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Abstract
The last few years have witnessed a tremendous development of the computational field of uncertainty
quantification (UQ), which includes statistical, sensitivity and reliability analyses, stochastic or robust
optimal control/design/optimization, parameter estimation, data assimilation, to name just a few. In
all these problems, the solution of stochastic partial differential equations (PDEs) is commonly faced,
for which many computational methods have been proposed, such as the extensively used Monte Carlo
method and its several variants, the fast convergent stochastic Galerkin projection method and the
nonintrusive stochastic collocation method. The large advancement of these computational methods
with sparse and adaptive techniques has enabled efficient solution of the aforementioned UQ problems
that feature high dimensionality, low regularity and arbitrary probability measures. However, when it
becomes very expensive to solve the underlying deterministic PDEs, e.g., only a few tens or hundreds
of full solutions are affordable in practice, these computational methods can not be applied directly
since they may need millions of full solutions, or even beyond, in order to achieve a certain accuracy.

In this thesis, we develop, analyze and demonstrate novel stochastic computational strategies and
algorithms based on model order reduction techniques, in particular based on reduced basis methods,
to tackle this challenge in solving several typical UQ problems. We first compare the convergence
properties and computational costs of the reduced basis method and the sparse grid stochastic colloca-
tion method, and demonstrate that the former is much more efficient than the latter without loss of
accuracy in solving large-scale and high-dimensional UQ problems. In dealing with arbitrary probabil-
ity measures, we propose a weighted reduced basis method inspired by the generalized polynomial
chaos, and establish explicitly a priori error estimates for both one-dimensional and multidimensional
stochastic/parametrized problems. A weighted empirical interpolation method with improved conver-
gence property is proposed in order to decompose nonaffine random fields, which paves the way for
effective application of the reduced basis method in solving more general UQ problems. A hybrid and
goal-oriented adaptive reduced basis method with certification is proposed to efficiently and accurately
solve a large class of UQ problems, involving pointwise evaluation, in particular failure probability
for reliability analysis. Moreover, taking advantage of the sparsity and reducibility of UQ problems,
we develop an adaptive and reduced computational framework that enables precise detection of the
distinctive importance and the interaction of different dimensions, as well as automatic construction
of a generalized sparse grid and reduced basis approximation of the quantities of interest.

Besides the development and demonstration of the model order reduction techniques in solving var-
ious demanding forward UQ problems, a large effort of this thesis has been devoted to the analysis
and the efficient solution of inverse UQ problems, in particular stochastic optimal control problems.
We succeed in proving not only the existence but also the uniqueness of the optimal solution via a
stochastic saddle point formulation in the case of elliptic and Stokes constraints. A detailed analysis
is carried out for the stochastic regularity of the optimal solution w.r.t. the random input data under
certain smoothness hypothesis. We tailor the main ingredients of the developed adaptive and reduced
computational strategy to solve stochastic optimal control problems with several different PDE con-
straints. The efficiency and accuracy of this strategy demonstrate its potentials in solving more general
large-scale and high-dimensional inverse UQ problems with arbitrary probability measures.
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Résumé
Les dernières années ont vu un développement considérable du champ de calcul de la quantifica-
tion des incertitudes (QI), qui comprend des analyses statistiques, de sensibilité et de fiabilité, des
contrôle optimal/conception optimal/optimisation stochastique ou robuste, estimation de paramètres,
l’assimilation de données, pour n’en nommer que quelques-uns. Dans tous ces problèmes, la résolu-
tion d’équations aux dérivées partielles (EDP) stochastiques est souvent confronté, pour la quelle de
nombreuses méthodes de calcul ont été proposées, telles que la méthode polulaire de Monte-Carlo
et ses différentes extensions, la méthode de projection de Galerkin stochastique de convergence ra-
pide et la méthode de collocation stochastique non-intrusive. Le grand progrès de ces méthodes de
calcul avec des techniques clairsemées et adaptatives a permis une solution efficace des problèmes QI
mentionnés ci-dessus qui comportent une grande dimension, une régularité faible et des mesures de
probabilité arbitraires. Cependant, quand il devient très coûteux de résoudre les EDP déterministes
sous-jacentes, par exemple, que quelques dizaines ou centaines de solutions complètes sont réalisable
dans la pratique, ces méthodes de calcul ne peuvent pas être appliquées directement car elles peuvent
avoir besoin des millions de solutions complètes ou d’avantage afin d’atteindre certaine précision.

Dans cette thèse, nous développons, analysons et démontrons de nouvelles stratégies stochastiques de
calcul et des algorithmes basés sur des techniques de réduction de l’ordre de modèle, en particulier les
méthodes des bases réduites, pour relever ce défi dans la résolution de plusieurs problèmes typiques
de l’QI. Nous comparons d’abord les propriétés de convergence et les coûts de calcul de la méthode
de bases réduites et la méthode de collocation stochastique sur grilles clairsemées, et démontrons
que la première est beaucoup plus efficace que la dernière sans perte de précision dans la résolution
des problèmes QI de grande échelle et de grande dimension. En traitant des mesures de probabilité
arbitraires, nous proposons une méthode de bases réduites pondérée inspirée par les polynômes de
chaos généralisé, et établissons explicitement des estimations d’erreur a priori pour les problèmes
stochastiques/paramétrés à la fois unidimensionnel et multidimensionnels. Une méthode d’inter-
polation empirique pondérée avec une meilleure propriété de convergence est développée afin de
décomposer des champs aléatoires nonaffine, qui ouvre la voie à l’application effective de la méthode
des bases réduites à résoudre des problèmes plus généraux de l’QI. Une méthode des bases réduites
hybride et adaptative basée sur les objectifs avec certification est proposée pour résoudre efficacement
et avec précision un grand nombre de problèmes QI concernant l’évaluation ponctuelle, en particulier
probabilité de défaillance pour l’analyse de fiabilité. Par ailleurs, profitant de la rareté et de réducti-
bilité des problèmes QI, nous développons un cadre d’adaptation et de calcul réduit qui permet une
détection précise de l’importance particulière et de l’interaction des différentes dimensions, ainsi
que la construction automatique d’une approximation des quantités d’intérêt de grilles clairsemées
généralisée et de bases réduites.

Outre le développement et la démonstration des techniques de réduction d’ordre de modèle dans
la résolution d’une multiplicité de problèmes direct de QI exigeants, un grand effort a été consacrée
dan cette thèse à l’analyse et la résolution efficace des problèmes inverses de QI, en particulier des
problèmes de contrôle optimal stochastique. Nous réussissons à prouver non seulement l’existence,
mais aussi l’unicité de la solution via une formulation de point selle stochastique dans le cas de
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Abstract

contraintes elliptiques et Stokes. Une analyse détaillée est effectuée pour la régularité de la solution
stochastique optimal en ce qui concerne les données d’entrées aléatoires sous certaines hypothèses
de régularité. Nous adaptons ces ingrédients principaux de la stratégie de calcul adaptative et réduite
pour résoudre les problèmes de contrôle optimal stochastique avec plusieurs différentes contraintes de
EDP. L’efficacité et la précision de cette stratégie démontrent son potentiel à résoudre des problèmes
inverses de QI plus généraux, de grande échelle et de grande dimension avec mesures de probabilité
arbitraires.

Mots-clés : quantification des incertitudes, équations aux dérivées partielles stochastiques, approxi-
mation creuse, méthode de collocation stochastique, méthode de bases réduites, analyse de fiabilité,
contrôle optimal stochastique
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Introduction
This thesis is devoted to developing, analyzing and verifying novel stochastic computational strategies
and algorithms based on model order reduction techniques, in particular a reduced basis method, for
the solution of several specific uncertainty quantification problems. We start by illustrating uncertainty
quantification problems; then we provide a short survey of the state of the art in stochastic computa-
tional methods. We close this introduction by a presentation of the main contributions of this thesis
and its organization.

Uncertainty quantification problems – motivations and scopes

Thanks to the fast development of computing hardware and numerical algorithms, the last few decades
have witnessed tremendous growth of mathematical modelling and computational simulation, which
nowadays become a routine as the third pillar in many scientific research and practical engineering ap-
plications besides theoretical investigation and experimental exploration. For example, the modelling
and simulation of blood flow in human cardiovascular system have undergone large advancement
because of better understanding of the morphology and functionality of the system, the availability of
abundant clinical data as well as fast growing of computational resources and algorithms [75]. Specifi-
cally, various mathematical models targeted for part of cardiovascular system such as a portion of artery
where diseases locate, or the entire arterial tree that delivers oxygen and nutrients to the whole body,
have been established by fluid conservation laws and structural deformation theories. In particular,
fluid (e.g., Navier-Stokes) equations and elastic (or viscoelastic) equations are coupled together to
characterize the fluid structure interaction property of blood flow; geometrical multiscale models
are established for large and small arteries; models for tissue perfusion, mass transfer, bypass design,
to name just a few, have also been developed with specific objectives. Meanwhile, the development
of associated computational techniques have greatly improved the applicability of cardiovascular
modelling and simulation to conduct physiology and pathology investigations and perform clinical
and/or surgical optimizations.

