanus that leads to

90 minutes of protein synthesis and a weaker tetanus that only leads to 40 minutes of protein

synthesis has been illustrated in (Figure 2.5A).

The total amount of available protein that is synthesized depends in our model on the time that
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Figure 2.4 – Dynamics of the TagTriC Model during different tagging protocols and protein synthesis
blocking. The change of the total synaptic weight (top panels, black line ∆w =∑N

i=1[wi (t )−wi (0)/N )

has contribution from early LTP (top panels, magenta line represents
∑N

i=1 (hi −αli )/N ) and from late

LTP (top panels, green line represents
∑N

i=1β (zi − zi (0))/N ). The protein variable p (red line, bottom

panels) grows as long as the average number of tags (
∑N

i=1 (hi + li )/N , blue line) is above the protein
synthesis trigger threshold (Np /N , dashed horizontal line). For better visibility, the regions where the
blue line is above the trigger threshold is shaded. A. A strong tetanus (N =100 synapses, stimulated by
100 pulses at 100Hz, repeated three times every ten minutes) leads to a sustained period of about 90
minutes where the number of tagged synapses is above the protein synthesis triggering threshold (lower
panel, blue shaded). During this time the protein synthesis variable p is close to one (red line, lower
panel), causing an increase in the fraction of consolidated weights (green line, top panel). B During a
weak tetanus (N =100 synapses, stimulated by 21 pulses at 100Hz) the number of tags surpasses the
protein triggering threshold only for a short time which does not enable switching of the z variable (top
panel, green line) to the up-regulated state. C If the weak tetanus is given 30 minutes after the strong
one, the number of tags set by the strong tetanus is still above the threshold, which allows protein
synthesis stabilizing both the group of 100 synapses receiving the strong tetanus (top panel) and the
group of 100 synapses receiving the weak tetanus (middle panel). D Protein synthesis is blocked for 1
hour (indicated by black bar at bottom of panel) starting 35 minutes after a first group of 100 synapses
has been stimulated by a strong tetanus. Despite protein synthesis blocking, both the first group of
synapses (top panel) and a second group of 100 synapses that received a strong tetanus during the
blocking period (middle panel) develop late LTP because proteins synthesized during the induction of
early LTP in the first group decay only slowly (bottom panel).
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Figure 2.5 – Theory and predictions. A Evolution of the variables p and z during tagging. If protein
synthesis is ‘ON’ and the synapse tagged, p and z move along the black dashed line towards the stable
fixed point on the upper right

(
p ≈ 1, z ≈ 1

)
(red filled circle). If protein synthesis stops after some

time (yellow line, after 90 min; orange line, after 40 minutes) but the synapse remains tagged, the
dynamics converges towards the fixed point p = 0, z = 1 (red filled circle) indicating that the synapse
is consolidated (yellow and orange trajectories). However, if protein synthesis stops too early (after
25 min, pink line), or if the synaptic tag is lost too early (after 60 min, magenta line), the synapse is
not consolidated and the trajectories converge towards the non-tagged initial state p = 0, z = 0 (red
filled circle). The green dashed vertical line at z = 0.5 indicates the threshold beyond which a loss of
the tag does not affect consolidation; the green solid line indicates the separatrix between the stable
fixed points at z = 0 and z = 1. The minimal duration of protein synthesis to allow any consolidation
is given by the intersection of the black dashed line with the separatrix. B. Number of consolidated
synapses (Nup, vertical axis) as a function of the number of initially tagged synapses (Ntag, horizontal
axis) in simulations (red filled circles) and theory (solid line). Some of the initially tagged synapses fail
to be consolidated because either they loose their tag or protein synthesis stops too early (see A). With
a protein synthesis threshold Np = 40 (arrow) we need about 60 initially tagged synapses to achieve any
consolidation (solid line). If the protein synthesis threshold is reduced to Np = 10 (dashed arrow), we
need at least 15 tagged synapses to see any consolidation (dashed line).

the total number of tags stays above the protein triggering threshold Np . Even though always

100 synapses are stimulated in our model, not all receive tags in each experiment; moreover

because of the competition for potentiation tags (hi = 1) and depression tags (li = 1) during

induction of plasticity, different synapses can receive different tags in the same experiment.

With our strong tetanus protocol, on average 70 (out of 100) synapses receive a potentiation tag

and 30 a depression tag while with the weak tetanus the numbers are 30 and 10, respectively.

For the depression protocols, on average 10 synapses receive a potentiation tag and 90 a

depression tag under strong low-frequency stimulation, and typically zero a potentiation tag

and 40 a depression tag under the weak low-frequency protocol. These numbers vary from

one trial to the next so that sometimes the protein trigger threshold Np = 40 is reached with

the weak protocols and sometimes not. The important aspect is that even if the threshold is

reached for a short time, the duration of protein synthesis is not long enough to provide a

sufficient protein concentration p for consolidation of the tagged synapses; see Figure 2.4B

and Figure 2.5A.

Since the concentration p of plasticity related proteins is crucial for the transition from

early to late LTP we wondered how a block of protein synthesis would interfere with the

consolidation of weights in the TagTriC model. Application of a protein synthesis inhibitor
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(modeled by setting the rate kp of protein synthesis to zero) during 1 hour starting thirty

minutes before a strong tetanus is given to a group of 100 synapses that would normally lead

to L-LTP, induced E-LTP but prevented consolidation into L-LTP (data not shown). However, if

the same simulation experiment was repeated after a second group of synapses had received

a strong tetanic stimulation 35 minutes prior to the application of protein synthesis blocker,

then both groups of synapses showed consolidation of weights (Figure 2.4D), consistent with

experiments (Frey and Morris, 1997). Closer inspection of the lower panel in Figure 2.4D

shows that two components contribute to consolidation: Firstly, the concentration of plasticity

related proteins (red line) that has increased because of the first strong tetanic stimulus

decreases only slowly back to baseline enabling the switching of the slow components (variable

z, green line) even in the presence of protein synthesis blocker. Secondly, even after the end of

the application of the blocker, the total number of tags that has been set by LTP induction is

still above the critical value Np (shaded region in Figure 2.4D) so that protein synthesis can be

resumed after the end of the blocking period. In summary, the detailed analysis of the TagTriC

model allows to account for many aspects of tagging experiment in terms of a limited number

of variables.

2.3 Discussion

2.3.1 Relation of Models to Experiments

Synaptic plasticity is based on intricate signal transduction chains involving numerous pro-

cessing steps and a large number of different molecules (Malenka and Bear, 2004; Newpher

and Ehlers, 2008; Reymann and Frey, 2007). Despite the complexity of the molecular processes,

synaptic plasticity has experimentally been characterized by a small set of distinct phenomena

such as short-term plasticity (Markram et al., 1998) as well as early and late phases of LTP and

LTD (Reymann and Frey, 2007).

Existing models of synaptic plasticity have focused on the description of short-term plasticity

(Markram et al., 1998) and on the induction of LTP and LTD (Bienenstock et al., 1982; Fusi, 2002;

Gerstner and Kistler, 2002; Gerstner et al., 1996; Kempter et al., 1999b; Pfister and Gerstner,

2006a; Song et al., 2000). The question of maintenance has received much less attention and

was mainly addressed in the context of bistability of the CaMKII auto-phosphorylation process

(Graupner and Brunel, 2007; Lisman, 1989; Miller et al., 2005), AMPA receptor aggregation

(Hayer and Bhalla, 2005), or four identified kinase pathways (Smolen et al., 2006). While

CaMKII is necessary for induction of long-term potentiation (Lisman et al., 2002), it is probably

too narrow to focus modeling studies only on a single or a few kinases such as CaMKII and

neglect other proteins and signaling cascades that are involved in synaptic maintenance

(Reymann and Frey, 2007). For example, there is strong evidence that PKMζ is involved in

synaptic maintenance and necessary for the late phase of LTP in vitro (Sajikumar et al., 2005)

and in vivo (Pastalkova et al., 2006). However, the actual processes are complex and the

molecules involved in setting tags may differ between different parts of the dendrite. For
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example PKMζ is involved in setting tags during E-LTP in the basal dendrite, whereas CaMKII

(or MAPK for E-LTD) plays a similar role in apical dendrites (Sajikumar et al., 2007).

Instead of focusing on specific signaling cascades, the TagTriC model presented in this paper

aims at describing the essential ingredients of any possible functional model of L-LTP and

tagging. These ingredients include (i) a bistable switch (described by the dynamics of the

zi -variable) for each synapse that guarantees long-term stability in the presence of molecular

turn-over (Lisman, 1985); (ii) a global triggering signal for protein synthesis (described by the

dynamics of the p variable); a formalism to (iii) induce early forms of LTP and LTD and (iv) set

synaptic tags. Since we aimed for the simplest possible model, we have identified the synaptic

tags hi and li for potentiation and depression with the synaptic weights during the early phase

of LTP and LTD, respectively, so that points (iii) and (iv) are described by the same transition of

the synapse from an initial non-tagged state to the high or low state, respectively. Variants of

the model where the weight during the early phase of LTP and LTD is not directly proportional

to the value of the tags are conceivable.

Even though we do not want to identify the synaptic variables hi , li , zi with specific biochemi-

cal signals, a couple of candidate molecules and signaling chains should be mentioned. The

setting of the tag for LTP under normal physiological conditions involves NMDA receptor

activation and elevated levels of calcium which in turn trigger a signaling chain involving

Calmodulin and CaMKII. We therefore think that the hi variable (representing both the tag for

LTP induction and the weight increase during the early phase of LTP) should be related to the

activation of CaMKII (Lisman et al., 2002; Reymann and Frey, 2007). The molecular interpreta-

tion of the tag li for LTD is less clear (Reymann and Frey, 2007). In our model we have taken

the tags as discrete quantities that decay stochastically, but a model with continuous tags that

decrease exponentially gives qualitatively the same results (data not shown). The reason is

that triggering protein synthesis in our model requires a large number of tags to be set, so that

even in the stochastic model only the mean number of tags is relevant – and the mean (more

precisely, its expectation value) is a continuous variable. Nevertheless, we prefer the model

with discrete values over the continuous one in view of the switch-like transitions of synapses

after induction of LTP and LTD (O’Connor et al., 2005a; Petersen et al., 1998). Maintenance

of enhanced synaptic weights is probably implemented by an increased number of AMPA

receptors in the postsynaptic membrane. Whether the stability arises from a self-organization

process of receptors (Hayer and Bhalla, 2005) or from interaction with persistently activated

CaMKII molecules (Lisman et al., 2002) or from additional kinases such as PKMζ (Pastalkova

et al., 2006; Sajikumar et al., 2005) is an open problem of experimental investigation. Similarly,

the exact identity of many plasticity related proteins is still unknown (Reymann and Frey, 2007).

In our model we assume that recently synthesized plasticity related proteins are accessible

to all synapses onto the same postsynaptic neuron. However, a distinction between proteins

synthesized in, say, basal dendrites and that synthesized in apical dendrites would be possible

by replacing the variable p by two or more distinct variables pk with similar dynamics (but

potentially different trigger thresholds Np ), allowing for a compartmentalization of tagging

(Reymann and Frey, 2007).
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Experimental cross-tagging results clearly indicate that there are two different types of synaptic

tags, one for LTP and one for LTD (Reymann and Frey, 2007; Sajikumar and Frey, 2004b), which

we called hi for LTP and li for LTD, leading to three different states during tagging (Figure 2.1A).

Since we have identified the tagging with the early phase of LTP and LTD, our model of E-LTP

and E-LTD also has three different states (whereas our model of late LTP/LTD has only two

states characterized by zi = 0 and zi = 1). The three-state model of early LTP/LTD presented

in this paper would predict that all non-tagged synapses can undergo a transition to E-LTP

or E-LTD depending on the induction protocol - whereas experiments suggest that about

70 percent of synapses show LTP but not LTD and the remaining 30 percent LTD but not

LTP (O’Connor et al., 2005a). Moreover, only those synapses that are initially weak can be

potentiated and only those that are initially strong can be depressed (O’Connor et al., 2005a).

This aspect can be included in our model if we replace the induction rates ρH for LTP by

ρH (1− zi ) and ρL for LTD by ρl zi so LTP is only possible from a state with zi = 0 and LTD only

from an initial state zi = 1 — in agreement with a two-state model of early LTP/LTD (O’Connor

et al., 2005a). For the tagging and induction experiments presented in this paper, the results

do not change significantly when we implement this extension of the induction model.

2.3.2 Functional Consequences and Predictions

One of the advantages of a simple phenomenological model is that it should be capable

of illustrating the functional consequences of tagging and L-LTP or L-LTD in a transparent

manner. What are these functional consequences?

A characteristic feature that is made transparent in our model (and which we expect to be

present in any model of tagging) is that, under typical experimental conditions, the transition

from early to late LTP is only possible if a sizable group of synapses have undergone E-LTP

or E-LTD. Hence, while induction of E-LTP is a local Hebbian process that is likely to take

place at the postsynaptic site of the synapse (e.g., the dendritic spine), the transition from

the early to the late phase of LTP requires a minimum number of synapses to be activated by

appropriate stimulation including co-activation of neuromodulatory input so as to trigger

synthesis of plasticity related proteins. A direct consequence of this is that synapses cannot

be considered as independent. In order to predict whether a synapse memorizes an item

for a long time or forgets it and re-learns some other item, it is not sufficient to consider

a ‘Hebbian’ induction model, where synaptic changes depend only on the activity of pre-

and postsynaptic neurons. For maintenance, it is not the synapse which decides individually,

but it is the neuron as a whole (or a large functional compartment sharing the same site of

synthesis of plasticity-related proteins (Govindarajan et al., 2006; Reymann and Frey, 2007;

Sajikumar et al., 2007)) which ‘decides’ whether it is going to store the present information, or

not. Hence, classical (Amit and Fusi, 1994; Fusi, 2002; Nadal et al., 1986) and recent (Fusi et al.,

2005) theoretical models which studied memory maintenance in the presence of ongoing

neuronal activity on the level of single synapses need to be reconsidered, since the assumption

of independent synapses does not hold (Figure 2.5A and B). In particular, our model predicts
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that, after an ensemble of identical neurons have received the same stimulus, some neurons

learn (adapt a large fraction of their synapses to the stimulus) and others don’t (keep all their

synapses unchanged). With our choice of parameters, this happens in the TagTriC model if the

number of synapses that have been tagged during the induction protocol is between 55 and

70 (Figure 2.5B). This neuronal, rather than synaptic, decision about memorizing an input

(see also (Toyoizumi et al., 2007)) is potentially attractive for prototype learning - a standard

paradigm in neuronal clustering and categorization algorithms, e.g. (Carpenter and Grossberg,

1987). In contrast to traditional neuronal clustering models where learned memories need

to be protected against overwriting by completely different memory items (Carpenter and

Grossberg, 1987), a model based on tagging would have an intrinsic vigilance threshold via

the trigger threshold Np . Hence it is resistant to changes at a single synapse.