However, for all these mathematical models with different objectives, the corresponding simulation
results may differ from reality or observations due to various uncertainties that are inevitably en-
countered in the modelling and simulation processes. First of all, uncertainties may arise from the
model inputs [46, 135], including physical parameters representing material properties such as Young
modulus of the blood vessel, initial or boundary conditions prescribed as blood flow rates or stresses,
external loadings such as surrounding tissue pressure and working effort, computational geometries
that are extracted and reconstructed from patients by MRI or some other techniques. These input
uncertainties can be hardly determined as deterministic quantities, either because they may possess in-
trinsic randomness or because the measurements are not sufficient to produce precise inputs. Another
source of discrepancy between the simulation results and reality comes from approximation errors,
e.g., discretization errors in numerical approximation of the fluid structure interaction equations,
and/or potential flaws during the computational implementation of the numerical algorithms. A more
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fundamental source of uncertainties may be the inappropriate construction or oversimplification of
the models themselves, e.g., models neglecting viscoelastic effect or more complex local fluid field,
because of limited understanding of the complexity, diversity and variability of the underlying physical
processes of the blood flow in multiple time and space scales. In order to incorporate these different
and influential uncertainties and conduct more realistic and robust modelling and simulation tasks,
three interrelated research branches in computational science and engineering have been developed in
recent years [57]: (i) uncertainty quantification, which deals with propagation of various uncertainties
from inputs to outputs of given physical systems that are described by mathematical models, and
inversion of available data, experimental measurements or objectives for the outputs with the aim
of reducing the uncertainties in the inputs; (ii) verification, that aims at verifying the accuracy of the
approximation of the original mathematical models; (iii) validation, that studies how to validate the
efficacy of the mathematical models against the underlying physical processes.

This thesis focuses on the first branch of solving uncertainty quantification problems in both forward and
inverse settings, as illustrated in Figure 1, where the few topics of this thesis are highlighted with bold font.
In short, the object under study can be assembled in the following three components. At the core, the
underlying physical processes are described by some appropriate mathematical models, for instance
elliptic or parabolic equations for heat or mass transfer, elastic or viscoelastic equations for structure
deformation, Stokes or Navier-Stokes equations for fluid flow. In order to set up a mathematical model,
we need to provide the necessary model inputs, such as physical parameters, boundary or initial
conditions, computational geometries. However, due to lack of knowledge or intrinsic randomness,
as mentioned before, the inputs may not be prescribed with deterministic values due to various
uncertainties. Therefore, the model outputs, e.g., the stochastic solution itself, functional of the
solution or multiple quantities of interest related to the solution, may only be evaluated or measured
statistically. According to the available data and the objectives of the study, two different kinds of
problems can be faced: one kind is known as forward problems, i.e., given random inputs of the model,
we are interested in evaluating some statistical outputs; the other kind is known as inverse problems,
i.e., provided observed or measured outputs, we aim at reducing the uncertainties of inputs or updating
the state variables.

data/measurements
e.g.

objective functions
priori information
state observations

representation
e.g.

probability theory
fuzzy set theory

extreme value theory

numerical methods
e.g.

(quasi) Monte Carlo
projection/collocation

model reduction

inverse problems 
e.g.

control/optimization
parameter estimation

data assimilation

solving strategies
e.g.

variational approach 
Bayesian inference

Kalman filter

e.g.
statistical moments
reliability analysis
sensitivity analysis

forward problems 

mathematical models
e.g. 

elliptic eq. for diffusion
elastic eq. for deformation
Stokes eq. for fluid flow 

statistical outputs 
e.g.

stochastic solution
functional of solution

multiple quantities

e.g. 
physical parameters
boundary/initial  cond.
computational geometry

input uncertainties 

Figure 1: Schematic representation of solving forward and inverse uncertainty quantification problems

To solve a forward uncertainty quantification problem, the first step is to identify and represent the
input uncertainties in a concrete mathematical structure, e.g., in the framework of probability, fuzzy set
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or extreme value theories. Secondly, before solving the mathematical models with random inputs, the
objectives (quantities of interest) should be clearly defined, which may involve computing statistical
moments, e.g., expectation or variance, performing risk or reliability analysis via evaluation of failure
probability, conducting sensitivity analysis to seek the most influential uncertainties. Based on different
objectives of the forward problems, suitable numerical methods need to be used to solve the models.

On the other hand, in solving a inverse uncertainty quantification problem, we are provided with some
data or measurements on the statistical outputs, such as desirable objective functions of the outputs,
some a priori information on the quantities of interest or observations of the state variables. With these
data at hand, our aims could be assimilating them in the model to update the state variables, controlling,
optimizing or estimating certain input variables, e.g., force, geometry or physical parameters, in order
to drive the outputs as close as possible to the objective functions or observations. Depending on
different aims, the inverse problems can be classified as optimal control, optimization, parameter
estimation, data assimilation, etc., which are generally ill-posed from the mathematical viewpoint. To
facilitate the solution of these ill-posed problems, different computational strategies can be adopted
accordingly, for example, penalized variational approach based on Lagrange multipliers, regularized
Bayesian inference by Markov chain Monte Carlo methods or optimal maps, Kalman filters, etc.

Various mathematical and computational challenges are encountered in solving the forward and
inverse uncertainty quantification problems. The first challenge is how to effectively identify and repre-
sent the input uncertainties or statistical observations of different types, especially how to compress
high-dimensional uncertainties into a low dimensional space, while capturing the important properties
of the uncertainties. Many advanced statistical methods come into play, including linear or nonlinear
regression, principle component analysis (Karhunen–Loève expansion), maximum entropy, etc.. Pro-
vided that the uncertainties are well represented with appropriate mathematical structure, a further
challenge is to study whether the models with random inputs, most often formulated as stochastic
partial differential equations, are well-posed or not in terms of existence, uniqueness and regularity
of the stochastic solution. This challenge is more involving in stochastic and functional analyses, for
which the theories are far from mature to deal with nonlinear, multiscale and multiphysics models.
Nowadays, a more significant and relevant challenge for computational science and engineering is how
the models, even if their well-posedness is not fully understood, can be solved efficiently and accurately
by a computer. In particular, this challenge is naturally confronted when one has to efficiently solve
the stochastic models with arbitrary probability measures when the uncertainties are represented in
the probability framework, to practically harness the total computational burden when the underlying
model at one stochastic realization becomes very expensive to solve, to accurately approximate the
solution in a high-dimensional stochastic space facing the common difficulty well-known as the “curse
of dimensionality". This thesis is mainly devoted to developing, analyzing and verifying stochastic
computational strategies and algorithms specific to several different uncertainty quantification problems
with the aim of reducing their computational complexity.

Stochastic computational methods – state of the art

In order to solve both the forward and the inverse uncertainty quantification (hereafter abbreviated
as UQ) problems in an efficient and reliable way, the essential task is to design and analyze efficient
and accurate stochastic computational methods, which has been the main topic of the UQ research
community in recent years. As a matter of fact, various stochastic computational methods have been
developed and analyzed depending on the structures and properties of the UQ problems, including –(far
from being extensive and complete)– perturbation method, Neumann expansion methods, Monte Carlo
methods, stochastic Galerkin methods, stochastic collocation methods, and more recently methods
based on model order reduction techniques [72, 80, 190, 208, 10, 207, 8, 137, 136, 16, 151, 89, 31, 24, 194,
18].
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The perturbation method [109] based on Taylor expansion of random functions was developed for
random functions featuring only small fluctuation around a deterministic expectation, while Neumann
expansion method [210] uses Neumann expansion of the inverse of stochastic operator around a
deterministic operator. Both methods are applicable only to deal with small uncertainties, thus suffer
from inevitable errors and extremely involved for high order expansions. The most commonly used
“brute-force" Monte Carlo method [72] basically samples points in probability space and simplifies a
stochastic system to a deterministic one at the sampling points, so that only a deterministic system
needs to be solved and statistical information can be easily obtained by taking moments. However, it
converges very slowly with a convergence rate of 1/

p
N for N samples and becomes prohibitive for

achieving accurate results, especially for those stochastic systems that are already quite computationally
intensive in their deterministic settings. In order to accelerate the convergence, several improvements
have been proposed such as quasi Monte Carlo [147, 62], Latin hypercube sampling [125, 103], multi-
level Monte Carlo [95, 81]. Sampling the most representative points in order to accelerate Monte Carlo
methods become critical in practical applications.

The stochastic Galerkin method has recently received increasing attention in plenty of applications [193,
205, 83]. It relies on spectral expansion of the random functions on some polynomial chaos, for instance
Hermite polynomials of independent random variables, and the Galerkin approach to approximate
the expansion in deterministic space [80, 7]. By adopting the techniques of the deterministic Galerkin
approximation, both a priori and a posteriori error estimations can be derived [10]. Moreover, it enjoys
fast convergence if the solution is sufficiently regular [55, 54]. The stochastic Galerkin method has
also been extensively used for practical applications using generalized polynomial chaos [208] for
uncertainties with more general distributions inspired by the structural coherence of different types
of orthogonal polynomials and stochastic processes [186]. However, a very large algebraic system is
typically associated to the stochastic Galerkin approach, which requires the availability of efficient
solvers [67], such as Krylov iterative solvers with appropriate preconditioners.

The stochastic collocation method was developed from the non-intrusive deterministic collocation
method [164] and sparse grid techniques [33]. It finds its application in a variety of fields, for instance
chemical and environmental engineering [139] in the early years. Nevertheless, its numerical proper-
ties such as error convergence analysis, computational cost, as well as various extensions has been
discovered and developed only in the recent years [207, 8]. In principle, the stochastic collocation
method employs multivariate polynomial interpolations for the integral in the variational formulation
of the stochastic system with respect to probability space rather than the Galerkin approximation in the
spectral polynomial space. Due to the heavy computation of a deterministic system at each collocation
point in high-dimensional space, isotropic or anisotropic sparse grids with suitable cubature rules
[148, 149, 9] were successfully applied and analyzed for the stochastic collocation method to reduce
the computation. Moreover, hierarchical construction of a generalized sparse grid [79, 110] have also
been developed for the application of the stochastic collocation method. This method is preferred for
more practical applications because it entails the advantages of both direct computation as Monte
Carlo method and fast convergence as stochastic Galerkin method [12].

Despite the great development of the sparse techniques for stochastic Galerkin and collocation meth-
ods, there are still several common and major challenges to face, for instance low regularity of the
solution in stochastic space and the already mentioned curse of dimensionality, which require a large
number of stochastic realizations of the input uncertainties for accurately capturing the random out-
puts, resulting in prohibitive computations by directly using these stochastic computational methods.
In addition to selecting the appropriate spectral basis for the expansion of different probability dis-
tributions of random inputs, two other approaches to capture local behaviour of the solution and to
alleviate high-dimensional computational cost have been developed: the first one is to generalize
the polynomials from globally smooth functions to piecewise polynomial basis [190], wavelet basis
[119] and multi element polynomial chaos [203]; the second one is to efficiently reduce the compu-
tational cost by adaptivity - adaptive choice of polynomial basis [198], adaptive element selection in
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multielement polynomial chaos [74], adaptive spectral decomposition [151], as well as adaptive sparse
grid collocation [127]. More efforts are still in large demand for considerable reduction of stochastic
computation loads in UQ problems featuring low regularity and high dimensionality.

Rather different from the methods and approaches presented above, especially the stochastic Galerkin
and collocation methods based on dictionary bases, another type of stochastic computational method
based on model order reduction techniques can also be applied and characterized by a large potential to
be able to accelerate the solution of UQ problems, which include methods based on proper orthogonal
decomposition [16, 204] or generalized spectral decomposition [151, 154], balanced truncation method
[141, 89], Krylov-based method [70, 181], reduced basis method [178, 20]. The basic idea behind
these model order reduction techniques is to project the associated large algebraic system, by using a
combination of techniques such as singular value decomposition and/or in combination of greedy
algorithms, to a small system that can effectively capture almost all the information carried by the
original model. Among all of these reduction techniques, one of the most appealing in solving UQ
problems is the reduced basis method. Briefly speaking, it seeks to parametrize the random inputs
and select the most representative points in the parameter space by means of a greedy algorithm
endowed with an a posteriori error estimate [178, 158, 24]. The essential idea for harnessing heavy
computational burden is to separate the whole computational procedure into an offline stage and an
online stage. During the former, the most computationally demanding elements (sampling parameters,
assembling matrices and vectors, solving and collecting snapshots of solutions, etc.) are computed
and stored once and for all. While during the online stage, only the parameter related elements are left
to be computed and a small and very inexpensive Galerkin approximation problem to be solved. The
reduced basis method was initially introduced for structure analysis [150] and recently has undergone
vast development in theory [131, 178, 158, 87, 86, 49] and applied to many engineering problems
[162, 51, 163, 117, 175, 41, 45]. This method is similar to the stochastic collocation method in terms
of sampling and differs from the latter method because it uses a posteriori error estimate, and thus
providing a great potential in the reduction effort for the total number of full solves of the original large-
scale model; consequently, it helps in breaking the curse of dimensionality of solving high dimensional
UQ problems whenever the stochastic solution manifold lies in a low dimensional probability space.

In solving inverse UQ problems, in particular the stochastic optimal control problems considered
in this thesis, a very large, naturally coupled and ill-conditioned system is obtained from variational
approach with Lagrange multiplier [200], which involves the forward model, an adjoint model and an
additional system-closing model (e.g., the equation representing an optimality condition). Besides
the difficulties in suitable application of the aforementioned stochastic computational methods, an
additional computational challenges comes from the necessity of solving many times the forward and
the adjoint stochastic model by iterative methods, e.g., steepest gradient method [161, 200], or solving
once the coupled optimality system by “one-shot" method [185, 169]. To alleviate the computational
effort by iterative method, sequential quadratic programming [197] and trust-region algorithm [112]
have been applied and proved to be efficient, while to reduce the computational cost in solving the
ill-conditioned system by one-shot method, efficient preconditioning techniques have been developed
[185, 169]. However, when solving the underlying stochastic model becomes too expensive, it is
only affordable for tens or hundreds of full solve in practice, making the methods introduced above
impossible to be directly applied since the number of samples needed easily goes beyond the amount
could be handled, especially for high-dimensional problems. Since quantities of interest usually
reside in low dimensional manifold, model order reduction techniques may be applied using proper
orthogonal decomposition or reduced basis approximation for parametrized optimal control problems
[113, 132, 107]. As recently found in [57], an important area of future work is the use of model reduction
for optimization under uncertainty.
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Thesis contributions – methodologies, algorithms and theories

Methodological contributions

We carry out a detailed comparison between the reduced basis method and the most advanced sparse
grid stochastic collocation method in solving a benchmark uncertainty quantification problem [50].
Conclusions are drawn from the comparison that model order reduction techniques, specifically the
reduced basis method, are both more efficient and accurate in solving large-scale and high-dimensional
uncertainty quantification problems.

Moreover, we develop a verified adaptive and reduced computational framework in solving high-
dimensional UQ problems by taking advantage of the computational opportunities of sparsity in
stochastic dimension and reducibility in the model order [42]. This framework can not only facilitate
automatic detection of the sparsity – distinct importance and interaction of different stochastic di-
mensions but also extract and reconstruct the feature of stochasticity of the quantities of interest with
affordable computational effort.

Furthermore, we tailor and apply this computational framework in solving stochastic optimal control
problems constrained by partial different equations, which feature typical difficulties of solving inverse
uncertainty quantification problems, and demonstrate that this framework can dramatically reduce
the total computational cost without sacrificing numerical accuracy [47, 43, 45].

Algorithmic contributions

While the development of the generalized polynomial chaos [208] has brought remarkable progress and
influences in solving uncertainty quantification problems that feature arbitrary probability measures,
less attention has been paid in the model order reduction community in order to treat arbitrary
probability measures. In this thesis, a weighted algorithm associated with the probability distribution
of the input uncertainties for both the reduced basis method [49] and the empirical interpolation
method [48] is proposed and demonstrated to be very efficient in handling random variables with
arbitrary probability distribution. The algorithm is rather simple yet it can effectively capture the most
representative feature of stochastic solution with less modes, and can compete with the most accurate
Gauss quadrature formula for integration in terms of accuracy and nodes, even in a single dimension.

For several types of uncertainty quantification problems, in particular for risk analysis, surrogate or
reduced model techniques have been criticized due to the flaw of accuracy [121], i.e., producing an
inaccurate or even an erroneous quantity of interest. In this thesis, we develop a hybrid algorithm based
on the reduced basis method, which not only eliminates the flaw of accuracy but also tremendously
reduces the computational cost in Monte Carlo sampling [41]. In order to further reduce the number of
reduced bases that require full solves of the underlying model, a goal-oriented adaptive algorithm is
proposed and proved to achieve the same accuracy as the hybrid algorithm and needs much less full
solves. The hybrid and goal-oriented adaptive algorithms are successfully extended to compute failure
probability for a series of models based on different types of partial differential equations [41].

In solving stochastic optimal control problems constrained by partial differential equations, it is a
common practice to resolve the corresponding stochastic optimality system coupling a state equation,
an adjoint equation and an optimality condition. This requires not only the deterministic approxima-
tion of the optimal solution in the physical space by either iterative approach or one-shot approach,
resulting in heavy computational effort in the first stage, but also the stochastic approximation in the
probability space that leads to much heavier computational demand in a further stage. In this thesis,
we take advantage of the fact that the stochastic optimal solution resides in a low-dimensional manifold
to tailor an adaptive and multilevel algorithm based on the reduced basis method and the sparse grid
stochastic collocation method [47, 43, 45]. This algorithm is proved to be able to considerably alleviate
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the total computational effort for the global approximation, and thus it is suitable for more general
large-scale stochastic and robust optimization problems.