In our view, the protein synthesis trigger threshold NP is an important control parameter in

the model. The results of Figure 2.2F show that an increase of the trigger threshold reduces the

maximal delay after which a weak tetanus leads to L-LTP after a strong tetanic stimulation in a

different group of synapses. With our normal value of Np = 40 we need around 60 synapses

to be initially tagged in order to retain any memory. If we decrease the trigger threshold to

Np = 10 and keep all other parameters of the model unchanged, then we need at least a group

of 15 synapses tagged during the induction protocol to get any consolidation since some of

the initially tagged synapses loose their tag too early to get consolidated (Figure 2.5B). Only

for a very small trigger threshold, say Np = 1, (which could occur at high concentration of

neuromodulators) synapses become (nearly) independent, since a tag at a single synapse

would be sufficient to trigger the synthesis of proteins which would then become available at

that synapse. Repeated stimulation of the synapse alone would then be sufficient to transform

E-LTP into L-LTP.

In our opinion, the trigger threshold Np is significantly lower in the presence of neuromodula-

tors such as, for example, dopamine (for synapses from Schaffer collaterals onto CA1 pyramidal

neurons) or noradrenaline (for synapses in the dentate gyrus). A simple model for the depen-

dence of Np on dopamine would be Np = n0/
(
DAbg + c0

)
where n0 is some arbitrary number

(say n0 = 1), c0 a small number (say 0.001) and DA denotes the stationary ‘background’ concen-

tration of dopamine (that is, before the start of the experiment), normalized to 0 < DAbg < 1.

The phasic dopamine signal caused by co-stimulation of dopaminergic input during tagging

experiments is assumed to be proportional to the number of tags
∑N

i hi + li . The trigger condi-

tion
∑N

i hi + li > Np becomes then equivalent to the condition
(∑N

i hi + li
) (

DAbg + c0
)> n0

which shows a trade-off between the phasic dopamine signal and the stationary background

level of dopamine. In particular in the presence of a large concentration of dopamine (DA ≈1),

single synapses can be consolidated. With the assumption that standard tagging experiments

in a large group of synapses are performed at a low dopamine concentration of DA=0.024

before stimulation, we retrieve the value of Np = 40 used in the main part of the results section.

The dependence of the trigger criterion on the number of tags
∑N

i hi + li takes implicitly the

co-activation of neuromodulatory input during the experimental stimulation protocol into

account: the larger the number of stimulated neurons and the stronger the stimulus, the
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Chapter 2. Model of early and late Long Term Plasticity

higher the probability of co-activation of dopaminergic fibers. Blocking dopamine receptors

amounts in the model to setting both the background and the phasic dopamine signal to zero.

In this case, protein synthesis is not possible.

Our model of LTP/LTD induction does not only account for voltage and frequency dependence

of LTP/LTD induction, but also for spike timing dependence. In fact, for a stimulation paradigm

where postsynaptic spikes are induced by short current pulses of large amplitude either a few

milliseconds before or after presynaptic spike arrival, the model of LTP/LTD induction used in

the TagTriC model becomes formally equivalent to a recent model of spike-timing dependent

plasticity (Pfister and Gerstner, 2006a) which can be seen as an extension of classical models

of STDP (Gerstner et al., 1996; Kempter et al., 1999b; Song et al., 2000). In the case of stochastic

spiking of pre- and postsynaptic neurons our model shares important features with the

Bienenstock-Cooper-Munro model (Bienenstock et al., 1982), in particular the quadratic

dependence upon the postsynaptic variables. In addition, our model also accounts for the

voltage dependence of the Artola-Bröcher-Singer model (Artola and Singer, 1993). Thus, the

model of LTP/LTD induction shares features with numerous established theoretical models

and covers a large range of experimental paradigms known to induce LTP or LTD (Artola et al.,

1990; Bi and Poo, 2001; Bliss and Gardner-Medwin, 1973; Dudek and Bear, 1992; Markram

et al., 1997).

Since the subsequent steps of protein synthesis trigger and stabilization are independent of

the way early phase of LTP is induced, our model predicts that tagging experiments repeated

with different stimulation paradigms, but otherwise identical experimental preparation and

age of animal, should give similar results as standard tagging protocols. In particular we

propose to stimulate a group of synapses in hippocampal slices by 40-60 extracellular current

pulses at 10 Hz while the postsynaptic neuron is receiving intracellular current injection that

triggers action potential firing either a few milliseconds before or after presynaptic spike

arrival and keeps the membrane potential at a depolarized level between postsynaptic action

potential firing. Our model predicts that this will induce early LTD or LTP depending on

spike timing and depolarization level that is not maintained beyond 1 or 2 hours. However, if

the same stimulation occurs after a second group of synapses has received a strong tetanus,

then stabilization of synapses at potentiated or depressed levels should occur, similar to

standard tagging and cross-tagging experiments. In our opinion, these predictions should not

depend on model details, but hold for a broad class of models that combine a mathematical

description of induction of synaptic plasticity with a mechanism of consolidation.

Another finding, — which is somewhat unexpected and in contrast to other conceptual models

of synaptic tagging and capture (Frey and Morris, 1997; Govindarajan et al., 2006; Reymann

and Frey, 2007) — , is that during a strong tetanic stimulation a fraction of synapses receives

tags for depression (while most, but not all, receive tags for potentiation). This is due to the

fact that during induction of plasticity, transition to E-LTP and E-LTD act in parallel (O’Connor

et al., 2005a). The prediction is that after consolidation (say 2 hours after the strong tetanic

stimulation) a small fraction of synapses would show L-LTD, rather than L-LTP.
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An essential ingredient of our model that allows long-term stability of consolidated synapses

is the bistable dynamics of the variable z. In our opinion, such bistability (or possibly multista-

bility (Lisman, 2003) with three or four stable states) is necessary for synaptic maintenance

in the presence of molecular turn-over, as recognized in earlier theoretical work (Crick, 1984;

Fusi, 2002; Lisman, 1985). Our model therefore predicts that L-LTP and L-LTD should have

bistable, switch-like properties. While there is evidence for switch like transitions during the

induction of E-LTP and E-LTD (O’Connor et al., 2005a; Petersen et al., 1998), the bistability of

the late phase of synaptic plasticity has so far not been shown. A possible experiment would

be to combine a minimal stimulation protocol (e.g. a weak tetanus) at a single synapse (O’Con-

nor et al., 2005a; Petersen et al., 1998) with a medium to strong stimulus at a group of other

synapses (e.g., tetanic stimulus varying between 30 and 100 pulses). The prediction is that the

weight of the single synapse shows an all-or-none phenomenon with transition probabilities

that depend on the stimulation of the group of other synapses. In particular, as the number of

pulses of the tetanic stimulation is reduced (covering a continuum from strong to weak tetanic

stimulation), the maintenance in the potentiated state should become less likely (averages

across many experiments decrease) whereas the results of individual experiments show either

full potentiation or none, which should give rise to a bimodal distribution of normalized

synaptic weights.

2.3.3 Open questions and perspectives

A lot of questions remain open and need to be addressed in future studies. First, can a synapse

that has been potentiated in the past and is maintained after a transition to late LTP undergo a

further potentiation step (Reymann and Frey, 2007)? In our current model this is not possible

since the consolidation variable z has only two stable fixed points. If we replace the function

f (z) depicted in Figure 2.1 by another one with more than two stable fixed points, then the

answer to the above question would be positive. Indeed, there have been suggestions that self-

organization of receptors into stable sub-groups could lead to multiple stable states (Lisman,

2003).

Second, induction of LTP or LTD is not only possible by strong extracellular stimulation of

groups of synapses, but also at single synapses if presynaptic activity is paired with either a

depolarization of the postsynaptic membrane (Artola et al., 1990; O’Connor et al., 2005a) or

tightly timed postsynaptic spikes as in STDP experiments (Bi and Poo, 2001; Markram et al.,

1997). How can it be that the change induced by STDP seems to be maintained over one hour

without visible degradation? (Markram et al., 1997; O’Connor et al., 2005a). Are synapses in

these experiments consolidated, and if so what is the concentration of neuromodulators? In

the TagTriC model with the choice of parameters used in the present paper, consolidation

would not be possible, since the minimum number of synapses that have undergone E-LTP

or LTD is Np = 40 in order to trigger protein synthesis, but, as explained above, an increased

neuromodulator concentration would make consolidation possible.
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Third, what is the role of NMDA receptor activation during synaptic consolidation? In our

present model, protein synthesis is triggered by appropriate induction protocols, but is inde-

pendent of synaptic activity during the consolidation process. However, recent experimental

results suggest that protein synthesis blocker needs synaptic stimulation during the consoli-

dation period to become effective (Fonseca et al., 2006), suggesting a subtle interplay between

protein synthesis and synaptic activation that cannot be captured by our model.

Fourth, has each neuron a single protein synthesis unit or is protein synthesis a local process

confined to each dendritic branch? In the first case, there is a single neuron-wide protein

synthesis trigger threshold (Frey and Morris, 1997) and the neuron as a whole ‘decides’ whether

early forms of synaptic potentiation and depression will be consolidated or not. This is the

paradigm posited in the TagTriC model. In the alternative model of local protein synthesis

(Govindarajan et al., 2006; Reymann and Frey, 2007), the critical unit for consolidation are

local groups of synapses on the same dendritic branch. Thus, for the same number of tagged

synapses, a local group of synapses on the same dendritic branch is more likely to undergo

consolidation than a distributed set of tagged synapses, leading to a form of clustered plasticity

(Govindarajan et al., 2006). The TagTriC model can be easily adapted to the case of clustered

plasticity by (i) replacing the point-neuron model by a neuron model with spatially distributed

synapses and (ii) replacing the neuron-wide trigger equation (see Equation 2.4 and Figure 2.1B)

by a finite number of analogous, but dendrite-specific equations.

Fifth, how can tags be reset? Experiments show that a depotentiating stimulus given 5 minutes

after a weak tetanus erases the trace of E-LTP (resets the tag) whereas depotentiation 10

or 15 minutes after the strong tetanus only transiently suppresses the E-LTP, making the

consolidation of the synapse by protein capture possible (Sajikumar and Frey, 2004a). We

have checked in additional simulations that our present model cannot account for these

experiments. In our opinion, the above tag-reset experiments show that the synapse has

additional hidden states currently not included in the TagTriC model. Additional states would

allow to (i) separate the measured early LTP during the first 5 minutes from setting the tag;

and (ii) distinguish between depotentiation and depression of synapses. One interpretation of

the tag-reset experiments (Sajikumar and Frey, 2004a) is that during the first five minutes the

tag is not yet set whereas early LTP is already visible. The tag would be set only with a delay of

5-10 minutes. Application of a depotentiating stimulus more than 10 minutes later would then

leave the potentiation tag intact, but move the synapse to a transiently depotentiated state.

The final and potentially most interesting question is that of functional relevance: Can the

TagTriC model be used to simulate reward-based learning in experiments in vivo (Reymann

and Frey, 2007)? The formal theory of reinforcement learning makes use of an eligibility trace

(Sutton and Barto, 1998) which can be interpreted as a synapse specific tag. In the future we

want to check whether the TagTriC model can be linked to reinforcement learning models

(Arleo and Gerstner, 2000; Izhikevich, 2007; Legenstein et al., 2008; Pfister et al., 2006) under

the assumption that reward prediction errors are represented by a dopamine signal (Schultz

et al., 1997) which influences the protein synthesis dynamics in our model. This open link to
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reward-based learning is of fundamental functional importance.

2.4 Methods

2.4.1 Model of early LTP/LTD and tagging

In our model we assume that presynaptic spike arrival needs to be combined with a depolar-

ization of the postsynaptic membrane (e.g. (Artola et al., 1990)) in order to induce a change of

the synapse. In voltage clamp experiments (e.g., (Ngezahayo et al., 2000)) the postsynaptic

voltage would be constant. However, in general the voltage is time-dependent and described

by a variable u (t ). In the TagTriC model, we assume that the low-pass-filtered voltage

ū (t ) = 1

τlowP

∫ ∞

0
exp

(
− s

τlowP

)
u (t − s −ε) d s.

needs to be above a critical value ϑLTD to make a change of the synapse possible. τlowP is the

time constant of the low-pass filter and ε= 1ms is a short delay twice the width of a spike (see

Table 2.1). This short delay ensures that ū includes effects of previous presynaptic inputs and

postsynaptic spikes, but not of an ongoing postsynaptic action potential.

Combining presynaptic spike arrival at synapse i (represented by xi ) with a depolarization ū

of the postsynaptic neuron above a threshold ϑLTD we get a rate of LTD

ρL = ALTD xi (t ) [ū (t )−ϑLTD]+ (2.1)

where ALTD > 0 is a parameter and [.]+ denotes rectification, i.e.,
[

y
]+ = y if y > 0 and zero

otherwise. Here xi (t ) =∑
f δ

(
t − t f

i

)
denotes the presynaptic spike train with pulses at time t f

i

and δ the Dirac-delta function. Formally, ρL describes the rate of stochastic transitions from

the non-tagged state h = 0, l = 0 to the low state l = 1 , Figure 2.1. In simulations we work with

discrete time steps of ∆= 1ms. Equation 2.1 indicates that the probability Pl=0→l=1 of a transi-

Tag Trigger Consolidation

N 100 kh 1/h kp 1/(6 min) N 100

ALTD 0.01 kl 1/(1.5 h) τp 60 min γ 0.1

ALTP 0.014 ΘLTD −70.6 mV Np 40 τz 6 min

τx 100 ms ΘLTP −50 mV β 2

τLTP
lowP 100 ms α 0.5 initialization:

τLTD
lowP 1 s initialization: N (zi=1) = 30

ε 1 ms li = hi = 0

Table 2.1 – Parameter values used throughout all simulations, except Figure 2.1E - G where Np = 10
and initial percentage of zi = 1 was 10%, because these simulations refer to experiments with younger
animals.
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tion to the low-state during the time step∆ vanishes in the absence of presynaptic spike arrival

and takes a value of Pl=0→l=1 = 1−exp
(−ALTD [ū (t )−ϑLTD]+ ∆

) ≈ ALTD [ū (t )−ϑLTD]+ ∆ if a

presynaptic spike arrives at the synapse i during the time step ∆. Note that the transition from

l = 0 to l = 1 is only possible if h = 0 and h remains zero during the transition.

Similarly, a switch from the non-tagged state h = 0, l = 0 to the high state h = 1 occurs at a

rate ρH which also depends on postsynaptic voltage and presynaptic spike arrival. We assume

that each presynaptic spike at synapse i leaves a trace x̄i that decays exponentially with time

constant τx . The exact biophysical nature of the trace is irrelevant, but could, for example,

represent the amount of glutamate bound to the postsynaptic receptor. The value of the trace

at time t caused by earlier spike arrivals at time t f
i is then x̄i (t ) = (1/τx )

∑
f exp

[
−

(
t − t f

i

)
/τx

]
where the sum runs over all firing times t f

i < t . With the trace x̄i we write

ρH = ALTP x̄i (t ) [ū (t )−ϑLTD]+ [u (t )−ϑLTP]+ (2.2)

which indicates that, in addition to the conditions for LTD induction we also require the

momentary membrane potential u (t ) to be above a second threshold ϑLTP. This threshold

could change on the time scale of minutes or hours as a function of homeostatic processes. To

summarize, the rate of LTP transition ρH is different from ρL in five aspects. First, the constant

ALTP is not the same as ALTD. Second, LTP is caused by the trace x̄i left by presynaptic spikes,

rather than the spikes themselves. This trace-formulation ensures that presynaptic spikes can

interact with later postsynaptic spikes as in classical models of STDP (Gerstner et al., 1996;

Kempter et al., 1999b; Song et al., 2000). Third, the time constant of the low-pass filter in ū

is different; fourth, the momentary voltage needs to be above a threshold ϑLTP; and fifth, the

total dependence upon the postsynaptic voltage is quadratic, rather than linear. The quadratic

dependence ensures that for large depolarization LTP dominates over LTD (Ngezahayo et al.,

2000). Tagged synapses with hi = 1 decay with probability Ph=1→h=0 = kH ∆ back to the non-

tagged state (and analogously, but with rate kL for the transition li = 1 → li = 0).