Theoretical contributions

Since the beginning of the development of the reduced basis method, the main research efforts in
the literature have been focused on deriving a posteriori error estimate for various models. A priori
error estimate was only obtained in [131] for a particular elliptic equation in a single parametric
dimension, and in [30, 20] in an indirect way by comparison to Kolmogorov N –width. In this thesis,
we derive a priori convergence analysis for the reduced basis method, in particular with the weighted
algorithm, in both a single parametric dimension and multiple dimensions based on Fourier analysis
and the stochastic regularity of the model solution with respect to the input random variables [49].
The derivation is carried out for elliptic equation but can be readily applied to more general models as
long as we can obtain the stochastic regularity of the solution, which depends on the regularity of the
input data, by the same procedure as in this thesis. Moreover, we prove that the reduced basis method
converges at least as fast as the stochastic collocation method [50].

The empirical interpolation method was originally proposed in [11] to decompose nonaffine fields for
the purpose of efficient application of reduced basis method, where a rather crude a priori convergence
result was obtained. Recently, the result was refined with comparison to Kolmogorov N –width in the
context of multipropose interpolation procedure under more general settings in [129]. In this thesis,
we succeed in improving the a priori convergence result obtained in [129] by a factor of 2N in the
development of the weighted empirical interpolation method [48]. For its proof, we have adopted the
ideas used in [20] for the prove of an indirect a priori error estimate of a weakly greedy algorithm. In
fact, the construction of an efficient empirical interpolation operator also employs a weakly greedy
algorithm.

The stochastic optimal control problems constrained by partial differential equations are ill-posed
problems, which pose typical difficulties for other inverse uncertainty quantification problems. Even
when appropriate regularization is applied, which guarantees the existence of the stochastic optimal
solution by Lions’ argument [123] as proved in [91], the uniqueness of the solution has not been
proved. In this thesis, we prove both existence and uniqueness of the stochastic optimal solution in
a tensor product stochastic Hilbert space for several different models, including the linear diffusion
[43], advection-diffusion [47] and Stokes equations [45], with both boundary and distributed control
functions. We also obtain the stochastic regularity of the stochastic optimal solution via a saddle point
formulation and using Brezzi’s theorem [27]. Moreover, a priori error analysis for the finite element
- stochastic collocation - reduced basis approximation of the optimal solution in both physical and
stochastic space is carried out in detail and verified by numerical experiments in different settings.

Limitations and potentials

The mathematical models we have considered are admissibly simple, such as those based on linear
elliptic equations, parabolic equations, and Stokes equations. Consequently, immediate applications
of the theories and algorithms are limited to these types of equations. Moreover, the scopes of the
uncertainty quantification problems we have studied are also limited to several typical requests,
e.g., evaluation of statistical moments, computational of failure probability for risk analysis, solving
stochastic optimal control problems with linear constraints. Particularly, more general inverse problems
such as nonlinear optimal control, parameter identification and data assimilation, which bear further
computational challenges, are not addressed in this thesis. More specific limitations will be provided at
the end of each chapter and in the conclusions of this thesis.

Fortunately, model order reduction techniques, in particular the reduced basis method, are not re-
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stricted to the models here addressed and have been applied to nonlinear elliptic equations [86],
Navier–Stokes equations [60], Maxwell equations [51], and even multiscale [1] and multiphysics [117]
models. Meanwhile, model reduction techniques have also been developed and applied to solve shape
optimization, parameter identification and data assimilation problems [133, 122, 37]. Therefore, we
hope that the concrete demonstration of the superior performance of the stochastic computational
strategies and algorithms in tackling several common computational challenges developed in this
thesis can be profitably applied in solving more practical and complex uncertainty quantification
problems.

Thesis organization

The thesis is presented through addressing a series of issues in developing model order reduction
techniques, in particular the reduced basis method, to solve uncertainty quantification problems.
We introduce the basic notations, function spaces, useful tools and common settings of uncertainty
quantification problems in the preliminary chapter. The first part of this thesis (chapter 1–5) is mainly
focused on forward problems and the second part (chapter 6–8) is specifically devoted to stochastic
optimal control problems. In the last chapter, we summarize some general conclusions and list a few
perspectives. More details of the main body of the thesis are provided as follows.

Chapter 1: Comparison of stochastic collocation and reduced basis methods

In this chapter, we compare the convergence property and the computational cost of the stochastic
collocation method and the reduced basis method in solving a simple benchmark UQ problem. The
convergence rates of the two methods are summarized and compared based on the results available
in the literature. Moreover, we prove that the reduced basis approximation error is bounded from
above by the stochastic collocation approximation error. The computational cost of the two methods is
compared for both offline construction and online evaluation. Furthermore, an efficient combination
of the reduced basis method and the stochastic collocation method is demonstrated to feature a
fast evaluation of statistical moments of the stochastic solution. Conclusions are drawn from the
comparison that the stochastic collocation method is preferred for small-scale and low-dimensional
problems, while the reduced basis method performs better for large-scale and high-dimensional
problems, as supported by our numerical experiments.

Chapter 2: A weighted reduced basis method for arbitrary probability measures

In this chapter, input uncertainties with arbitrary probability measures are first considered for more
efficient application of the reduced basis method, which is currently only used for stochastic problems
with uniformly distributed random inputs or parameter space with Lebesgue measure [24]. In order to
deal with more general stochastic problems with other distributed random inputs, we propose and
analyze a new version of the reduced basis method with a weighted a posteriori error bound and name
it as “weighted reduced basis method". The basic idea is to suitably assign a larger weight to samples
that are more important or have a higher probability to occur than the others according to either the
probability distribution function or some other available weight function depending on the specific
application at hand. The benefit is to lighten the reduced space construction using a smaller number of
bases without lowering the numerical accuracy. Moreover, we carry out a priori convergence analysis
of the proposed method based on the Fourier analysis for analytic functions.
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Chapter 3: Decomposition of nonaffine fields – weighted empirical interpolation

In this chapter, we treat one of the crucial ingredients for achieving the main advantage of the reduced
basis method - offline-online computational stages separation that critically relies on decomposition
of nonaffine random fields. In the context of arbitrary probability measures, we propose a weighted
empirical interpolation method by considering a weighted optimization problem. Moreover, a priori
error estimates for the convergence property of the proposed method is obtained, which improves
the result in [129]. To demonstrate numerically its effectiveness and efficiency, we apply the weighted
empirical interpolation method in approximating nonlinear parametric functions, geometric Brownian
motion in one dimension, exponential Karhunen–Loève expansion in multiple dimensions, as well
as reduced basis approximation to nonaffine stochastic elliptic problems, and compare it with the
conventional empirical interpolation method and the sparse grid stochastic collocation method.

Chapter 4: A hybrid and goal-oriented adaptive strategy for risk analysis

In this chapter, we address the question of how to accurately and efficiently apply the reduced basis
method in the context of risk analysis, which is one important type of uncertainty quantification
problems. We develop a hybrid and goal-oriented adaptive computational strategy based on the
reduced basis method with accuracy certification. In dealing with high-dimensional random input
problems, we propose and demonstrate that the reduced basis approximation space constructed by a
goal-oriented greedy algorithm governed by an accurate and sharp a posteriori error bound for the
output approximation error is quasi-optimal, resulting in low-dimensional approximation space when
the stochastic solution and output live in a low-dimensional manifold. For an accurate evaluation of
the failure probability when the limit state surface is not smooth, we design a hybrid computational
approach with goal-oriented adaptation, which is proved to result in the same failure probability as
Monte Carlo sampling for several models based on different types of partial differential equations.

Chapter 5: Breaking the curse of dimensionality – sparsity and reducibility

This chapter is devoted to the presentation of an adaptive and reduced computational framework in
addressing the common computational challenge of curse of dimensionality faced in many uncertainty
quantification problems. We take advantage of the sparsity, weak interaction and distinct importance
of different dimensions, and develop a verified dimension adaptive algorithm based on hierarchical
surpluses and generalized sparse grid construction. This algorithm can effectively detect the sparsity
of the solution in stochastic space and successfully avoid the stagnation phenomenon that could be
encountered in the adaptive approximation. In order to alleviate the heavy computational burden
at many sampling points in high dimensions, we turn to the reducibility of the full system and use
a reduced basis approximation according to the quantities of interest whenever new grid points are
included in the hierarchical construction of the generalized sparse grid. This adaptive and reduced
computational framework is then compared with other techniques, such as analysis of variance and
anisotropic sparse grid, for a wide range of high-dimensional stochastic problems.

Chapter 6–8: Analyses and fast solvers for stochastic optimal control problems

The last three chapters are devoted to the analyses and the development of fast solvers for stochastic
optimal control problems constrained by partial differential equations of different types. In the analysis
of the well-posedness of the problems, including existence and uniqueness of the stochastic optimal
solution, saddle point formulations are established and proved to be equivalent to the stochastic opti-
mal control problems, as well as the Karush-Kuhn-Tucker optimality systems obtained by variational
approach via Lagrange multipliers. The finite element method with quasi-optimal preconditioner

9



Introduction

and the stochastic collocation method are commonly applied for the approximation of the solution in
physical and stochastic spaces, respectively. In order to achieve fast solve of the stochastic optimality
system, the weighted reduced basis method is employed by tailoring the saddle point problem as a
weakly coercive elliptic problem. Stochastic regularity of the solution with respect to different random
variables are studied in detail. Provided certain regularity on the input random data, analytical exten-
sion of the stochastic solution in a complex region is obtained for all the considered problems, which
lead to explicit analysis of the global error analysis with contribution from finite element approximation
error, stochastic collocation approximation error and reduced basis approximation error.

Chapter 6 deals with a stochastic optimal Robin boundary control problem constrained by an advection-
dominated elliptic problem, where the advection field is prescribed as a random field under the
assumption of finite dimensional noise assumption. Finite element approximation is adopted with
SUPG (Streamline Upwind/Petrov–Galerkin) stabilization. In this chapter, we derive and demonstrate
the error estimates for both physical and stochastic approximations.

Chapter 7 presents the results about a weighted reduced basis method for a stochastic optimal control
problem with distributed control function constrained by an elliptic equation, where uncertainties are
provided in the diffusion coefficient that may represent heat conductivity of heterogeneous material or
permeability of porous media of groundwater flow. In particular, experiments are designed to test the
efficiency and accuracy of the weighted reduced basis approximation.

Chapter 8 extends the methods developed in Chapter 7 to solve a stochastic optimal control problem
constrained by Stokes equations, where we consider a distributed control function and that uncer-
tainties are present in the viscosity field and the Neumann boundary conditions. Particular attention
is paid to the construction of the reduced basis space due to the outer saddle point structure of the
stochastic optimality system with an inner saddle point structure of the Stokes equations. A multilevel
greedy algorithm associated with the construction of isotropic or anisotropic sparse grid is proposed,
whose computational efficiency is illustrated by several numerical experiments.

10
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The following two figures illustrate the organization of the thesis in two tracks.
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Preliminary
In this chapter we introduce some basic notations, function spaces, useful tools and the basic settings
of uncertainty quantification problems which will be employed all along the rest of the thesis.

Basic notations and function spaces

Let D be an open and bounded physical domain in Rd (d = 1,2,3) with Lipschitz continuous boundary
∂D [165, 161]. Let D̄ = D ∪∂D be the closure of D ; x = (x1, . . . , xd ) ∈ D̄ stands for the spatial coordinate.
For 1 ≤ p ≤∞, we consider the family of Banach spaces Lp (D) which consist of the set of measurable
functions (according to the Lebesgue measure) v defined in D , such that∫

D
|v(x)|p d x <∞, 1 ≤ p <∞, (1)

or, when p =∞,

ess supx∈D |v(x)| ≡ {C ≥ 0 | |v(x)| ≤C almost everywhere in D} <∞. (2)

The associated norms of these spaces are given by

||v ||Lp (D) :=
(∫

D
|v(x)|p d x

)1/p

, 1 ≤ p <∞, (3)

or, when p =∞,
||v ||L∞(D) = ess supx∈D |v(x)|. (4)

When endowed with the scalar product

(w, v)L2(D) :=
∫

D
w(x)v(x)d x ∀w, v ∈ L2(D), (5)

the Banach space L2(D) becomes a Hilbert space. Indeed, it is a special case (when s = 0) of the Hilbert
spaces in more general setting H s (D), s ≥ 0,

H s (D) :=
{

v : D →R |v is measurable and Dβv ∈ L2(D), |β| ≤ s
}

, (6)

where the partial derivative is defined as Dβv := ∂|β|v/∂xβ1
1 · · ·xβd

d for every nonnegative multi-index
β= (β1, . . . ,βd ) and |β| =β1 +·· ·+βd . The associated norms and seminorms are given by

||v ||H s (D) :=
( ∑
|β|≤s

||Dβv ||sLs (D)

)1/s

and |v |H s (D) :=
( ∑
|β|=s

||Dβv ||sLs (D)

)1/s

, (7)
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respectively. The endowed scalar product in H s (D) reads

(w, v)H s (D) =
∑
|β|≤s

(
Dβw,Dβv

)
L2(D)

∀w, v ∈ H s (D). (8)

Finally, we define the Hilbert space H 1
0 (D) := {v ∈ H 1(D) : v = 0 on ∂D}.

Let (Ω,F ,P ) denote a complete probability space, where Ω is a set of outcomes ω ∈ Ω, F is a σ-
algebra of events and P : F → [0,1] with P (Ω) = 1 is a probability measure [64]. A real-valued random
variable is defined as a measurable function Y : (Ω,F ) → (R,B), being B the Borel σ-algebra on R.
The distribution function of a random variable Y : Ω→ Γ ⊂ R, being Γ the image of Y , is defined
as FY : Γ→ [0,1] such that ∀y ∈ Γ,FY (y) = P (ω ∈ Ω : Y (ω) ≤ y). Let dFY (y) denote the distribution
measure. Provided that dFY (y) is absolutely continuous with respect to the Lebesgue measure d y ,
which we assume hereafter to be the case, there exists a probability density function ρ : Γ→ R such
that ρ(y)d y = dFY (y). For any positive integer K ∈N+, we can define the real-valued K -dimensional
random vector Y = (Y1, . . . ,YK ) : (Ω,F ) → (RK ,BK ), where each of its element Yk ,1 ≤ k ≤ K , is a random
variable. The image of the random vector Y is denoted as Γ= Γ1⊗·· ·⊗ΓK ⊂RK , with y = (y1, . . . , yK ) ∈ Γ
representing its element. By the definition of the K -dimensional probability density function ρ : Γ→R,
the probability measure is written as ρ(y)d y ≡ ρ(y1, . . . , yK )d y1 · · ·d yK . Note that the new measure
space (Γ,B(Γ),ρ(y)d y) is isometric to (Ω,F ,P ) under the random variable/vector Y .

For any 1 ≤ p <∞ and any random variable v defined in the probability space (Ω,F ,P ), we define the
statistical p-th moment of v as

E
[
v p]

:=
∫
Ω

v p (ω)dP (ω), (9)

and the associated stochastic Banach space as

Lp
P (Ω) := {

v :Ω→R|v is a random variable in (Ω,F ,P ) such that E[|v |p ] <∞}
, (10)

whose norm is equipped as

||v ||Lp
P (Ω) =

(∫
Ω
|v(ω)|p dP (ω)

)1/p

. (11)

When p = 2, L2
P (Ω) is a stochastic Hilbert space with the scalar product defined as

(w, v)L2
P (Ω) =

∫
Ω

w(ω)v(ω)dP (ω) ∀w, v ∈ L2
P (Ω). (12)

Suppose the random variable v is a function of the random variable/vector Y , then we have

E
[
v p]= ∫

Ω
v p (Y (ω))dP (ω) ≡

∫
Γ

v p (y)dFY (y) ≡
∫
Γ

v p (y)ρ(y)d y, (13)

so that v ∈ Lp
ρ (Γ) and ||v ||Lp

P (Ω) = ||v ||Lp
ρ (Γ), where

Lp
ρ (Γ) := {

w : Γ→R |w is a measurable function in (Γ,B(Γ),ρ(y)d y) such that E[|w |p ] <∞}
, (14)

and its norm is given by

||v ||Lp
ρ (Γ) =

(∫
Γ
|v(y)|pρ(y)d y

)1/p

. (15)

Correspondingly, when p = 2, L2
ρ(Γ) is a Hilbert space endowed with the scalar product

(w, v)L2
ρ (Γ) =

∫
Γ

w(y)v(y)ρ(y)d y ∀w, v ∈ L2
ρ(Γ). (16)
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For p =∞, we define L∞(Γ) similar to L∞(D) with norm ||v ||L∞(Γ) = ess supy∈Γ|v(y)|.

Let v : D ×Ω→R represent a real-valued random field, i.e., real-valued random variable defined inΩ
for almost every x ∈ D , for which we define the following tensor-product Hilbert spaces:

Lp
P (Ω)⊗H s (D) := {

v : D ×Ω→R | for almost surely w ∈Ω, v(·,ω) ∈ H s (D) and ||v ||H s (D) ∈ Lp
P (Ω)

}
.