In the TagTriC model, the local synaptic values h = 1 for potentiation or l = 1 for depression act

as tags indicating potential sites for further consolidation, but are also directly proportional

to the weight of the synapse after induction of LTP or LTD. Since in minimal stimulation

experiments LTD leads to a reduction of about 50 percent of the synaptic efficacy whereas LTP

leads to an increase by up to 100 percent (O’Connor et al., 2005a), we model the weight change

during the early phase of LTP as ∆wi = (hi −α li ) ŵ where ŵ is the weight of the non-tagged

synapse and α= 0.5. The total weight change ∆w/ŵ measured shortly after induction of LTP

or LTD with extracellular protocols corresponds to the fraction of synapses in the high or

low states, respectively, hence, if all synapses start from the non-tagged state the measured

weight change is ∆w/ŵ =∑N
i=1 (hi −α li )/N = 〈h〉−α〈l〉 where N is the number of synapses

stimulated by the protocol. The set of parameters of LTP/LTD induction and tagging is given

in Table 2.1.
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2.4.2 Trigger

The triggering process is controlled by the dynamics of a variable p which describes the

amount of plasticity related proteins synthesized in the postsynaptic neuron. Protein synthesis

is triggered and the variable p increases while the concentration of dopamine exceeds a critical

level ϑp (Navakkode et al., 2007). If the dopamine concentration DA falls below ϑp , the protein

concentration decays with a time constant τp . Assuming standard first-order kinetics we have

d p

d t
= kp

(
1−p

)
Θ

[
DA−ϑp

]− p

τp
(2.3)

Protein synthesis has a maximum rate d p/d t of kp and saturates if the amount of protein

approaches a value one.Θ
[

y
]

denotes the unit step function withΘ
[

y
]= 1 for y > 0 and zero

otherwise.

Dopamine is present at a low stationary background value. In addition a phasic dopamine

component is induced in standard tagging experiments in hippocampal slices, because of

co-stimulation of dopaminergic inputs during extracellular stimulation of presynaptic fibers

(Frey et al., 1990). To describe the time course of the phasic dopamine component in our

model, we assume that the dopamine is proportional to the total number of tags
∑

i (hi + li )

induced by the stimulation protocol. The stationary background level of dopamine DAbg is

included in the threshold ϑp = Np
(
DAbg

)
for protein synthesis. Hence Equation 2.3 can be

rewritten in the form

d p

d t
= kp

(
1−p

)
Θ

[∑
i

(hi + li )−Np
(
DAbg

)]− p

τp
(2.4)

Note that we have chosen units so that the threshold for protein synthesis Np can be inter-

preted as the minimal number of tags necessary to stimulate protein synthesis. This inter-

pretation is important for the discussion of the model results, in particular Figure 2.4 and

Figure 2.5.

A suitable model for dependence of the protein synthesis threshold on the background level of

dopamine is Np
(
DAbg

)= n0/
(
DAbg + c0

)
where n0 = 1 is a scaling factor, c0 = 0.001 a constant

and 0 ≤ DAbg ≤ 1 is the normalized dopamine concentration. We note that the trigger condition[∑
i (hi + li )−Np

(
DAbg

)]> 0 is then equivalent to the condition
(
DAbg +0.001

) [∑
i (hi + li )

]>
1. This formulation shows that there is a trade-off between background levels and phasic

dopamine. Unless stated otherwise we always use in the simulation a fixed dopamine level

DAbg = 0.024 so that Np = 40. The specific model Np
(
DAbg

)
of the dependence upon back-

ground dopamine levels is therefore irrelevant.

We assume that the plasticity related protein p synthesized in the postsynaptic neuron is

diffused in the dendrite of the postsynaptic neuron and hence available to all the synapses

under consideration. Hence, the tags hi and li have indices, since they are synapse-specific,

whereas p in Equation 2.4 does not.
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2.4.3 Consolidation and late LTP

The consolidation variable z describes the late phase of LTP and follows the dynamics

τz
d zi

d t
= f (zi )+γ (DA) (hi − li ) p. (2.5)

The scaling factor γ is a function of the dopamine level D A. In the simulations we always

assumed a fixed dopamine level and set γ (DA) = 0.1.

In the absence of plasticity related proteins (p = 0), or if no tags are set (hi = li = 0), the

function f (z) = z (1− z) (z −0.5) generates a bistable dynamics with stable fixed points at

z = 0 and z = 1 and an unstable fixed point at z = 0.5 marked by the zero crossings of the

function f , Figure 2.1C. In the presence of a finite amount of proteins p > 0 and a non-zero

tag, the location of the fixed points changes and for p > 0.47, only one of the stable fixed

points remains. The potential shown in Figure 2.1C is a function E with dE/d z = − f (z) so

that d z/d t =−dE/d z. We note that a synapse i can change its consolidated value only if both

a tag (hi = 1 or li = 1) and protein p > 0.47 is present - summarizing the essence of ‘synaptic

tagging and capture’ (Frey and Morris, 1997; Reymann and Frey, 2007).

2.4.4 Synaptic weight

The synaptic weights have contributions from early and late LTP and LTD. The total synaptic

weight of a synapse i is wi = ŵ
(
1+hi −α li +βzi

)
where ŵ is the value of a non-tagged

synapse, α= 0.5 and β= 2 are parameters, hi and li are binary values indicating E-LTP and

E-LTD, respectively, and zi is the value of the L-LTP trace of synapse i . Since we model slice

experiments in animals older than 20 days, we assume that 30 percent of the synapses have

undergone previous potentiation and have z = 1 while the remaining 70 percent of synapses

are in the state z = 0 (O’Connor et al., 2005a). In all simulation experiments we stimulate

one or several groups of N =100 synapses each. Assuming that no tags have been set in the

recent past (hi = li = 0), the initial value of the average weight in a group of N synapses is then

w (0) = ŵ
[∑N

i=1 1+βzi
]

/N = 1.6 ŵ .

2.4.5 Neuron Model

For all simulations in this paper we use the adaptive exponential integrate-and-fire model

(Brette and Gerstner, 2005) as a compact description of neuronal firing dynamics. Briefly,

it consists of two equations. The voltage equation has an exponential and a linear term as

measured in experiments (Badel et al., 2008). The second equation describes adaptation.

Although firing rate adaptation is not important for the present study, it would be relevant in

the context of other stimulation paradigms. Parameters for the neuron model are as in (Brette

and Gerstner, 2005) and are kept fixed for all simulations presented in this paper. The voltage

threshold Vs of spike initiation by a short current pulse is 25mV above the resting potential
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of -70.6mV (Brette and Gerstner, 2005). Synaptic input is simulated as a short current pulse.

The initial connection weight ŵ was adjusted so that simultaneous activation of 40 or more

synapses triggers spike firing in the postsynaptic neuron. Hence the amplitude of a single

EPSP is about 0.6mV.

The adaptive exponential integrate-and-fire model is defined in continuous time. If a spike is

triggered by a strong current pulse, the voltage rises within less than 0.5 millisecond to a value

of 20mV where integration is stopped. The voltage is then reset to resting level, and integration

restarted after a refractory time of 1ms. In order to enable us to perform simulations of

plasticity experiments with a time step of∆= 1ms, the voltage equation during the rising slope

of the action potential was integrated once at a much higher resolution (time step 0.02ms), so

as to determine the exact contribution of each postsynaptic spike to the probability of LTP

induction. Every postsynaptic spike was then treated as an event in the plasticity simulations

that contributed a probability Ph=0→h=1 of flipping the tag from h = 0 to h = 1 in a time step

∆= 1ms which we can write as Ph=0→h=1 = a∆ x̄ (t ) [ū (t )−ϑLTD]+ with a numerical conversion

factor a∆ = ALTP 5ms mV derived by the above procedure; see Equation 2.2.

2.4.6 Number of consolidated synapses

In Figure 2.5 we plot the number of synapses that have been consolidated as a function of

the number Ntag of initially tagged (hi = 1) synapses. Since the number of tags decays exponen-

tially with rate kH , the expected duration T ON
P of protein synthesis is T ON

P = (1/kH ) ln
(
Ntag/Np

)
where Np is the protein trigger threshold. While protein synthesis is ‘ON’ the variables p and z

move along the black dashed line in Figure 2.5A which crosses after a time t1 the separatrix

(green line in Figure 2.5A) and at a time t2 the line z = 0.5 (vertical dashed green line). Different

cases have to be distinguished. (i) T ON
P < t1, no consolidation takes place (see pink trajec-

tory), hence Nup = 0. (ii) T ON
p > t2, consolidation is guaranteed for all synapses that are still

tagged at time t2, hence Nup = Ntag exp(−k t2). (iii) In the case of t1 < T ON
p ≤ t2, the time tcross

needed to cross the vertical line z = 0.5 is numerically calculated by integrating the equations

d p/d t =−p/
(
τp

)
and d z/d t = f (z)+γp starting at t = T ON

p at the point p
(
T ON

p

)
, z

(
T ON

p

)
on

the black-dashed line (see orange line in Figure 2.5A for a sample trajectory). The number

of consolidated synapses is then Nup = Ntag exp(−k tcross). The solid line in Figure 2.5B rep-

resents Nup as a function of Ntag calculated for the cases (i) - (iii). With our standard set of

parameters, we have t1 ≈ 28min and t2 ≈ 60min.

2.5 Conclusion

In this chapter I presented a mathematical model describing the different phases of synaptic

plasticity. These phases cover the early or induction phase, the setting of synaptic tags, a

trigger for protein synthesis and a slow transition leading to synaptic consolidation during

the late phase of synaptic plasticity. The model explains a large body of experimental data on

synaptic tagging and capture, cross-tagging, and the late phases of LTP and LTD. Moreover, it

45



Chapter 2. Model of early and late Long Term Plasticity

accounts for the dependence of LTP and LTD induction on voltage and presynaptic stimulation

frequency. The stabilization of potentiated synapses during the transition from early to late

LTP occurs by protein synthesis dynamics that is shared by groups of synapses. The functional

consequence of this shared process is that previously stabilized patterns of strong or weak

synapses onto the same postsynaptic neuron are well protected against later changes induced

by LTP/LTD protocols at individual synapses.

However, several important phenomena were not captured by the model. The main aspect

that was not accounted for is that of the separation of the early expression of synaptic changes

and the tag. Even if these two mechanisms occur mainly together, they are chemically distinct,

which leads to interesting behaviours in depotentiation experiments for instance. The next

chapter introduces a newer model closer to experimental observations and able to reproduce

more data.
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3 LAYERED SYNAPSE MODEL

The main caveat of the model in the preceding chapter is that it does not account for several

mechanisms that have been observed and that are important for the behavioural modeling of

chapter 4.

The first phenomenon unaccounted for is that of the separation of the tag and the initial

expression of synaptic plasticity. Indeed, the two processes were identified in the TagTriC

model (Clopath et al., 2008).

Second, depotentiating effects and their consequences (Bashir and Collingridge, 1994; Martin,

1998; Sajikumar and Frey, 2004a; Stäubli and Chun, 1996) are not present since the transition

probabilities are unidirectional, leaving the reversal of plasticity to the sole control of the

decaying mechanisms, with long time scales. This had non desirable effects like freezing of all

synapses in a high or low state for very long times even if their transitions had been caused by

meaningless noise.

Nevertheless, the independence of the two ‘layers’ of the mechanism of induction and that of

consolidation is to my opinion a promising aspect. This extension in dimensionality compared

to other models (Barrett et al., 2009; Fusi et al., 2005) could represent the key to solving the

dilemma of stability versus plasticity.

I propose here a model that keeps the advatanges of all existing ones – the independence of

the different layers and the multiplication of the transition possiblities – together with a way

of instantiating metaplasticity in computational models in a biologically plausible way even if

the internal variables used to do so are abstract.

3.1 Synapse model

In this section I first introduce my new synapse model and describe the dynamic of its compo-

nents and how they are coupled together. I then validate the model by applying it to various

experimental setups in the field of synaptic tagging and capture (STC) spanning the main

47



Chapter 3. Layered synapse model

characteristics of the theory.

Experimental studies on synaptic plasticity seem to point towards several independent and

interdependent processes, both functional and structural, which imply that the action of a

synapse is not determined by a simple and singular parameter, such as the synaptic weight

(Redondo and Morris, 2011). These phenomena span different time scales, from short to

long term effects and even beyond where different biochemical processes intervene, that can

prolong the extent of synaptic changes to days or even a lifetime. Since ‘long’ was already part

of the nomenclature, the term early and late long-term potentiation (LTP) (or depression) were

introduced (Frey and Morris, 1997; Reymann and Frey, 2007). Previous models either disregard

the question of the very long time scales (Gerstner et al., 1996; Song et al., 2000) or have shown

that six synaptic states are not enough to explain various phenomena such as depotentiation

(and possibly re-setting of the tag) or slow onset LTP (Barrett et al., 2009; Clopath et al., 2008). I

thus designed a synapse model that aims at functionally describing as accurately as possible

these mechanisms in a biophysically relevant manner. For these reasons I included in my

synaptic model two variables in addition to the synaptic weight which is commonly looked at.

This grants both a close biological interpretation and the necessary number of states to cover

a large span of experimental work, while being simple enough so that is can be understood

and interpreted.

A synaptic state consists of three ‘layers’, a weight w , a tag η and a scaffold z (Figure 3.1A).

The weight is the only visible part in the sense that it influences the size of the postsynaptic

potentials triggered in the synapses by incoming presynaptic spikes. The other two layers are

hidden but are nonetheless important parts of the synaptic dynamic since they define the

stability of the weight. Minimal stimulation paradigms suggest that synaptic efficacies may be

bistable entities (O’Connor et al., 2005a; Petersen et al., 1998). Other studies, experimental

or analytical, mainly involving autophosphorylating chemical compounds, point to multiple

stable configurations of single elements (Graupner and Brunel, 2007). I thus describe my three

layers as noisy variables evolving in double well potentials (Figure 3.1B), the depth of which

determines the stability of the local dynamic. An isolated variable x has two fixed points, a

low state x =−1 and a high state x =+1, with basins of attraction of equal sizes. In addition

to this, layers are influenced by their neighbours, thereby reshaping their energy landscape.