(17)
We denote H s (D) = L2

P (Ω)⊗H s (D) for short and equip them with the following norms:

||v ||H s (D) :=
(∫
Ω
||v(·,ω)||2H s (D)dP (ω)

)1/2

. (18)

When s = 0, we employ the abbreviated notation L 2(D) alternative to H 0(D) by convention. Moreover,
the scalar product in the tensor-product Hilbert spaces is defined as

(w, v)H s (D) =
∫
Ω

∑
|β|≤s

(
Dβw,Dβv

)
L2(D)

dP (ω) ∀w, v ∈H s (D). (19)

When the random field v is a function of some random variable/vector Y at almost every x ∈ D , we may
define the spaces Lp

ρ (Γ)⊗H s (D) (which is isomorphic to the spaces Lp
ρ (Γ; H s (D))), similar to Lp

P (Ω)⊗
H s (D) and use the same shorthand notation H s (D) = L2

ρ(Γ)⊗H s (D) and L 2(D) = L2
ρ(Γ)⊗L2(D).

The definitions can be generalized for a vector-valued random field v = (v1, . . . , vd ) : D ×Ω→Rd . We

denote the Hilbert space H s,d (D) = (
L2

P (Ω)⊗H s (D)
)d

(or L 2,d (D) for s = 0), which is associated with

the norm ||v ||H s,d (D) =
∑d

i=1 ||vi ||H s (D) and the scalar product (v , w )H s,d (D) =
∑d

i=1(vi , wi )H s (D).

When considering a spacial-temporal random field, or a stochastic process, v : (0,T )×D ×Ω→R, we
may adopt the conventional manner [165, 161] for the definition of the space

Lq (0,T ;H s (D)) :=
{

v : (0,T ) →H s (D) |v is measurable and
∫ T

0
||v(t )||q

H s (D)d t <∞
}

, (20)

1 ≤ q <∞, endowed with the norm

||v ||Lq (0,T ;H s (D)) :=
(∫ T

0
||v(t )||q

H s (D)d t <∞
)1/q

. (21)

Another most often used space for spatial-temporal random field, C 0(0,T ;H s (D)), consists of H s (D)-
valued continuous functions in (0,T ), endowed with the norm

||v ||C 0(0,T ;H s (D)) = sup
t∈(0,T )

||v ||H s (D). (22)

Karhunen–Loève expansion

Random input data or uncertainties of a given physical system can be mathematically formulated as
spatial, temporal or spatial-temporal random fields in general. Efficient and accurate representation
and approximation of the random fields play a critical role in facilitating the development of advanced
stochastic computational methods that feature faster convergence, higher accuracy and cheaper com-
putational cost than the Monte Carlo method. By Parseval’s identity formula in stochastic Hilbert space
[124], any square-integrable random field can be represented by a (possibly infinite) linear combina-
tions of orthogonal functions, in particular by any orthonormal basis of the stochastic Hilbert space

15



Preliminary

where the random field is defined. One special orthonormal basis is known as Karhunen-Loève (KL)
expansion [108, 124], and can also be found in different contexts as Proper Orthogonal Decomposition
(POD) or Principle Component Analysis (PCA). A general presentation of the KL expansion is provided
as follows.

Suppose v : D ×Ω→R is a square-integrable spatial random field, i.e. v ∈L 2(D). Suppose also that the
random field v has a continuous and bounded covariance function defined as

C[v](x, x ′) := E[(v(x, ·)−E[v](x)))(v(x ′, ·)−E[v](x ′)))], ∀x, x ′ ∈ D, (23)

where the expectation function E[v] of the random field v is given by

E[v](x) :=
∫
Ω

v(x,ω)dP (ω), ∀x ∈ D. (24)

Let us define an integral operator Tv associated with the covariance function C as

Tv [w](x) :=
∫

D
C[v](x, x ′)w(x ′)d x ′. (25)

Then Tv is compact, positive and self-adjoint [124]. By spectral theorem [170], we have that Tv possesses
the eigenpairs (λk , vk )∞k=1, i.e.

Tv [vk ] =λk vk , (26)

where the eigenfunctions vk ,k = 1,2, . . . , form an orthonormal basis of L2(D), and the eigenvalues
satisfy λ1 ≥ λ2 ≥ ·· · > 0. Provided that the covariance function C is smooth, the eigenvalues decay
exponentially fast to zero [189]. Moreover, by Mercer’s theorem [170], for almost every (a.e.) ω ∈Ω, the
following Karhunen–Loève expansion holds

v(x,ω) = E[v](x)+
∞∑

k=1

√
λk vk (x)Yk (ω), ∀x ∈ D, (27)

where Yk ,k = 1,2, . . . , are uncorrelated random variables with zero mean and unit variance, defined by

Yk (ω) = 1√
λk

∫
D

(v(x,ω)−E[v](x)) vk (x)d x. (28)

We truncate the Karhunen–Loève expansion of the random field v with K terms as

vK (x,ω) := E[v](x)+
K∑

k=1

√
λk vk (x)Yk (ω), ∀x ∈ D, (29)

then vK represents the best K -term approximation of the random field v in L 2(D) and the associated
approximation/truncation error reads

||v − vK ||L 2(D) =
( ∞∑

k=K+1
λk

)1/2

. (30)

The superiority of the KL expansion compared to other spectral expansion is that it provides the optimal
orthonormal basis in the sense that the best K -term approximation is achieved when considering the
total mean squared error (30).

Throughout the thesis, we make the following basic assumption for a random field of interest.

Assumption 0.1 The random field v : D ×Ω→R depends on K -dimensional (K = 1,2, . . . ,) independent
random variables Y := (Y1, . . . ,YK ) :Ω→RK with the image Γ :=∏K

k=1Γk ⊂RK and the joint probability
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density function ρ :=∏K
k=1ρk : Γ→R. Moreover, for the sake of simplicity, we assume

v(x,Y (ω)) = v0(x)+
K∑

k=1
vk (x)Yk (ω) =⇒ v(x, y) = v0(x)+

K∑
k=1

vk (x)yk , (31)

where we can identify v0 = E[v] and vk =√
λk vk or yk =√

λk yk ,k = 1, . . . ,K for a random field with the
truncated Karhunen–Loève expansion (29).

This assumption is not necessarily satisfied in many practical applications. For instance, a slightly
more general representation of the random field is given by the affine expansion

v(x,Y (ω)) = v0(x)+
K∑

k=1
vk (x)Θk (Y (ω)) =⇒ v(x, y) = v0(x)+

K∑
k=1

vk (x)Θk (y), (32)

where Θk ,1 ≤ k ≤ K , are functions of the random vector Y . The affine expansion of the random field
is a crucial condition for efficient offline-online computational decomposition of the reduced basis
method. However, in more general situations, one may face nonlinear, nonaffine random field, such as

v(x,Y (ω)) = v0(x)+exp

(
K∑

k=1
vk (x)Yk (ω)

)
=⇒ v(x, y) = v0(x)+exp

(
K∑

k=1
vk (x)yk

)
, (33)

which is widely used for approximating positive random field. In this circumstance, suitable affine
decomposition techniques may be employed in order to achieve the computational efficiency of the
reduced basis method, e.g. empirical interpolation method as introduced in chapter 3.

We remark that for a square-integrable vector-valued random field v = (v1, . . . , vd ) : D ×Ω→ Rd , i.e.
v ∈L 2,d (D), the Karhunen-Loève expansion is defined similar to the scalar case as

v (x,ω) = E[v ](x)+
∞∑

k=1

√
λk v k (x)Yk (ω), (34)

where the random variables Yk ,k = 1,2, . . . , are given by

Yk (ω) =
d∑

j=1

∫
D

(v j (x,ω)−E[v j ](x))(v k ) j (x)d x, (35)

and (λk , v k )∞k=1 are the eigenpairs of the integral operator T v , which is defined as

(T v [w ](x))i :=
d∑

j=1

∫
D
Ci , j [v ](x, x ′)w j (x ′)d x ′, 1 ≤ i ≤ d . (36)

Here, the covariance matrix function C is given by

Ci , j [v ](x, x ′) = E[(vi (x, ·)−E[vi ](x))(v j (x ′, ·)−E[v j ](x ′))], 1 ≤ i , j ≤ d . (37)

Similar to Assumption 0.1, we also assume finite dimensional noise for a vector-valued random field.

Stochastic partial differential equations

The solution of uncertainty quantification problems depends on the underlying mathematical models,
which are usually formulated as partial differential equations with random inputs: these are known as
stochastic partial differential equations (PDEs). We remark that stochastic PDEs are conventionally
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referred to those PDEs with the random inputs given by Brownian motion or Wiener process [202]. In
this thesis, we adopt a broader meaning of stochastic PDEs and specifically deal with the PDEs with
random inputs under Assumption 0.1 of finite dimensional noise.