These couplings are implemented by two gating variables, g linking the weight to the tag, and

p from the tag to the scaffold. Both gates are ‘closed’ under rest conditions g = p = 0 and can

(Figure 3.1) It allows either for capture of PRPs if there was any dopamine release or for decay to
the synapse’s low state. This stands in contrast to the case where depotentiation occurs before a tag
had time to be set. In this situation, the synapse is directly set back to the LO state (ii − i ). (C) Sketch
of the HI state of a synapse. In contrast to (A) the weight is high, the tag is up and the scaffold is large.
(D) Typical behaviour of a synapse during an e-LTP inducing protocol. I show the time course of the
three layers of a synapse (blue, yellow and green lines) and the synaptic state it corresponds to (i −viii ).
(E) As in D, in the case of a stronger stimulus, inducing l-LTP. Note that consolidation occurs thanks to
the presence of PRPs. (F) As in E, with a resetting stimulus short after potentiation.
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Figure 3.1 – Synapse’s states and transitions. Potentiating protocols applied on the model have
different outcomes. (A) Sketch of the LO state of a synapse. It consists of three elements, a low weight
(blue) and two hidden variables, a down tag (yellow) and a small scaffold (green). (B) Diagram of
different synapse states, focused on potentiation. The synapse’s internal variables are represented
by three double well potentials (showed by large arrows). These variables are coupled to each other,
altering their stability properties. A variable in its low state is represented by a ball on the left side of a
panel, and a variable in its high state by a ball on the right side. The direction of the couplings depends
on the synapse state and on its recent history. (i − ii ) In the LO state, all three variables are in the lower
potential well, and the couplings are upstream, from the scaffold to the tag and from the tag to the
weight. A potentiating plastic event carries the weight to its upper state (w =+1), without affecting the
two other layers. It also reverses the coupling from the weight to the tag. The synapse exhibits then
e-LTP. (ii − iii ) Following LTP induction, within about 10 minutes, a tag is set due to the influence of the
first layer on the second (filled blue arrow). The coupling between the first two layers then comes back
to its resting direction, from bottom to top. (iii − iv − v) If dopamine is delivered to the postsynaptic
neuron, production of PRP is triggered, allowing for stabilization of recent plastic changes. It reverses
the direction of the coupling between the tag and the scaffold for approximately 2 hours enabling the
last layer to follow its neighbour to the high state (z =+1). This changes the long term stability of the
synapse. (vi ) In the absence of external input a tagged synapse decays back to its resting state within a
few hours. The timescale of the decay is determined by the time needed for diffusive noise to push the
tag out of the metastable potential well it is trapped in. (vii ) When a depotentiating protocol is applied
to a tagged synapse the weight is reset to its low state. Both the first and the second layers are then in a
metastable situation. Because the potential barrier for the weight is lower than for the tag, the weight
will bounce back up setting the synapse back into the t-LTP state. (Continued on previous page)
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be ‘opened’, i.e. g or p → 1, by external factors, be it spike-timing dependent plasticity (STDP)

or neuromodulation.

3.1.1 Synaptic weight

The first layer of my synapse model is the synaptic weight w . One possible interpretation of it

is the mean amount of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the

postsynaptic membrane (Correia et al., 2008). However other factors are known to influence

synaptic strengths in general, like presynaptic vesicle release.

Under rest conditions the weight dynamic is partially determined by the position of its neigh-

bouring tag variable with a strength proportional to the difference η−w . For a synapse in the

low (LO) state all layers are in their respective low state (w =−1, η=−1 and z =−1). In this

situation a low weight (w =−1) is a stable fixed point since the difference between the weight

and the tag vanishes. A weight in the high state however (w =+1), quickly decays back to the

low state pulled by the coupling η−w . For more details see the Methods section.

3.1.2 Induction

Standard electrophysiological protocols induce different functional outcomes, either LTP or

long-term depression (LTD). Moreover, these changes can last only a few hours or persist for a

longer time. For example a tetanus (TET), a very high firing rate stimulation protocol ranging

from 0.2 to 3 seconds at 100 Hz, induces LTP on hippocampal slices in vitro. In my model this

happens via an STDP input term Iw in the first layer dynamic which pushes the weight to its

high state (w =+1). The synapse then finds itself in a state of early LTP (e-LTP) (Figure 3.1Bii ).

3.1.3 Tagging

Without any further modifications, the weight would rapidly decay back to its low state

(w = −1) thus not enabling long lasting changes. But this is altered by structural changes

of the spine which occur alongside functional changes following LTP protocols. These changes

are not necessary for induction of plasticity but are crucial for the next phases of LTP. This

altered biochemical configuration is believed to act as a ‘tag’, i.e. as storage of the potential for

a lasting change of synaptic efficacy (Redondo and Morris, 2011). I model this tagging process

by opening the gating variable g between the weight and the tag (and thereby temporarily

cutting out the reciprocal influence of the tag on the weight) the effect of which will be to drag

the tag along to the high state (η=+1). This opening typically lasts for around ten minutes.

The synapse now finds itself in a tagged LTP (t-LTP) state where the weight is stably held up by

the tag (Figure 3.1Biii ). The latter however is in a metastable situation under the influence of

the scaffold which hasn’t moved from the low state (z =−1). Note that the coupling strength

from the scaffold to the tag is slightly smaller as compared to the one from the tag to the weight,
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enabling this metastable situation instead of a simple decay. The escape rate of a variable

trapped in a potential well with a barrier height ∆U we know from Kramer’s law is of the

order ∼ exp
(−∆U /σ2

)
if σ is the noise amplitude. Parameters of the model have been tuned

to obtain a mean decay time of approximately one hour (see Methods). A typical example of a

synapse undergoing e-LTP and then decaying back to its LO state can be seen in Figure 3.1D.

3.1.4 Consolidation

So far synaptic modifications were only potential changes and were noncommittal about

persistence for more than a few hours. In order to last for a day or more a synapse must

undergo a consolidation step which stabilizes previous changes against noise fluctuation or

depressing events. Stabilization happens through complex intracellular signal transduction

cascades relying on several factors. One of which are plasticity-related proteins (PRP) (proteins

or ‘products’ if we include diffusion of mRNAs in the dendrites) who play a key role in this

process (Redondo and Morris, 2011). Only through their capture by the chemical compound

of the tag can a synapse maintain functional changes in efficacy. Synthesis of these PRPs

takes place in the soma or in dendritic compartments, apical or basal (Sajikumar et al., 2007).

Proteins then have to diffuse to tagged synapses within a specific time window following

LTP induction in order to have any effect. This cell wide scope stands in contrast to local

mechanisms of synaptic tagging. Interestingly, the trigger for protein production is a novelty or

reward signal instantiated by a phasic change in concentration of dopamine (in the CA1 region

of hippocampus) or of other neuromodulators. In the theoretical community this is referred

to as a ‘three factor rule’ (the first two being the firing activities of pre- and postsynaptic cells).

The mechanism responsible for stabilization of previous changes in my model is similar to the

tagging process. Just like opening of the g gating variable brings the synapse from e-LTP to

t-LTP, the passage from t-LTP to late LTP (l-LTP) occurs through the variable p (as in proteins).

The gating variable is opened by the presence of an ad hoc novelty, reward or surprising signal

(DA). The tag loses its metastability and is able to drag along the scaffold to the high state

(z =+1) thereby maintaining whatever changes occurred recently. Even after protein level has

decayed to normal concentration the synapse remains in a high (HI) state, meaning that all of

its components, the weight, the tag and the scaffold, are in their respective high states (w =+1,

η=+1 and z =+1) (Figure 3.1C,E).

All the explanations above remain valid in the case of LTD, but in a reversed fashion (see

Supplementary Figure 3.4).

3.1.5 Tag resetting and re-setting

One startling issue which has attracted a lot of attention in the field of hippocampal plasticity

is the phenomenon of depotentiation. It seems to be governed by rules diverging from those

of synaptic depression (Martin, 1998). A resetting protocol applied on a previously potentiated
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synapse will have a different outcome depending on the time interval between the two stimuli.

If a resetting protocol is given five minutes only after LTP induction, the synapse is brought

back to its LO state and is henceforth not able to capture any PRPs. However if the interval

exceeds ten minutes, e-LTP is only transiently turned down before being re-established. More-

over the tag has had time to be set allowing for further capture of PRPs, if available (Sajikumar

and Frey, 2004a).

In my model, a weight experiencing depotentiation after having been moved upward by an

external stimulus, reverts back to its low state (w =−1). Depending on whether the tag has

had time to be set and whether the gating variable g is still open, the weight either drags along

the tag, finally leaving the synapse in its LO state (Figure 3.1B i i -i ) or leaves it alone in the

high state (η=+1) (Figure 3.1B i i i -vi i ). In the first case the synapse simply remains in its LO

state. The other scenario is more interesting in the sense that the synapse is now in a double

metastable situation where the weight is low but will eventually decay towards the high state

(w →+1) and inversely for the tag (η→−1). Since the potential barrier for the weight is lower

than that for the tag, the decay rate of the weight is highest (see Figure 3.1F). On a neuron

with many synapses the net effect on the mean incoming synaptic weight is a rebound before

the usual decay back to baseline. Note that the tag being still up, any PRP synthesis triggering

event happening closely in time will be able to consolidate a reset synapse eventually leading

it to the HI state.

3.1.6 Learning rule

In my model, the synaptic learning rule takes the form of an external input term Iw in the

weight dynamic. I use a standard STDP learning rule, namely the triplet rule by Pfister and

Gerstner (2006b), which has been shown to reproduce different aspects of plasticity, such as

the STDP learning window or stimulation frequency effects (Bi and Poo, 1998; Dudek and

Bear, 1992). Nevertheless this rule does not account for any metaplastic effect that could affect

the synapse. I explained earlier that metaplasticity was a key process in the ability to create

complex behaviours in living organisms. I show here that the intrinsic architecture of my

model is well suited to modifications of existing learning rules that can broaden their range of

applicability.

The main modification on the standard triplet rule comes from the observation of depotentia-

tion effects (Sajikumar and Frey, 2004a). Since certain protocols are able to reset previously

potentiated synapses without producing any depression on other ones, I had to distinguish

a standard plasticity inducing event from a resetting one. In nature ‘reset’ is thought to be a

mechanism acting on an ongoing signal transduction chain and not just on a simple synapse

component (Redondo and Morris, 2011). Furthermore depotentiation and depression have

been shown to be different biochemical processes (Lisman et al., 2011). Fortunately, the fact

that my synaptic model contains more than one variable allowed me to make that distinction

by giving my learning rule a dependence on internal parameters.
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I defined standard potentiation to take place whenever the weight is pushed away from the

scaffold, which determines the long term stable state of a synapse. This happens when the

difference w − z is positive (the opposite assumption holds in the case of depression). Using

this difference I separated the triplet input term into Itriplet = Istd + Ireset (see Methods for

details) and multiplied the reset term by an enhancing factor.

Another modification consisted in adding soft bounds by multiplying all potentiating terms

by 1−w , and by 1+w for depression. This is to ensure that STDP doesn’t push the weight

beyond the fixed points of the bistable dynamic. Since the coupling from the weight to the

tag depends on the difference η−w , a very high weight (respectively very low) would alter

dynamical properties of my system.

3.2 Application of the model to tagging and capture experiments

The large panel of phenomena I have described so far as well as a number of additional

experiments in the field of synaptic tagging and capture (see Table 3.3) need to be explained in

a single model. Previous ones were able to explain basic paradigms, however they did so either

by adding a very long time constant to the depression induction rule (Clopath et al., 2008),

not consistent with measurements, or with an ad hoc model for the induction of long term

plasticity (Barrett et al., 2009). Here I used a standard STDP learning rule from the literature

without modifying the time constants to reproduce experimental results from different groups.

Due to the external recording methods used in the experiments some averaging of the recorded

synapses takes place automatically. I thus restricted my simulations to a few output cells

receiving sparse connections from input units summing to a total of a few thousands synapses

(Figure 3.2A). Since only synapses in the LO state can experience potentiation and only those

in the HI state can experience depression, I initialized my network with a third of the synapses

in the HI state and the other two thirds in the LO state.

It is important to stress the fact that I designed this model to account for a small subgroup

of experiments, namely early and late LTP and LTD, rescue of early into late plasticity and

resetting experiments. The other results produced here happened to be captured as well by

the present model.

Depending on the stimulation protocol, I simulated either one or two groups (S1 and S2) of

these input neurons. I focused on two types of stimuli, the TET at 100 Hz for potentiation, and

the low frequency stimulation (LFS) at 1 Hz for LTD and for depotentiation. Pulses used in

such stimulation paradigms usually last 0.2 ms. I assumed that each pulse triggered exactly

one spike per presynaptic neuron and that they arrived with some jitter due to their traveling

down bundles of axons, the Schaffer collateral for example. I modeled the spike arrival times

to the postsynaptic neurons as Gaussian packets with a standard deviation of 3 ms. In the

absence of stimulus the activity of the presynaptic units was null.

Postsynaptic neurons were modeled as adaptive integrate and fire units (AIF) (Brette and

53



Chapter 3. Layered synapse model

S1

S2

A

-1

0

1

0 0.05 0.1 0.15 0.2

w
[a

.u
.]

time [s]

B

pre - post - post

W/S TET LTP

C

D

0.95

1

0 0.1

w
[a

.u
.]

1 1.1

time [s]

W/S LFS

post - pre

LTD

E

failed LTD Reset

minimal LFS

F

Figure 3.2 – Stimulation protocols. (A) My network consists of one or two groups (S1&S2, black) of
2000 input units projecting onto 10 AIF neurons (red) with a connection probability of 10%. I modeled
the stimulus pulses by a gaussian packet of action potentials with a standard deviation of 3 ms, where
each of the inputs emits exactly one spike. Adaptation was tuned so as to obtain only one postsynaptic
spike for up to three consecutive packets separated by 50 ms (as in a sLFS protocol, see D). (B) Detailed
view of a wTET protocol. A raster of a few input units is shown (black bars) as well as all 10 postsynaptic
units (in red). The effect on individual weights can be seen in the lower panel (gray lines). Only those
crossing the zero line will undergo a long lasting effect. The mean over all weights is shown in black.
(C) Tetanic stimulation protocols. A wTET (21 pulses @ 100Hz) or a sTET (3x100 pulses @ 100Hz) is
strong enough to overcome adaptation, so that the high postsynaptic frequency gives rise to LTP via
the triplet effect of the plasticity rule. (D) As in (B) in the case of the two first bursts of a sLFS protocol.
In the lower panel only synapses initially in the HI state are shown for the sake of visibility. (E) Low
Frequency Stimulation protocols. During a wLFS (900 @ 1Hz, top) the postsynaptic neuron spikes
approximately in the middle of the packet so that the second half of the incoming spikes contribute to
a small LTD outcome. Only the accumulation of the 900 pulses makes the stimulus strong enough to
have any long lasting effect. In the case of a sLFS (900x(3 @ 20Hz) @ 1Hz, bottom) the bigger amount of
pre-after-post spikes gives rise to a quicker effect. (F) Resetting effect. A reset protocol (250 @ 1Hz) is
not enough to produce any LTD on a synapse in the HI state (left panel) because the amount of pulses
is not enough to push the weight variable over the potential barrier. For a synapse in the e-LTP state
(right panel) the enhanced depressing STDP term can be seen as a lowered barrier for plasticity. This
enables softer protocols to have a clear effect.
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Gerstner, 2005), with strong adaptation. Nevertheless tetanic stimuli were strong enough

to overcome this adaptation and induce a firing rate in the output neurons of about 20 Hz

(Figure 3.2B). This high activity in the postsynaptic units produced potentiation via the triplet

effect of the learning rule. Each ‘pre-post-post’ triplet close enough in time contributed to the

final potentiation outcome, pushing the weight upward (Figure 3.2C).

Low frequency stimuli induced no more than one postsynaptic spike per neuron and per

second (Figure 3.2D), for which no potentiation occurred. However all the presynaptic spikes

arriving after the postsynaptic action potential contributed a small amount to depression via

a ‘post-pre’ effect (Figure 3.2E). Only the accumulation of enough of those pulses allowed the

weight to overcome the potential barrier separating it from the low state (Figure 3.2F).

3.2.1 Induction of early or late LTP and LTD

Isolated stimulation protocols produce potentiation or depression depending on their pulse

pattern and both can be maintained or not depending on the stimulus strength. In the model

of the previous chapter it was thought that the trigger for PRP production was specific to

the neurons receiving the stimulus in the form of an internal vigilance factor (Carpenter

and Grossberg, 1987; Clopath et al., 2008). It turns out that protein synthesis depends only

on the presence of neuromodulators, dopamine in the CA1 region of the hippocampus. In

slice experiments it occurs through the external stimulation methods which co-stimulate

dopaminergic fibers and thereby transiently increase the concentration of DA if the stimulus

is strong enough (Lisman et al., 2011; Reymann and Frey, 2007).

I modeled this phenomenon by switching to one my neuromodulation signal (DA) at the end

of a strong stimulus in a supervised manner.

Figure 3.3A shows the outcome of six hours of simulation of four separate stimuli. As expected,

weak protocols only induced early forms of long term plasticity, because dopamine was not

turned on, in line with experimental findings (Frey and Morris, 1997; Sajikumar and Frey,

2004b). In these two cases the mean incoming synaptic weight decayed to baseline within

approximately three hours. Strong protocols on the other hand made it possible to switch

from the early to the late phase. Both the traces for the strong TET and for the strong LFS were

maintained to respectively 180% and 70% of initial conditions.

3.2.2 Rescue of early forms of plasticity

Early forms of plasticity can be rescued if PRP synthesis is triggered in the cell. The event

responsible for this needs not necessarily be related to the event that induced the synaptic

change in the first place, but can be heterosynaptic. Synthesized proteins and other transcrip-

tion factors can travel along dendritic compartments to reach any tagged synapse within a

certain range. This allows for consolidation of all previous changes regardless of whether the

synapse belonged or not to the engram related to the event that triggered PRP production
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Figure 3.3 – The model accounts for tagging experiments. One (A, D*, E, F) or two groups (B, C, D
(inset)) of 2000 Poisson neurons project onto 10 postsynaptic AIF neurons with 10% connection proba-
bility. (A) I simulated independently 4 standard stimuli used in hippocampal slice tagging experiments:
a wTET consisting of 21 pulses at 100 Hz (upper decaying curve), a sTET, 3 blocks of 100 pulses at
100 Hz separated by 10 minutes (upper stabilized curve), a wLFS, 900 pulses at 1 Hz (lower decaying
curve) and a sLFS, 900 blocks of 3 pulses at 20 Hz separated by 1 second (lower stabilized curve). The
evolution of the change in synaptic weight w/w0 is shown (black lines) and the standard deviation over
10 repetitions (grayed area). Only the two strong stimuli involve delivery of dopamine, necessary for
stabilization of the changes. The weak stimuli decay to baseline within a few hours (B) e-LTP rescue by
another independent strong stimulation. 30 minutes after a wTET has been applied on a first pathway
(S1) another set of synapses onto the same neurons (S2) experience a sTET, making PRPs available to
every synapse in a non stimulus specific manner. The dashed line represents an independent weakly
tetanized pathway, for comparison. (C) Example of cross tagging between potentiation and depression.
A sTET in one pathway (S1) can provide the PRPs necessary for the stabilization of a wLFS applied on
another pathway (S2). The time course of a wLFS alone is shown for comparison (dashed line). (D) If a
depressing stimulus is applied shortly after a wTET on the same pathway, the synaptic weights are reset
to their low state (w =−1). If the reset happens 5 minutes after potentiation no tag had time to be set
(η=−1 )and the mean weight lies on the 100% line (black line). When the time difference is longer than
10 minutes a rebound can be observed (blue and red lines) due to the synaptic tags dragging along
the corresponding weights back to the up state (η=+1, w →+1). The inset shows that the synapses
still can experience consolidation if PRPs are made available via a strong tetanization on a second
pathway (S2). (E) Slow onset LTP is generally accomplished via pharmacology targeting dopamine
D1/D5 receptors. Here I turn the DA signal on and randomly set tags to +1 at different recording times
following drug injection and let the individual weights decay upwards (w →+1) producing this slowly
rising curve. (F) The decay of e-LTP also shows a dependence on activity. To mimic electrophysiological
measurements I stimulated my neurons with different background frequencies. I show the amount of
decay 30 minutes after tetanization (consisting of 100 pulses at 100 Hz) with (blue line) or without PRPs
available (red line). Increasing the frequency accelerates the decay when no consolidation is present.
This is due to the resetting effect as the frequency approaches 1. Up to 0.1 Hz, PRPs are able to rescue
early changes. Past this limit the weights are reset before tags are set.
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3.2. Application of the model to tagging and capture experiments

(Frey and Morris, 1997; Sajikumar and Frey, 2004b).

In my simulations, a weak LTP protocol on one pathway followed by a strong one after thirty

minutes induced a weight change that didn’t decay to baseline but was maintained at 120%

of its initial value even five hours after stimulus onset (I only show the three first hours after

stimulus onset since nothing changes after that limit, Figure 3.3B). Other configurations led to

the same conclusions when a weak TET followed a strong TET or in the same situations but in

the case of LTD induced by LFS protocols (see Supplementary Figure 3.5).

3.2.3 Cross tagging

The rescue of early forms of plasticity also happened across modalities, i.e. a strong LFS

protocol can trigger the machinery for consolidation of tagged potentiated synapses, and

inversely. Simulations of a strong TET followed thirty minutes later by a weak LFS showed

maintenance of the depressed weights at about 75% (Figure 3.3C). All other combinations of

cross tagging (weak or strong TET or LFS, preceding or following another, weak or strong TET

or LFS), can be reproduced (Supplementary Figure 3.5).

3.2.4 Tag resetting

As mentioned earlier there exists a time window after induction of e-LTP in a cell in which

the setting of tags can be prevented. Past the critical limit of approximately ten minutes a

depressing protocol only has an effect on the synaptic weights but not on the tags which had

time to be set.

For intervals of 10 or 15 minutes my simulations showed a rebound in the mean incoming

weight but not for a 5 minutes interval (Figure 3.3D). This is because the coupling between

the first two layers leaves the weights in a metastable situation where they have to eventually

decay upward to the high state (w →+1). Moreover, if a PRP synthesis inducing event was

given some time after the resetting stimulus, the synapses were able to capture those and

consolidate into l-LTP since the tags were still up (Sajikumar and Frey, 2004a).

3.2.5 Slow onset LTP

An important experiment in the characterization of the independence of the LTP expression

versus the tagging process is the induction of slow onset LTP. Applying dopamine receptors

D1/D5 agonists to a hippocampal slice makes it possible to express a much slower form of

LTP than with standard protocols (Navakkode et al., 2007). This process has been shown to

depend on N-methyl-D-aspartate (NMDA), known to mediate the tagging process, and to rely

on the presence of PRPs. The slow rise in synaptic weight is then restricted to situations where

a stimulus, even a weak one, is applied regularly. No recordings during three hours after drug

application gave no potentiation whatsoever.
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Chapter 3. Layered synapse model

I modeled this phenomenon by turning on my dopamine signal for 60 seconds at time zero

and by randomly setting 5% of the tags η→+1 at each recording pulse for the first three hours

following the start of the protocol (Figure 3.3E). Because of the opened p variable the manually

raised tags stay in their high state (η=+1) and pull the weights upwards, eventually leading the

synapse to its HI state. The simulation showed a slowly rising mean synaptic weight stabilizing

at about 150% of initial conditions.

3.2.6 E-LTP dependence on recording frequency

The final test I subjected my model to was the dependence of e-LTP on stimulation frequency.

It has been shown that not only l-LTP but also the early phase of plasticity is dependent on

protein synthesis at high levels of synaptic activity (Fonseca et al., 2006). In experiments

synaptic weights are usually recorded at most once per minute, corresponding to a frequency

of 0.0167 Hz. However going to higher recording frequencies accelerates the decay of LTP

when no PRPs are available.

I tried this on my network by applying pulses at different frequencies and found that indeed

thirty minutes after induction LTP had decayed much more for higher frequencies. The mean

synaptic weight was up to 40% lower when recorded at 0.2 Hz than when recorded at one

pulse per minute or without recording at all (Figure 3.3F).

3.3 Methods

3.3.1 Neuron model

In my simulations I used leaky integrate-and-fire neurons with conductance based synapses.

The evolution of the membrane potential of neuron i is given by

τm
dVi

d t
= (

V rest −Vi
)+ g exc

i (t )
(
V exc −Vi

)+ g inh
i (t )

(
V inh −Vi

)
(3.1)

where g exc
i is the excitatory conductance and V exc the corresponding reversal potential (and

similarly for inhibition). A spike is emitted when the potential reaches the threshold ϑi . After a

spike, Vi is reset to V rest and ϑi is set to ϑspike to implement refractoriness. The threshold then

relaxes back to its rest value according to

τthr
dϑi

d t
=ϑrest −ϑi (3.2)

The spike train of neuron j is defined as S j (t ) =∑
k δ

(
t − t k

j

)
, with t k

j being its kth spike time.

We can now write the AMPA and GABA input on neuron i as

d gαi
d t

=−
gαi
τα

+
∑
j∈α

w̃i j S j (t ) (3.3)
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3.3. Methods

where α ∈ {
ampa, gaba

}
for excitatory, respectively inhibitory neurons and w̃i j is the synap-

tic weight of the connection from neuron j to i . The inhibitory conductance is simply

g inh
i = g gaba

i and the excitatory conductance is the sum g exc
i = βg ampa

i + (
1−β)

g nmda
i . The

NMDA conductance is a filtered version of the AMPA conductance with a slower rise and a

longer tail

τnmda
d g nmda

i

d t
=−g nmda

i + g ampa
i (3.4)

I skip the voltage dependence of NMDA for computational efficiency.

Some nodes are composed by adaptive integrate-and-fire neurons. The adaptation mechanism

has the form of a spike triggered current. In this case, the inhibitory conductance becomes the

sum g inh
i = g gaba

i + g adapt
i where the adaptation conductance is added a value g spike at each

spike of neuron i , and else relaxes exponentially to zero

d g adapt
i

d t
=−

g adapt
i

τadapt
+ g spikeSi (t ) (3.5)

Membrane Threshold Synapses PRPs
V exc 0 mV τthr 5 ms τampa 5 ms τadapt 100 ms kup 1 s−1

V rest -70 mV ϑrest -50 mV τgaba 10 ms 250 ms† kdown 1/7200 s−1

V inh -80 mV ϑspike 100 mV τnmda 100 ms g spike 1
τm 20 ms β 0.5 10 †

10 ms*
*) for inhibitory neurons (Figure 4.2) †) used in the simulations of chapter 3

Table 3.1 – Neuron model parameters.

3.3.2 Synaptic state

The state of a synapse consists of a linear transform of its weight wi j and of two hidden

variables, the tag ηi j and the scaffold zi j . All three variables follow the same bistable dynamics

τx ẋ =−dU
d x with U (x) = x4

4 − x2

2 corresponding to the double well potential of Figure 3.1. This

dynamic has two stable fixed points x = +1 and x = −1 corresponding to the high and low

states respectively. Moreover each variable is coupled to its nearest neighbour(s) via time

dependent gating variables. The full system reads (I skip the indices (i j ) for clarity)

ẇ = 1

τw
f (w) + aηw

4τw
ḡ (t )

(
η−w

)+σξw (t )+Iw

η̇= 1

τη
f
(
η
)+ awη

4τη
g (t )

(
w −η)+ azη

4τη
p̄ (t )

(
z −η)+σξη (t ) (3.6)

ż = 1

τz
f (z)+ aηz

4τz
p (t )

(
η− z

) +σξz (t )
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Chapter 3. Layered synapse model

where f (x) = −x (x −1)(x +1) is the derivative of U and the terms ξi (t ) are independent

Gaussian white noise processes with the properties 〈ξ (t )〉 = 0 and 〈ξ (t )ξ
(
t ′

)〉 = δ(
t − t ′

)
.

The real weight is given by the formula

w̃ = wlow

2
((kw −1) w +kw +1) (3.7)

where kw = whigh/wlow is the ratio between the high and the low weight.

The different variables are coupled to each other through two functions g and p acting as

gating variables, meaning that they take values g , p ∈ [0,1] and that ḡ = 1− g and p̄ = 1−p.

The variable g couples the weight and the tag and hence represents the tagging mechanism. I

modeled it as a threshold on a variable γ which can be opened by plastic events occurring to

the synapse under the condition that it goes in the right direction (LTD for a synapse in the HI

state or LTP for a synapse in the LO state, see section Learning rule)

g = H
(
γ−ϑγ

)
, with τγγ̇=−γ+ Iγ (3.8)

where H (x) =
{

1 if x > 0

0 else
is the Heaviside function.

The other coupling variable p, between the tag and the scaffold, stands for PRP and can be

seen as the concentration thereof. The trigger for opening the gating is an external reward or

novelty signal. Whenever active, this external signal (DA) dominates the constant decay term

and pulls p towards 1

ṗ = (DA) ·kup ·
(
1−p

)−kdown ·p (3.9)

Synaptic state Learning rule
τw 200 s awη/ηz 3.5 A− 2×10−4

τη 200 s aηw 1.3 A+ 5×10−4

τz 200 s azη 0.95 τx 16.8 ms
kw 3 τγ 600 s τy 33.7 ms
σ 10−4 ϑγ 0.37 τtriplet 40 ms

Table 3.2 – Synapse model parameters.

3.3.3 Learning rule

In this section I describe the input terms Iw and Iγ acting on the weight and on the gating

variable responsible for the tagging process. They both share a standard hebbian learning rule

but differ in their modulation by internal parameters.

The standard rule is the triplet STDP rule by Pfister and Gerstner (2006b) in its minimal form

with the parameter set corresponding to hippocampal cultures. In this framework, the changes
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3.3. Methods

in the synaptic weights are given by(
d wi j

d t

)
triplet

= A+x+
j (t ) yslow

i (t −ε)Si (t )− A−y−
i (t )S j (t ) ≡ I+triplet − I−triplet (3.10)

where ε is a small positive number and x+
j (t ), yslow

i (t ) and y−
i (t ) are filtered versions of the

pre- and postsynaptic spike trains
dξαk
d t =− ξαk

τα
+Sk (t ) , ξα ∈ {

x+, yslow, y−}
.