A general formulation of a stochastic PDE reads: find u : (0,T )×D ×Ω→R, such that
L(u(t , x,ω);ω) = f (t , x,ω) ∀(t , x,ω) ∈ (0,T )×D ×Ω,

B(u(t , x,ω);ω) = g (t , x,ω) ∀(t , x,ω) ∈ (0,T )×∂D ×Ω,

u(0, x,ω) = h(x,ω) ∀(x,ω) ∈ D ×Ω,

(38)

where u is the stochastic solution; f , g ,h are the random fields representing forcing term, boundary and
initial conditions, respectively; L and B are the stochastic differential operators defined in the entire
domain D and on the boundary ∂D, respectively. A special case of a linear and coercive stochastic
elliptic PDE has been widely considered as the benchmark model for the development of stochastic
computational methods to solve more general stochastic problems formulated as PDEs with random
inputs [206, 80, 10, 138, 76, 207, 8, 151, 50, 49]. For demonstration and illustration of the efficiency and
the accuracy of novel stochastic methods and algorithms, we also employ this model throughout the
thesis besides considering more general problems as (38).

A linear stochastic elliptic problem is formulated as: find u : D ×Ω→R such that it holds almost surely

−∇· (a(x,ω)∇u(x,ω)) = f (x,ω) ∀(x,ω) ∈ D ×Ω,

u(x,ω) = 0 ∀(x,ω) ∈ ∂D ×Ω,
(39)

where the divergence ∇· and the gradient ∇ are taken with respect to x; the homogeneous Dirichlet
boundary condition is prescribed on the whole boundary ∂D for simplicity. For the random forcing
term f and the coefficient field a, we consider the following assumptions.

Assumption 0.2 The random forcing term f is square integrable, i.e.

|| f ||L 2(D) =
(∫
Ω

∫
D
| f (x,ω)|2d xdP (ω)

)1/2

<∞. (40)

The random coefficient a is assumed to be uniformly bounded from below and from above, i.e., there
exist two constants ami n and amax with 0 < ami n < amax <∞ such that

P (ω ∈Ω : ami n < a(x,ω) < amax ∀x ∈ D̄) = 1. (41)

Assumption 0.3 Inherited from Assumption 0.1, f depends on finite dimensional noise, i.e.,

f (x,ω) = f (x,Y (ω)) = f0(x)+
K∑

k=1
fk (x)Yk (ω) =⇒ f (x, y) = f0(x)+

K∑
k=1

fk (x)yk , (42)

where Y1, . . . ,YK are independent random variables; fk ∈ L2(D),1 ≤ k ≤ K . Similar finite dimensional
noise assumption is made for the random coefficient field a, i.e.,

a(x,ω) = a(x,Y (ω)) = a0(x)+
K∑

k=1
ak (x)Yk (ω) =⇒ a(x, y) = a0(x)+

K∑
k=1

ak (x)yk , (43)

where the leading term is assumed to be dominating and uniformly bounded away from 0, i.e.,

∃δ> 0, amin the same as in (41) s.t. a0(x) ≥ δ∀x ∈ D, and ||ak ||L∞(D) < 2amin,1 ≤ k ≤ K . (44)
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Remark 0.0.1 When the random variables Y a
k ,1 ≤ k ≤ Ka , for a and Y f

k ,1 ≤ k ≤ K f , for f are not the

same, we collect them as Y = (Y a
1 , . . . ,Y a

Ka
,Y f

1 , . . . ,Y f
K f

) and reorder them as (Y1, . . . ,YK ) with K = Ka +K f .

Under the above assumptions, the stochastic elliptic problem is transformed to a parametric elliptic
problem, which reads: find u : D ×Γ→R such that the following equations hold:

−∇· (a(x, y)∇u(x, y)) = f (x, y) ∀(x, y) ∈ D ×Γ,

u(x, y) = 0 ∀(x, y) ∈ ∂D ×Γ.
(45)

For the solution of the elliptic problem (45), we provide two weak formulations facilitating different
stochastic computational methods. The first is called D-weak/Γ-strong formulation, or semi-weak
formulation, which reads: ∀y ∈ Γ, find u(y) ∈ H 1

0 (D) such that

A(u, v ; y) = F (v ; y) ∀v ∈ H 1
0 (D), (46)

where A(·, ·; y) and F (·; y) are parametrized bilinear and linear forms written as

A(u, v ; y) = A0(u, v)+
K∑

k=1
Ak (u, v)yk and F (v ; y) = ( f0, v)+

K∑
k=1

( fk , v)yk , (47)

with the deterministic bilinear forms Ak (u, v) given by Ak (u, v) := (ak∇u,∇v),k = 0,1, . . . ,K .

The D-weak/Γ-strong formulation (46) is suitable for nonintrusive methods, i.e. the methods that
can directly use the deterministic solver of the underlying PDE at any given sample y ∈ Γ, such as the
stochastic collocation method. As for the application of the stochastic spectral Galerkin projection
method, where the solution is projected onto the basis in both physical space and stochastic space, we
use the D-weak/Γ-weak formulation: find u ∈H 1

0 (D) such that

A (u, v) =F (v) ∀v ∈H 1
0 (D), (48)

where the bilinear and linear forms are given by

A (u, v) =
∫
Γ

∫
D

a0(x)∇u ·∇vρ(y)d xd y +
K∑

k=1

∫
Γ

∫
D

ak (x)yk∇u ·∇vρ(y)d xd y, (49)

and

F (v) =
∫
Γ

∫
D

f0(x)vρ(y)d xd y +
K∑

k=1

∫
Γ

∫
D

fk (x)yk vρ(y)d xd y. (50)

To study the well-posedness of the semi-weak solution of problem (46) and the weak solution of
problem (49), we need the following theorem [68].

Theorem 0.0.1 (Lax-Milgram Theorem). Assume that X is a real Hilbert space, with norm || · ||X and
inner product (·, ·). Let < ·, · > denote the pairing of X with its dual space. Suppose the bilinear mapping
B : X ×X →R satisfies the conditions

|B(u, v)| ≤ γ||u||X ||v ||X ∀u, v ∈ X , (51)

and
α||u||2X ≤ B(u,u) ∀u ∈ X , (52)

for some positive constants α,γ. Suppose also that f : X →R is a bounded linear functional on X . Then
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there exists a unique element u ∈ X such that

B(u, v) =< f , v > ∀v ∈ X . (53)

Because of Assumption 0.2, the bilinear and linear forms in (47) satisfy the conditions (51) and (52) in
H 1

0 (D), and thus the existence of a unique parametric solution u(y) ∈ H 1
0 (D) ∀y ∈ Γ to problem (46) is

guaranteed by the Lax–Milgram theorem. Moreover, we have the a priori estimate for the solution

||u(y)||H 1
0 (D) ≤

CP

ami n(y)
|| f (y)||L2(D) ∀y ∈ Γ, (54)

where ami n(y) = minx∈D a(x, y) and CP is the constant of the Poincaré inequality ||v ||L2(D) ≤CP ||∇v ||L2(D),
∀v ∈ H 1

0 (D). Existence and uniqueness of the solution of problem (49) is also guaranteed by this theo-
rem in the stochastic Hilbert space H 1

0 (D), and the following a priori estimate holds

||u||H 1
0 (D) ≤

CP

ami n
|| f ||L 2(D), (55)

where ami n is defined in Assumption 0.1; CP satisfies ||v ||L 2(D) ≤CP ||∇v ||L 2(D), ∀v ∈H 1
0 (D).

More often, we are not interested in the solution u itself but on a functional s(u; y) of the solution as
model output, e.g., the compliant outout s(u; y) = F (u; y), as well as its statistics, e.g., the expectation

E[s] =
∫
Γ

s(u; y)ρ(y)d y. (56)

This chapter provides a common background for the thesis. More general stochastic PDEs such as
parabolic equations, Stokes equations, and those involving noncompliant outputs, nonaffine random
inputs as well as specific assumptions, definitions and notations will be introduced when in need.
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Part IForward Uncertainty Quantification
Problems: Challenges and Solutions
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1 Comparison of stochastic collocation
and reduced basis methods

Among many stochastic computational methods to solve uncertainty quantification problems, the
stochastic collocation (SC) method based on sparse grid techniques [33, 207, 8, 149] is one of the most
popular and widely used methods. It features fast convergence properties comparable to the stochastic
Galerkin method and simple implementation typical of the Monte Carlo method. However, this method
is computationally prohibitive for high-dimensional problems because of the heavy computational
cost involved by the solution of the underlying model at one random realization. This constraint has
prompted the development of various model order reduction techniques, in particular the reduced
basis (RB) method [130, 178, 158].

In this first chapter, our target is the comparison of the stochastic collocation method and the reduced
basis method focusing on a rather simple benchmark, a stochastic elliptic problem. Two important
comparison criteria are considered: 1), convergence results of the approximation error; 2), computa-
tional costs for both offline construction and online evaluation. Numerical experiments are performed
for test problems with stochastic dimensions (the number of independent random variables) from
low (in magnitude O(1)) to moderate (O(10)), and to high (O(100)). The main result stemming from
our comparison is that the reduced basis method converges better in theory and faster in practice
than the stochastic collocation method for smooth problems, and is more suitable for large scale and
high-dimensional stochastic problems when considering computational costs.