This rule doesn’t account for the fact that certain stimuli are able to reset formerly potentiated

synapses without having any effect on other synapses. Resetting happens when the weight

is pushed back in the direction given by the scaffold, that is depressing stimuli for small

synapses (when w −z > 0) and potentiating ones for big synapses (when w −z < 0). I call small

a synapse which has a low scaffold, and the opposite for a big synapse. Using the fact that

1 = H (w − z)+H (z −w) I write

Itriplet =
standard STDP term︷ ︸︸ ︷

I+tripletH (w − z)− I−tripletH (z −w)+ (3.11)

I+tripletH (z −w)− I−tripletH (w − z)︸ ︷︷ ︸
reset term

≡ Istd + Ireset

To account for differential effects of resetting protocols I modulated both input terms

Iα ∼ Astd
α · Istd + Areset

α · Ireset where α ∈ {
w,γ

}
, the weight and the tag gating variable. For

the weight input, I only enhanced the reset term, I chose Astd
w = 1 and Areset

w = 1+|w − z|, i.e.

the bigger the difference between the weight and the scaffold, the stronger the reset term. The

final form of my plasticity rule reads

Iw = I+triplet · (1+ [z −w]+) · (1−w)− I−triplet · (1+ [w − z]+) · (1+w) (3.12)

where [x]+ = xH (x) is the linear rectifier. Note that I multiplied the potentiation and de-

pression terms by factors (1±w) to ensure that STDP doesn’t push the weight beyond the

boundaries of the bistable dynamics.

Since I wanted resetting protocols to reset weights but not to ‘untag’ synapses, I set Areset
γ = 0.

However when the stimulus is not a resetting protocol, both potentiation and depression

should open the tag gating variable g , i.e. driving it to 1. Remember that the standard STDP

input term consists of potentiation for small synapses (w − z > 0) and depression for big

synapses (w − z < 0). In order to have a positive term always, I needed to take the opposite of

Istd for w − z < 0. I thus chose Astd
γ = Sign(w − z) to get

Iγ =
[

I+triplet ·H (w − z)+ I−triplet ·H (z −w)
]
· (1−γ)

(3.13)

here again the term 1−γ is to ensure that the variable stays between 0 and 1.
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Chapter 3. Layered synapse model

3.3.4 Tables and supplementary figures

mechanism protocol paper Z CZ BB
early/late LTP &
e-LTP → l-LTP

TET Frey and Morris (1997) 3 3 3

early/late LTD &
e-LTD → l-LTD

LFS Sajikumar and Frey (2003) 3 3 3

cross tagging TET, LFS Sajikumar and Frey (2004b) 3 3 3

e-LTP / tag setting
dissociation

pharmacology (actin)
pharmacology (CaMKII)

Ramachandran and Frey
(2009)
Redondo et al. (2010)

3 7 3

depotentiation

TET, LFS
TET, LFS (2Hz)
TBS, TPS
TET (250Hz), LFS (5Hz)

Sajikumar and Frey (2004a)
Bashir and Collingridge
(1994)
Stäubli and Chun (1996)
Martin (1998)

3
3*
3*
3*

7 7

measurement frequency
influence on e-LTP

TET Fonseca et al. (2006) 3 7 7

slow onset LTP pharmacology Navakkode et al. (2007) 3 7 7

tag lifetime
TET
LFS

Frey and Morris (1997)
Sajikumar and Frey (2004b)

7 7 7

synaptic competition TET Fonseca et al. (2004) 7 7 7

consolidation is
activity dependent

TET
Fonseca et al. (2006)
Navakkode et al. (2007)

7 7 7

compartments
TET, LFS
TET, LFS
TBS, TET, LFS

Sajikumar et al. (2007)
Parvez et al. (2010)
Sajikumar and Korte (2011)

7 7 7

STP TET, LFS Sajikumar et al. (2009) 7 7 7

*) small modifications on A+, A−, g spike and σ were sometimes necessary

Table 3.3 – Paper reproducibility. This table presents the main articles which studied important
aspects of the STC theory. A check sign (3) means a particular model can account for the data of the
paper of the same line, whereas a (7) means that it cannot. Z=Ziegler, the new model presented in this
chapter, CZ=Clopath & Ziegler, the model from Clopath et al. (2008), BB=Barrett & Billings, the model
from Barrett et al. (2009)

3.4 Conclusion

In this chapter I presented a novel mathematical model describing the different phases of

synaptic plasticity. As in the preceding chapter, these phases cover the early or induction

phase, the setting of synaptic tags, a trigger for protein synthesis and a slow transition leading

to synaptic consolidation during the late phase of synaptic plasticity. Compared to the pre-

ceding one, the model explains an even larger body of experimental data on synaptic tagging

and capture, cross-tagging, and the late phases of LTP and LTD. Conclusions regarding the

stabilization of potentiated synapses by shared protein synthesis and its consequence on the

protection of individual synapses hold. Furthermore, the introduction of two ‘hidden layers’ –

the tag and the scaffold – allows for the description of metaplastic effects very important in

depotentiation experiments.
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Figure 3.4 – Synapse’s states and transitions, from the high to the low state. See caption of Figure 3.1.

The main aim of this thesis is to build a bridge from molecular mechanisms to the behaviour

of live animals. This is what I do in the next chapter by means of the simulation of a neural net-

work representing the memory system of rats. The synaptic model introduced here constitutes

the key to the balance between forgetting and consolidation of different memory traces.

63



Chapter 3. Layered synapse model

100

150

200

0 1 2 3

w
/w

0
[%

]

time [h]

S1 S2

A

50

75

100

0 1 2 3
w

/w
0

[%
]

time [h]

S1 S2

B

50

75

100

0 1 2 3

w
/w

0
[%

]

time [h]

S1 S2

C

D

50

100

150

200

0 1 2 3

w
/w

0
[%

]

time [h]

S1
S2

50

100

150

200

0 1 2 3

w
/w

0
[%

]

time [h]

S1

S2

E

50

100

150

200

0 1 2 3

w
/w

0
[%

]

time [h]

S1

S2

F

STET - WTET
WLFS - SLFS SLFS - WLFS

WLFS - STET SLFS - WTET WTET - SLFS

Figure 3.5 – All configurations of early plasticity rescue and cross tagging. Strong protocols are
shown in red, weak protocols in blue. Dashed lines show what occurs in the case where no strong
protocol is given through the other input pathway. See caption of Figure 3.3 for details on the stimulation
protocols.
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4 BEHAVIOURAL MODELING

In the previous chapter I described my new synapse model and showed the extent of exper-

imental paradigms it accounts for. As I stated in the Introduction, the aim of this thesis is

to provide a tentative link between molecular mechanisms and behaviour of live animals

through models of synaptic plasticity incorporating neuromodulatory effects.

This is what I show in this chapter by the modeling of an inhibitory avoidance task showing

tagging and capture effects at the level of the behaviour of rats (Ballarini et al., 2009; Moncada

and Viola, 2007).

4.1 Behavioural tagging

Now that I showed the span of sliced-based experiments that my model can capture, I want to

turn to one of the biggest challenges of the STC hypothesis, namely its relevance to learning

and memory. Even if making the claim that the STC theory underpins memory engrams,

only few studies show conclusive measurements in vivo. A promising direction is that of

behavioural tagging where an analog of STC recordings in vitro has been shown to have very

similar features. Experiments on this matter include inhibitory avoidance training, object

recognition tasks (Ballarini et al., 2009), extinction of fear memories (de Carvalho Myskiw

et al., 2013), taste aversion paradigm and an experiment closer to our day to day memories in

the form of a matching-to-place task (Wang et al., 2010). One of these experiments used an

inhibitory avoidance (IA) setup (Moncada and Viola, 2007) where rats were placed in a cage on

an elevated platform and were given an electrical foot shock when jumping down. If put back

in the same environment up to one hour later, a rat remembered the negative reward of the

electric shock and took a longer time to jump. A day later though, the rats had forgotten about

it and showed the same average latency on the experimental platform. This showed a striking

similarity with the time scale and the shape of decaying e-LTP measured in rat hippocampus

(Figure 4.1).

Interestingly the memory trace of the rats could be saved by giving a stronger foot shock.
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Chapter 4. Behavioural modeling

Furthermore this transformation into a long-term memory (LTM) was shown to depend on

protein synthesis. Another way of rescuing short lived memories was to expose the rats either

before or after the IA protocol to a novel environment during five minutes. When the difference

between the time at which the rats were allowed to freely explore this open field (OF) and the

time of the IA training, was within a specific window, the rats still remembered the setup one

day later.

A B

C D

Figure 4.1 – Behavioural tagging experimental results. (A) LTM decays within a few hours. Rats who
were given an IA training showed high latencies when tested 15 minutes after training but showed
less fear when tested one hour later and completely lost the fear memory one day after training. (B) A
stronger foot shock induces LTM at least one day long (whether or not coupled to an OF exploration).
(C) OF exploration enhanced retention of the fear memory when it occurred between 2h and 3h before
the training session. Note that there is no effect when the separation between the OF and the training
is of 30 minutes. (D) An OF occurring after the IA also transforms STM into LTM, except when it directly
follows the training session (Figure taken from Moncada and Viola (2007)).

Since OF exploration for at least five minutes is known to trigger dopamine release in the rat

hippocampus (Li et al., 2003), this could well be related to the rescue of early into late LTP by

heterosynaptic protein synthesis triggering events.

I wanted to examine the idea of the STC hypothesis as a foundation for memory engrams from

a theoretical point of view. I thus implemented a neural network model of a rat, that aimed at

reproducing the results of the IA experiment.
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4.2. Neural network model

4.2 Neural network model

Contextual fear memory takes place in the limbic system and more specifically implies the

hippocampus and the amygdala. Context is formed and stored in the hippocampal formation

via a conjunction of spatial and non spatial stimuli (Treves and Rolls, 1992). Lesion or inacti-

vation studies but also optogenetics in vivo has shown the necessity of the hippocampus in

spatial memory encoding.

The actual fear memory is encoded in the amygdala. This region associates conditioned to

unconditioned stimuli via dedicated thalamic inputs (Fanselow and LeDoux, 1999).

Without being specific about which parts I am actually modeling, I got inspired by this config-

uration in the design of my ‘rat’ in silico. I used mainly a feedforward architecture linking an

input pattern to a spatial module to a fear area and finally to an action population (Figure 4.2A).

The input englobes three patterns, each coding for a different context.

The first one codes for the home cage, the second one for the training cage containing the

platform and the last one for the novel environment. The spatial module consists of a pool of

excitatory neurons with recurrent inhibition whose aim is to re-encode contextual information

available through the different input patterns. When an unknown pattern is presented the

excitatory neurons of the spatial population fire irregularly at about 1 Hz and with a log-normal

distribution (Figure 4.2B) as reported by experiments and showed theoretically (Amit and

Brunel, 1997). After encoding, a pattern of highly active neurons is formed as in a k-winner-

take-all system due to the strong recurrent inhibition (Maass, 2000). This encoding occurs

through spike timing dependent plasticity in the connection between the two groups which is

composed of the synapse model I discussed in the previous sections. I chose a fear encoding

time of one second, corresponding more or less to the foot shock duration of the experiments.

I used the same encoding time for the home cage than for the fear training and my Open Field

simulations lasted for five minutes (see Methods).

The excitatory population of the spatial module projects to the fear population whose function

is to capture associations of contextual and emotional information. In non fearful situations

the fear neurons have a low firing rate, not enabling any change in the weights of its incoming

synapses. In the case of a fearful event a strong external input increases their activity opening

a window for plasticity. The network has been tuned so as to permit long lasting potentiation

only in the synapses projecting from presynaptic neurons being part of the encoded spatial

pattern and not in the other synapses. The later do experience some potentiation due to the

high postsynaptic firing rate but only a short term version since the weight traces do not reach

the basin of attraction of the high state (Figure 4.2C).

Finally since fear in rodents is mainly expressed as a freezing behaviour, I chose GABAergic

synapses for the projections from the fear population to the action neurons. An active fear

population signifies a lowered activity of the action units and thereby modifies behaviour. The

action neurons also receive input from the pattern coding for the training cage, because of the
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Figure 4.2 – Behavioural simulation paradigm. (A) Network architecture. The input consists of three
patterns of approximately 500 Poisson neurons each, with a 10% overlap. It projects to the spatial
population and to the action units. The spatial cluster is composed of 1000 excitatory AIF neurons and
250 inhibitory LIF neurons. They project to the fear population, consisting of 100 LIF neurons which
inhibit the 100 AIF action neurons. Background Poisson input (ext) is given to the spatial cluster and to
the fear neurons via one-to-one connections (dashed arrows). Plastic connections (or neuromodulation
thereof) are shown in red. (B) Rate distribution in the spatial module before (black) and after (gray)
encoding. An example of corresponding raster plot is shown on top. (C) Two dimensional histogram
of the synaptic weights from spatial to fear during inhibitory avoidance encoding. Only the pattern
encoded by the highly active neurons of the spatial population are linked to the fear neurons (top right
corner). Other connections do not cross the zero line and hence decay back to their low state. (D) Jump
mechanism. The simulations are stopped when the population rate of the fear population, filtered on a
100 ms time scale, hits a threshold (dashed red line), and the jump time is recorded. I show an example
trace in a naive scenario (black) and in a situation where fear is present (gray). On the left firing rate
distributions show the inhibitory effect of encoded fear. Histograms of jump times in the naive case
(black) and in a case where fear is present (gray) are shown on top.
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4.3. Behavioural simulations results

platform that produces on the rat an urge to jump down. In order to create a random latency

out of a pool of neurons I set a threshold on the population activity of the action population,

filtered with a 100 ms time scale, and recorded jump times as the first hit of neural activity on

this threshold (Figure 4.2D; see Methods for details).

Only the connection from the input to the spatial module and from there to the fear population

are plastic and they are both modulated by a dopamine signal, constituting the only gate to

consolidation of induced synaptic changes. I turned on this signal in two situations, during a

strong electric foot shock and at the end of a five minutes exploration of a novel environment

(Lisman et al., 2011).

4.3 Behavioural simulations results

The first set of simulations consisted in one single trial of fear memory encoding and a test

session after different waiting times (Figure 4.3A). For each experimental setup I performed

ten complete simulations, corresponding to a group size of ten ‘subjects’. During training my

electronic rats stayed about 10 seconds on their virtual platform. Fifteen minutes after fear

encoding the latency raised to about 80 seconds, a significant increase due to the inhibition of

the action neurons by the fear group. After sixty minutes another set of simulations yielded

latencies of about 20 seconds, still significantly higher than the training sessions. One day

after the fearful event though, all memory was lost.

A stronger foot shock during the IA session can rescue LTM. In my case it is modeled by

including dopamine delivery to the two plastic connections – input to spatial and spatial to

fear – of the neural network. In this situation PRPs consolidate the training environment and

its association to the unpleasing shock experience which are encoded in the synapses. This

reduces the activity of the fear population and hence produces longer waiting times of about

100 seconds.

The second set of simulations dealt with LTM rescue by a novelty signal. The mechanism

responsible for this in my network was the transformation of e-LTP to l-LTP of the neural

assemblies representing the spatial and fear memories. Here open field sessions were inserted

before or after the training sessions, and consisted of five minutes of constant activity of the

third of my input patterns together with dopamine delivery towards the end. In trials where

the OF preceded the IA, the outcome was determined by the extent of PRP concentration that

remained at the time of encoding. The closer the novelty exploration to the IA, the higher the

protein concentration and hence the stronger the consolidation of any encoded change in

synaptic efficacy. Thus OF preceding IA by two hours gave latencies of about 30 seconds and

when the interval was reduced to sixty minutes the effect was stronger with jump times of

about 100 seconds (Figure 4.3B).

When OF came after the fear session some interference emerged in the spatial encoding of the

different contexts. The low activity during the creation of a neural representation in the spatial
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Figure 4.3 – Behavioural simulations results. (A) Latencies during inhibitory avoidance training
(white boxes) and different times after training (gray boxes) in the case of a weak foot shock (paired
t tests, n = 10; t = 15, p < 0.001; t = 60, p = 0.029). A stronger version involving dopamine delivery
(strong) is able to rescue an otherwise decaying memory trace (p < 0.001). (B) LTM can also be rescued
by novelty. If an OF setup was applied to the network either before (−t ) or after (+t ) the fear encoding
in a specific time window, the dopamine delivery associated to it could trigger the necessary protein
synthesis to consolidate the synaptic connections (paired t tests, n = 10; t =−120, p = 0.013; t =−60,
p < 0.001; t =+15, p = 0.002). The hole at t =+0 is due to a reset of previously formed connections
during the OF stimulation. Since it happens within the 10 minutes window where tags were not set yet,
the memory trace is totally erased.

module produced a resetting of the previously potentiated synapses. This means that only

if the novelty environment session took place longer than ten minutes after the IA were the

training cage related tags already set. And only then they could take advantage of the PRPs

whose synthesis was triggered by the OF exploration. This explains the difference between +0

and +15 minutes in the graph of Figure 4.3B. In the first case latencies are at the same level

as for training, because all spatial information about the training environment has been lost.

Fifteen minutes after encoding synapses were already tagged and hence more stable against

interferences. I see values of about 60 seconds in this case.

For intervals longer than one hour no strong effect can be reported. This is because of the

accumulation of OF interference and natural weight decay during that period. This stands

in contrast to experimental results where those latencies somehow agree with the standard
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situation without novelty exploration. Obviously natural neurobiological implementations

of that system involve much more complex features such as theta cycles and memory replay

during sharp-wave ripples which modify the outcome of such experiments (Lubenov and

Siapas, 2008).

4.4 Methods

4.4.1 Input patterns

The three patterns of my input population were created randomly such that each group has a

size of N = 500±5 and each pair of patterns has an overlap of o = 0.1. I did this by drawing

randomly three groups out of an ensemble of size 1
o N , each of these groups having their size

drawn randomly from a Gaussian N (500,5).

4.4.2 Connectivity matrices

The k-winner-take-all behaviour in my spatial population was created via feedback inhibition.

One main property I wanted it to exhibit was to show a dynamic as random as possible, i.e.

different initial conditions should yield different representations of the input. For this I needed

to minimize the quenched connectivity noise while maximizing the degree of different inputs

for each separate neuron. This is realized when P → 0 where P is the connection probability.

Since I did not want for computational reasons to have a too large number of input units I

opted for another solution. I kept the in-degree constant for all connection matrices in my

neural network, meaning that I drew randomly exactly NinP connections for each postsynaptic

neuron (with Nin the number of presynaptic neurons and P = 0.1).

Group size Connection weight Rate
Ninput 3× (500±5) winput→spatial 0.2* νon

input 10 Hz

N exc
spatial 1000 wexc→inh 0.1 8 Hz†

N inh
spatial 250 winh→exc 0.4 νoff

input 0.1 Hz

Nfear 100 wspatial→fear 0.1* 1 Hz†

Naction 100 wfear→action 1 ν
spatial
ext 100 Hz

winput→action 0.5 νfear
ext 20 Hz

wext→exc/inh/fear 0.5 150 Hz‡

*) plastic connections †) rates during OF exploration
‡) rate during a foot shock

Table 4.1 – Behavioural network parameters.

4.4.3 Jumping times

To emulate a behaviour out of a group of spiking neurons I defined a threshold ϑjump and

recorded the first time it was reached by the population rate ν of the fear population. The rate
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was calculated on line via

τνν̇ (t ) =−ν (t )+ 1

Nfear

∑
k
δ

(
t − t k

)
(4.1)

where Nfear is the population size and t k is the time of the kth spike among all neurons in the

population. I chose a time scale of τν = 100 ms.

It is known that such a mechanism yields exponentially distributed jumping times. I took as

final jump time for each of my ‘rat’ in silico the mean over ten random repetitions of the above

setup. The sum of independent exponential random variables follows a gamma distribution, a

method often used to model real waiting times.

4.4.4 Numerical simulations

Numerical simulations were performed with a time step of 0.1 ms. For differential equations

which could be solved analytically I used the exact solution. For all the others, a forward Euler

method with the same time step was used. Except for the three internal synaptic variables w ,

η and z for which I used a time step of ∆t = 100 ms. This updating time was chosen so that∣∣∣d x
d t

∣∣∣∆t < 10−3 for all x ∈ {
w,η, z

}
.

The code was written in C++ using Open MPI and the Boost libraries, and compiled with

the GNU C compiler. Simulations were run on a Linux workstation equipped with Intel(R)

Core(TM) i7 CPUs. The bottleneck for simulation time was the total number of plastic synapses,

first because their number grow as ∼ N 2 (with N the number of neurons), and second because

of their large amount of internal variables. For simulating my behavioural network the speed-

ing factor was about 2, meaning that it took about half a day to simulate 24h of biological

time.

In all behavioural paradigms where the interval between IA training and the final testing was

one day, I stopped the simulations after 8h biological time. I justify this choice by the fact that

no significant weight change compared to the level of noise could be measured after this time.

context input → spatial spatial → fear
familiar A− 1.5 ·10−4 A+ 10−4 A− 10−6 A+ 10−6

new A− 5 ·10−3 A+ 10−4 A− 10−6 A+ 10−6

IA training A− 1.5 ·10−4 A+ 3 ·10−2 A− 10−6 A+ 10−4

Table 4.2 – Learning rule parameters. Note that in this chapter τw = 20 s and kw =5 for the spatial →
fear connection.

4.5 Conclusion

In this chapter, I applied the synapse model of chapter 3 to a neural network in order to repro-

duce experimental findings in a behavioural tagging paradigm. I showed that the molecular
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theory of STC can suffice to explain an inhibitory avoidance task in live rats involving tagging

and neuromodulatory effects.

In my model, memory traces are represented by neural assemblies linked in a feedforward

architecture. Incoming synaptic weights to a certain assembly determine its activation by

former network layers. Hence, a memory can be forgotten or consolidated depending on

(i ) the strength of the stimulus or (ii ) whether it was rescued by another, novel stimulus

happening closely in time. A key result is that when a novel stimulus occurs too shortly after

the fear event, the fear memory is killed via a depotentiation effect in the synapses of the

modeled network.

In the next chapter, I discuss functional consequences of the synapse model of chapter 3 as

well as possible future directions enabled by my work.
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5 FUNCTIONAL CONSEQUENCES

So far I have described a new synapse model that consists of three variable, the usual synaptic

weight, a tag and a scaffold. All three follow a bistable dynamic and are coupled together

through two gating variables representing the tagging and the consolidation processes.

I showed that it can account for many of the experimental findings in the field of synaptic

and capture theory. I also showed that it can reproduce a behavioural experimental paradigm

putatively involving tagging and capture mechanisms, thereby refining the link from molecular

plasticity to behaviour and memory.

In this chapter I expose some functional interpretations of these results. I also propose ques-

tions and the possible future research directions that my work enables.

5.1 Synaptic level

A crucial aspect of our synapse model in our view is the description of a synaptic state through

three independent variables – even if they are at the same interdependent. This increase in

dimensionality (compare the following illustration to Figure 5.1) in contrast to classical models

grants more states and transitions, allowing for more flexibility in the implementation of plastic

and metaplastic interactions. For example it has been stated that a minimal requirement

stemming from experimental results was for a synapse to express tristability in its weight (Pi

and Lisman, 2008). Even though our model is composed of bistable variables, effectively it

holds 23 = 8 states (not all being necessarily stable states). This allows for a distinction between

numerous different functional or biochemical configurations. That includes the separation of

depression from depotentiation which is done by comparing the weight to its long term stable

state defined by the scaffold.

Furthermore the model exhibits a trade off between variability, due to the independence of

the variables, and stability, due to the anchoring of the weight through its coupling with the

tag, in turn coupled with the scaffold.
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Although my model functions independent of the underlying biophysical implementation,

capturing the core emergent properties, I can nonetheless relate features of the model to its

implementation in the hippocampus. Initial weight change following LTP induction is imple-

mented by an increase in the mean amount of AMPA receptors endo- and exocytosed to and

from the membrane of the postsynaptic density (PSD). Following AMPAR increase, presynaptic

factors have also been shown to participate in the altering of synaptic efficacy (Redondo and

Morris, 2011). The tag is thought to be not a single component but a state including several

molecules and signaling cascades. These include CaMKII for LTP and calcineurin for LTD. Both

the tagging process and the induction of the early phase of plasticity are activated by Ca2+

influx in the PSD through NMDA receptors. The scaffold too cannot be reduced to a single

molecule. At least two mechanisms are responsible for a sustained change in synaptic efficacy,

new slots for inserting AMPARs in the membrane as well as a structural reconfiguration of the

whole PSD. Plasticity proteins are still partially unknown but they include GluR1, Homer1a,

PKMζ and ARC.

An important feature of modeling is that it provides an easy access to all the variables at stake.

Hence without specific assumptions about the detailed biophysical implementation one can

still discuss generic functional aspects of the theory.

The PRPs, or the p trace in my model, play a key role since it is where LTP/D loses synapse

Visualization of the model. A All states and the main transitions are shown. Boxes represent a
synaptic state with a low weight (blue ball) on the left or a high weight on the right, and similarly for
the tag (yellow ball) and the scaffold (green ball). Labeled arrows represent transitions which need
external input (potentiation or depression, blue) or the opening of one of the internal gating variable
(yellow and green). Single arrows denote transitions which occur naturally through internal dynamic. A
clock on one arrow signifies that transition time is random. On the right are the internal axes (weight,
tag and scaffold) and the effect of external input in the form of potentiation (upward big blue arrow)
or depression (downward big blue arrow). B-E Stable states are highlighted, the shaded ones being
unstable or no fixed point at all. Only the internal dynamics is shown, i.e. transitions occurring without
external input. Four contexts are shown: B The synapse is in its resting state, with couplings going from
the scaffold to the tag and from the tag to the weight. C Tagging is turned on, the weight determines the
tag’s fate. D PRPs are present, due to the action of external reward or novelty signal, the scaffold follows
the tag. Dashed arrows represent a case where a synapse trajectory depends on initial conditions or on
randomness. E Both the tagging and PRPs are on. For details on the fixed points see Appendix A.1.
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Chapter 5. Functional consequences

specificity. By this I mean that the ‘decision’ as to whether to consolidate encoded experiences

or not is left to the whole cell. This implies that, upon dopamine delivery, any experience

that took place in the preceding few hours is going to be memorized. In reality release of

different neuromodulators caused by various internal pathways target different dendritic

compartments of the neuron (Reymann and Frey, 2007). This opens the possibility of an

alternate framework of clustered engrams where nearby synapses together with intrinsic

dendrite dynamic may participate in local memory ‘sub-traces’ (Govindarajan et al., 2006).

The complexity in the internal synaptic state transposes into a wide range of potential modifi-

cations of the learning rule, weight dependence being only one of them. The synaptic learning

rule takes the form d w
d t = F

(
x, y,θw

)
with x, y being the pre- and postsynaptic activities and

θw an arbitrary set of internal parameters. It allowed us for example to circumscribe depoten-

tiation from depression, but many other potential applications are at hand. For instance, since

internal variables are all interdependent, modification of any of them will alter the learning

rule even if it doesn’t appear explicitly in it. Giving more realistic properties to the p dynamic,

one of the two gating variables, is one example. This framework, involving the dependence

on internal parameters and the non-locality of PRPs availability, has been designated as ‘neo

Hebbian’ (Lisman et al., 2011).

5.2 System level

To validate my model I restricted my analyzes to a specific line of experiments using a limited

set of stimuli. However many other protocols, some more realistic than others, have been

tested including a repetition of a real recording of a place cell activity in vivo (Isaac et al.,

2009). I extended the reproducibility range of my model to some of those stimuli, mainly in the

field of depotentiation (see Table 3.3). This includes for potentiation, 100 Hz high frequency

stimulation (HFS), theta burst stimulation (TBS) consisting of a sequence of short bursts given

at 5 Hz, and 250 Hz tetanic stimulation; and for depression, 2 Hz LFS, and 5 Hz theta pulse

stimulation (TPS) (Bashir and Collingridge, 1994; Martin, 1998; Stäubli and Chun, 1996). To

accomplish this I had to modify the learning constants A+ and A− and sometimes noise level

(data not shown).

On the level of neural assemblies, the rescue of early into late long term plasticity has impor-

tant consequences. It implies that events at the time of encoding are not the unique factors

determining the persistence of memories. A dopamine signal coding for novelty, aversive stim-

uli or reward expectation (Lisman et al., 2011; Schultz et al., 1997) determines what changes

are going to be maintained or not. In this sense, it resembles the reward signal of reinforcement

learning (RL) and R-STDP (Izhikevich, 2007; Sutton and Barto, 1998). In these theories, learn-

ing rules make use of an eligibility trace which represents potential changes, only transformed

into effective synaptic alterations upon arrival of an external reward signal. This eligibility

trace is analogous in my synaptic architecture to the w variable whose stabilization rests on

the presence of neuromodulators. A crucial difference however, is that these transitions aren’t
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potential but real weight changes.

Another important difference is the time scales involved. In RL, effects take place at the level

of one second, whereas the decay time of the tags η, which dominates the time scale of

the eligibility of weight changes to be consolidated, is of the order of an hour. One way of

reconciling the two phenomena stems from the intrinsic architecture of my model. It would

be feasible to add a new layer on top of w , and to move the STDP input term to that level,

thereby replacing my rule for the induction of plasticity by one compatible with RL. Though

the question whether such a biological mechanism or signaling cascade could exist in neurons

remains open.

The early phase of LTP is a revertible phenomenon. There is a critical time window of about ten

minutes in which a resetting protocol on a previously potentiated synapse leads to absolutely

no change because the synaptic tag either couldn’t be set or is reset at the same time as the

weight. The question arises of the utility of a complete reset. Does it help dissociate irrelevant

from salient events? Or does it hinder the positive effect of memory retention enhancement?

It is unclear whether a reset is evolutionary advantageous or whether it is merely a side effect

of the biological time needed to set the tag. One possible theoretical argument is the fact

that a reset allows to accumulate evidence before enduring plasticity (Elliott and Lagogiannis,

2012). Under the assumption of a discrete synapse experiencing a noisy but meaningless

signal, I show that the probability of staying in the same state after a period T is in the order

of Preset =O
(

1p
λT

)
with λ the probability of plasticity event-induced transition per unit time

(that I take to be equal for potentiation and depression). This goes to zero much slower than

the survival probability in the case where there is no possible reset P; = exp(−λT ).

All the examples treated in chapter 3, and especially the slow onset LTP experiment point to

the crucial role played by metaplasticity. It represents an important means of communication

from a brain region to the next and hence at the system level it cannot be set aside. This is why

I think essential to propose a synaptic model as simple as can be but still supporting this idea,

that can be incorporated in common simulators like NEST or Auryn.

The experiment on dependence of the early phase of LTP to measurement frequency raises the

question of the stability of an encoded engram against background activity. It is known that

multiplicative rules are catastrophic for memory since they produce a unimodal distribution

of synaptic weights in the long run (Billings and van Rossum, 2009). If low frequency firing

can erase recently induced changes, how could any trace be stored at all in a live brain?

Are synaptic weights sitting in their high potential well (w = +1) stable enough to endure

background activity? Probably spike correlations or more complex features such as rhythms

or sharp waves become here very important. Reconsolidation might also bring clues (Inda

et al., 2011). Reactivation of the memory traces at the right moment (where one would have to

define what right actually means) could stop forgetting in neural networks.
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5.3 Relevance to behaviour

Various studies have shown the necessity of tagging and capture in the formation and main-

tenance of LTM (Bekinschtein et al., 2007; Wang et al., 2010). I believe that, along with this

accumulating experimental evidence, my simulations play one’s part in closing the gap be-

tween cellular and behavioural consolidation mechanisms. I showed that it is possible to

explain behavioural findings with a simulated neural network based on simple assumptions

and a synapse model consistent with experimental observations in the field of STC. Neverthe-

less there are a few points I would like to be transparent about.

Most models dealing with learning or memory separate the learning from the retrieval phase

(Gerstner et al., 1996; Hopfield, 1982; Kempter et al., 1999b; Song et al., 2000), whereas I leave

plasticity active during the full simulations. However I did distinguish different phases by

modulating the strengths of potentiation and depression depending on the contexts (see

Table 4.2). I justify this by the fact that plasticity in the hippocampus has been shown to be

strongly affected by neuromodulation. One major source is the dopaminergic neurons of

the ventral tegmental area (VTA) which get highly active in situations where there is reward,

novelty or during aversive stimuli (Lisman et al., 2011).

Another issue is that of the ‘hole’ at +0 minutes in Figure 4.3B. Novelty can rescue LTM when

given either before or after fear memory encoding but not if it directly follows the IA training. I

explained it by the depotentiation effect which, if it occurs less than ten minutes after induction

of LTP, completely aborts the memory encoding process. This has a strong implication, namely

the hole has to be asymmetric in time, i.e. a stimulus that preceded an encoding event would

have no mean to reset it simply because it was given before. This is not what was measured in

one behavioural experiment where an OF exploration thirty minutes before IA training also

interfered with the memory (see Figure 4.1) (Moncada and Viola, 2007). Note that this was

not reported again in another later study by the same group (Ballarini et al., 2009). Thus my

model has its limitations since it was not designed to capture every aspects of biological reality

in all its tremendous complexity. Many more mechanisms at the system level are affecting

memory formation. For example theta rhythms and replay during sharp-wave ripples play an

important role in memory formation, even several hours after encoding (Rossato et al., 2009).

Furthermore it has been shown that synchronous bursts occurring during slow-wave sleep can

selectively erase information in the hippocampus (Lubenov and Siapas, 2008). Nonetheless, I

have been able to show that the STC data is sufficient to capture the behavioural phenomenon.

5.4 Insights and open questions

There are further aspects of the theory that my model fails to capture. First it is tempting to

describe some forms of short-term plasticity (STP), lasting for about fifteen minutes, by a drive

of the variable w through the STDP input term towards the high potential well, but not enough

to cross the barrier separating the two wells. In this situation it would then decay back to the
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bottom of the basin of attraction corresponding to the low state on a time scale matching that

of STP experiments (data not shown). However it seems that priming of a hippocampal slice

by ryanodine enables an STP inducing protocol to set a tag (Sajikumar et al., 2009). This is not

coherent with the mechanism I proposed since setting a tag would alter the weight dynamic

and lengthen its decay to the low state, effectively transforming STP into LTP.

Two other phenomena raise the same issue, namely that the weight and the tag seem to be

even more independent than the way I built my model. The fact that the traces in LTP resetting

experiments bounces all the way up to the level it had before the resetting protocol means

that all tags are still set (η=+1), so that they can pull their respective weight to the high state

(w =+1). Besides, STC experiments have established a tag lifetime by showing that after about

ninety minutes it is not possible anymore to consolidate changes in synaptic weight (Frey and

Morris, 1997; Sajikumar and Frey, 2004b). This all seems to point towards a synaptic model

where a synapse in the tagged LTP state can see its weight decay before the tag; a feature that is

not possible in my model since it is always the tag which decays first and then pulls the weight

down.

It appears from experiments on slow onset LTP that tags can be set alone without a change

in the weight. However I believe that one cannot assess this directly because no drug to my

knowledge can disrupt tag setting without disrupting induction of LTP at the same time since

those drugs act on NMDA receptors, responsible for both mechanisms. If such a drug was avail-

able, my model would predict that, if injected before encoding (in a behavioural paradigm),

it would, like protein synthesis inhibitors, leave short-term memory (STM) unchanged but

would disrupt consolidation into LTM. In my view tag setting and induction of weight change,

though being separable, do not occur separately in nature. This is the reason why I modeled

the tag input term as acting on the tag setting mechanism g (t ) and not on the tag variable

itself η.

PRP dynamic in my model is very simple and doesn’t capture the phenomenon of synaptic

competition. One way of modeling it would be to define a pool of proteins – possibly a sum of

separate pools pk corresponding to k different dendritic compartments – whose value would

be decreased by nearby consolidating synapses. Furthermore the capture of PRPs is a complex

process which depends on the neuronal activity (Fonseca et al., 2006). In order to be accounted

for, this would also require a more complex p dynamic, with possibly an external input term

similar to those for w and the gating g . This internal competition is interesting theoretically

since it could restore the intrinsic vigilance factor that was lost compared to the previous

model (Clopath et al., 2008) when setting the p dependence on external neuromodulation

alone and not on the amount of tags set (Carpenter and Grossberg, 1987; Clopath et al., 2008).

5.5 Conclusion and future work

In this work, I have presented a new synapse model that includes several internal variables in

concordance with biology. I showed the extent to which it accounts for current experimental
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paradigms in the field of synaptic tagging and capture. Finally I have demonstrated that a

link from cellular to behavioural aspects of consolidation can be built, at least in a theoretical

perspective.

A key aspect of this new model is its ability to incorporate metaplastic effects alongside

standard learning rules via dependencies on the internal variables. The separation of the

triplet rule by Pfister and Gerstner (2006b) into a standard and a reset term is one example.

Functionally, the model integrates several crucial aspects for memory lifetimes found in other

existing models. By this I mean

– a multiplication of metaplastic states, giving it a way of protecting certain traces against

overwriting

– a binary behaviour, making it more resistant to noise

– an integration of plastic events before its expression, through the potential barrier stemming

from the intrinsic dynamic of the internal variables

On top of this, it shows independence of the different variables, which could be an essential

aspect for memory.

However, investigations on this matter remain to be conducted. Building an analytical frame-

work and looking at memory lifetimes in a system that integrates my model, or a binary version

of it, is one of the directions I would like to take for future work.

Another point which deserves attention is that of the implementation of a critic. In this work I

gave a reward or surprise signal in a supervised manner. Ways of automatizing this process

include building a more complex hippocampal network that would compare its representation

of a stimulus to stored ones in order to infer novelty, and thus activate or not VTA neurons

which would in turn induce dopamine release.

Finally, since late stages of LTP do not preclude further potentiation, it would be interesting to

propose a model with a large number n > 2 of stable states for each internal variable, or for

the weight only. This would open many questions on analytical and computational properties

of such a model.
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A ANALYTICAL INVESTIGATIONS

A.1 Stability analysis

In this section I discuss the stability of an N -dimensional version of the second refined version

of my synaptic model. I describe the state of a synapse by a vector x ∈RN whose components

represent all the variables of the model. In the three dimensional version used in Section 3.3,

this vector would correspond to the weight, the tag and the scaffold, x = (
w,η, z

)
. The evolution

of the synaptic state can thus be written

ẋ = f (x)+Γx + I +σξ (A.1)

where the non linear function f : RN → RN , whose components are given by

τi fi (x) = −xi (xi −1)(xi +1), implements the bistable behaviour of the variables, with sta-

ble fixed points +1 and −1; the matrix Γ couples the variables together; finally I is an external

input term and ξ is a noise vector, each of its components being independent and sharing

the same properties as in Equation 3.6. The coupling matrix is tridiagonal, meaning that each

variable is only influenced by its two nearest neighbours. I set its components to follow these

rules

Γi i =−(
Γi ,i−1 +Γi ,i+1

)
(A.2)

Γi j = 0 ∀{
i , j

}
s.t.

∣∣i − j
∣∣> 1

so we get as coupling for the i th component (Γ · x)i = Γi ,i−1 (xi−1 −xi )+Γi ,i+1 (xi+1 −xi ).

To get back to the three dimensional case of Chapter 3 one would have to set
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Appendix A. Analytical investigations

Γ1,0=
awη

4τη
g (t )

Γ2,1=
aηz

4τz
p (t )

and
Γ0,1=

aηw

4τw

(
1− g (t )

)
(A.3)

Γ1,2=
azη

4τη

(
1−p (t )

)
as well as Ii = 0 ∀i > 1, so that only the weight (x0) would get external input.

Referring again to the N -dimensional case, I show that it is possible to find a Lyapunov function

for the system of equations A.1 in the case where there is no input I = 0 and no noise. The

Lyapunov function E is defined by

E (xi ) =
N−1∑
i=0

Ci

{
U (xi )

Γi ,i+1
−xi xi+1 −

Γi i

2Γi ,i+1
x2

i

}
(A.4)

+CN−1

{
U (xN )

ΓN ,N−1
+

x2
N

2

}

under the condition that Ci = Γi ,i+1

Γi ,i−1
Ci−1 and for an arbitrary C0 > 0. We see also that the

coefficients Γi j , i.e. the couplings, should be non zero, which is reasonable if we define a

‘closed’ gating variable as being equal to a small ε> 0.

The condition for E to be a Lyapunov function is that it is locally positive definite in a neigh-

bourhood B of a fixed point x0 of the dynamical system. Then the point x0 is stable if the

‘energy’ of a point in B under the flow given by the dynamical system always decreases

dE

d t
=∇E · ẋ < 0 ∀x ∈B\x0 (A.5)

The function E has been defined so that the condition A.5 is fulfilled. Proving that E is positive

definite in a certain domain revealed harder. I did prove however (calculations not shown)

that for a reasonable choice of coupling values and for the case where Γ is independent of t (in

rest conditions) the two points corresponding to the LO (xi =−1 ∀i ) and the HI (xi =+1 ∀i )

states of Chapter 3 are stable.

To find all the stable fixed points in the three dimensional case for Figure 5.1, I used Mathemat-

ica to numerically calculate the eigenvalues of the Jacobian of the system 3.6, and to assess

their sign. The HI and LO states are stable fixed points of the system in all conditions and are

even the only ones when PRPs are present, the others are

rest condition: g = 0 and p = 0

– x = (+0.94,+0.61,−1), the t-LTP state

– x = (−0.94,−0.61,+1), the t-LTD state

– x = (−0.57,+0.61,−1), the depotentiated state
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A.1. Stability analysis

– x = (+0.57,−0.61,+1), the LTD-reset state

tagging condition: g = 1 and p = 0

– x = (+1,+0.81,−1), the t-LTP state

– x = (−1,−0.81,+1), the t-LTD state

Even though it is hard to use the Lyapunov function to assess the stability of all fixed points

of the system, it can be used for visualization as an energy landscape. See Figure A.1 for an

example.
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η
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1
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D

wTET tagging

depotentiation decay

Figure A.1 – A 3D resetting protocol. The ‘energy landscape’ for the two variables x and η is shown
(gray grid). The black or red line represents the trajectory of a synapse in the wη-phase plane adjusted
on the z axis at the value of the Lyapunov function for the 2-dimensional system. A wTET protocol. The
black trace represents the trajectory of the synapse before the stimulus and in red during the wTET
protocol. B Tagging process. Following potentiation, a tag is set due to the opening of the gate variable
(g → 1). C Depotentiation protocol. 15 minutes after the wTET a resetting protocol depotentiates the
weight (w →−1) while leaving the tag up (η=+1). D Decay. Because of a smaller potential barrier for
w the weight decays first towards the state dictated by tag (w →+1), before the tag and then also the
weight finally decay bringing the synapse to the LO state.
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A.2 Effective learning rule

In this section I compute, in a rate version, the limit between effective potentiation and

depression in the case where the intrinsic dynamic of w can be neglected (which is reasonable

with a time constant of τw = 200 s). This is done by equating the magnitude of plastic change

to zero and then solving that equation.

I define the potentiation term as p
(
x, y

)
and depression as d

(
x, y

)
(in the case of the triplet

rule by Pfister and Gerstner (2006b) these would correspond to p = A+x y2 and d = A−x y).

Removing the dynamic of w and keeping only the input (as in other synaptic plasticity models),

its evolution is given by

d w

d t
= p

(
x, y

)
(1+k [z −w]+) · (1−w)−d

(
x, y

)
(1+k [w − z]+) · (1+w) (A.6)

Note that I added a modulation of the resetting term by an arbitrary factor k. In the case of a

synapse whose scaffold is in the low state (z =−1) this becomes

d w

d t
= p

(
x, y

)
(1−w)−d

(
x, y

)
(1+k (1+w)) (1+w) (A.7)

I now solve ẇ = 0 to get a relation between the potentiation and the depression terms. This

yields

p
(
x, y

)= d
(
x, y

) (1+w) [1+k (1+w)]

1−w
≡ d

(
x, y

) ·C (w) (A.8)

We get for z =+1, d
(
x, y

)= p
(
x, y

) ·C (−w).

The outcome of a plasticity inducing protocol depends on which side of the potential barrier

w finds itself at the end of the protocol. This point will depend on the internal state of the

synapse through the coupling terms. But we can get a rough estimate of the condition for

potentiation or depression by setting w = 0 in these relations. We get, for potentiation

– small synapse (z =−1): p
(
x, y

)> d
(
x, y

)
(1+k)

– big synapse (z =+1): p
(
x, y

)> d(x,y)
(1+k)

And for depression

– small synapse (z =−1): d
(
x, y

)> p(x,y)
(1+k)

– big synapse (z =+1): d
(
x, y

)> p
(
x, y

)
(1+k)

This helps to understand the mechanism of how depressing protocols have a stronger effect

on potentiated synapses (w =+1 and z =−1) than on synapses in the HI state (w =+1 and

z =+1).
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