This chapter is organized as follows. In section 1.1, we set up the benchmark model and provide a
regularity result for the comparison of the two methods. The general formulation for the stochastic
collocation method and the reduced basis method are introduced in section 1.3 and 1.2, respectively.
A theoretical comparison of convergence results in both univariate case and multivariate case, and a
direct comparison of the approximation error are carried out in section 1.4. A detailed comparison
of the computational costs for the two methods is provided by evaluating the cost of each step of the
algorithms in section 1.5. In section 1.6, we perform a series of numerical experiments to assess the
convergence rates and computational costs of the two methods. Finally, remarks about the possible
limits of this comparison and some extensions to more general stochastic problems are given in the
last section 1.7.

Reference for this chapter:

P. Chen, A. Quarteroni, and G. Rozza. Comparison between reduced basis and stochastic collocation methods for elliptic problems.
Journal of Scientific Computing, 59:187–216, 2014.
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Chapter 1. Comparison of stochastic collocation and reduced basis methods

1.1 Benchmark model

The linear and coercive stochastic elliptic PDE introduced in the preliminary chapter is adopted as
our benchmark model. For simplicity, only the diffusion coefficient is considered as the source of
uncertainties. Since any approach for the approximation of the solution in the stochastic space depends
on the regularity of the solution with respect to the random vector y ∈ Γ, we summarize briefly the
regularity results in Lemma 1.1.1 following [54] for infinite dimensional problems (K =∞).

Lemma 1.1.1 The following estimate for the solution of the problem (46) holds

||∂νy u||L∞(Γ;X ) ≤ B |ν|!bν, (1.1)

where ν= (ν1, . . . ,νK ) ∈NK , |ν| = ν1 +·· ·+νK , H 1
0 (D) ⊂ X ⊂ H 1(D), B = ||u||L∞(Γ;X ), and

bk = ||ak ||L∞(D)

ami n
and bν =

K∏
k=1

bνk
k . (1.2)

Furthermore, Lemma 1.1.1 implies thanks to the Taylor expansion the following regularity result which
represents a generalization of the result in [13] from RK to CK .

Corollary 1.1.2 The solution u : Γ→ X is analytic and can be analytically extended to the set

Σ=
{

z ∈CK :
K∑

k=1
|zk − yk |bk < 1∀ y ∈ Γ

}
. (1.3)

We may also write for τk ≤ 1/(K bk ),1 ≤ k ≤ K ,

Στ =
{

z ∈CK : dist(zk ,Γk ) ≤ τk ∀1 ≤ k ≤ K
}

. (1.4)

Remark 1.1.1 The comparison of the two methods depends essentially on the following factors: the
regularity of the stochastic solution in the stochastic space, the dimension of the stochastic space, and
the complexity involved by the solution of a deterministic system at one stochastic realization. The
conclusions drawn from the comparison results for the linear elliptic problem at hand are supposed to
hold similarly for more general problems as long as the above factors are concerned.

1.2 Stochastic collocation method

Given any realization y ∈ Γ, the stochastic collocation method [8] essentially adopts the Lagrange inter-
polation to approximate the solution u(y) based on a set of deterministic solutions at the collocation
points chosen according to the probability distribution function of the random variables. Therefore,
we have to solve one deterministic problem at each collocation point. In order to achieve accurate and
inexpensive collocation approximation of the stochastic solution as well as its statistics, it is important
to select efficient collocation points. Let us introduce the univariate stochastic collocation at first.
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1.2. Stochastic collocation method

1.2.1 Univariate interpolation

Given the collocation points in Γ, e.g., y0 < y1 < y2 < ·· · < y N , as well as the corresponding solutions
u(yn),0 ≤ n ≤ N , we define the univariate N -th order Lagrange interpolation operator as

UN u(y) =
N∑

n=0
u(yn)l n(y), (1.5)

where l n(y),0 ≤ n ≤ N , are the Lagrange characteristic polynomials of order N given in the form

l n(y) = ∏
m 6=n

y − ym

yn − ym , 0 ≤ n ≤ N . (1.6)

One evaluation of UN u(y) at a new realization y ∈ Γ requires O(N 2) operations by formula (1.5). In
order to obtain efficient and stable polynomial interpolation, we use barycentric formula [164] and
rewrite the characteristic polynomials as

l n(y) = 1∏
m 6=n(yn − ym)︸ ︷︷ ︸

w̄n

· 1

y − yn

N∏
m=0

(y − ym)︸ ︷︷ ︸
l (y)

= l (y)
w̄n

y − yn , 0 ≤ n ≤ N , (1.7)

where w̄n ,0 ≤ n ≤ N , are barycentric weights, so that the interpolation operator (1.5) becomes

UN u(y) =
N∑

n=0

w̄n

y − yn u(yn)
/ N∑

n=0

w̄n

y − yn , where l (y) =
N∑

n=0

w̄n

y − yn , (1.8)

which instead needs only O(N ) operations for one evaluation provided that the barycentric weights are
precomputed and stored. The expectation of the solution can therefore be approximated by

E[u] ≈ E[UN u] =
N∑

n=0

(∫
Γ

(
w̄n

y − yn

/ N∑
n=0

w̄n

y − yn

)
ρ(y)d y

)
u(yn) =

N∑
n=0

wnu(yn), (1.9)

where wn ,0 ≤ n ≤ N , are quadrature weights. In order to improve the accuracy of the numerical integral
in (1.9) and the numerical interpolation in (1.8), it is more suitable to select the collocation points as
the quadrature abscissas. Available quadrature rules include Clenshaw–Curtis quadrature, Gaussian
quadrature based on various orthogonal polynomials; see [164] for details.

1.2.2 Multivariate tensor product interpolation

Let us rewrite the univariate interpolation formula (1.5) with the index k for the k-th dimension as

UNk u(yk ) = ∑
y

nk
k ∈Θk

u(ynk
k )l nk

k (yk ), where Θk = {ynk
k ∈ Γk ,nk = 0, . . . , Nk } for some Nk ≥ 1; (1.10)

then the multivariate interpolation is given as the tensor product of the univariate interpolation(
UN1 ⊗·· ·⊗UNK

)
u(y) = ∑

y
n1
1 ∈Θ1

· · · ∑
y

nK
K ∈ΘK

u(yn1
1 , . . . , ynK

K )
(
l n1

1 (y1)⊗·· ·⊗ l nK
K (yK )

)
. (1.11)
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The corresponding barycentric formula for the multivariate interpolation is given as

(
UN1 ⊗·· ·⊗UNK

)
u(y) = ∑

y
n1
1 ∈Θ1

b1
n1

(y1)∑
y

n1
1 ∈Θ1

b1
n1

(y1)
· · · ∑

y
nK
K ∈ΘK

bK
nK

(yK )∑
y

nK
K ∈ΘK

bK
nK

(yK )
u(yn1

1 , . . . , ynK
K ), (1.12)

where bk
nk

(yk ) = w̄k
nk

/(yk − ynk
k ) with barycentric weights w̄k

nk
,1 ≤ k ≤ K , precomputed and stored.

The multivariate barycentric formula reduces the tensor product interpolation from O(N 2
1 × ·· · ×

N 2
K ) operations by (1.10) to O(N1 × ·· ·×NK ) operations by (1.12). Corresponding to the univariate

interpolation, the expectation of the solution by the multivariate interpolation is given as

E[u] ≈ E[
(
UN1 ⊗·· ·⊗UNK

)
u] = ∑

y
n1
1 ∈Θ1

· · · ∑
y

nK
K ∈ΘK

u(yn1
1 , . . . , ynK

K )
(
wn1

1 ×·· ·×wnK
K

)
, (1.13)

where the quadrature weights wnk
k ,1 ≤ k ≤ K , can be precomputed and stored by

wnk
k =

∫
Γk

bk
nk

(yk )
/ ∑

y
nk
k ∈Θk

bk
nk

(yk )

ρ(yk )d yk . (1.14)

We remark that the number of the collocation points or quadrature abscissas grows exponentially fast as
(N1+1)×·· ·×(NK +1), or (N1+1)K if N1 = ·· · = NK , which prohibits the application of the multivariate
tensor product interpolation for high-dimensional stochastic problems, i.e., when K becomes large.

1.2.3 Sparse grid interpolation

In order to alleviate the curse of dimensionality in the interpolation on the full tensor product grid,
various sparse grid techniques [33] have been developed, among which the Smolyak type [149] is
one of the most popular constructions. For isotropic interpolation with the same degree q ≥ K for
one-dimensional polynomial space in each direction, we have the Smolyak interpolation operator

Sq u(y) = ∑
q−K+1≤|i |≤q

(−1)q−|i |
(

K −1
q −|i |

)(
U i1 ⊗·· ·⊗U iK

)
u(y), (1.15)

where |i | = i1 +·· ·+ iK with the multivariate index i = (i1, . . . , iK ) defined via the index set

X (q,K ) :=
{

i ∈ N K
+ : ∀ ik ≥ 1,

K∑
k=1

ik ≤ q

}
, (1.16)

and the set of collocation nodes for the sparse grid (see the middle of Figure 1.1) is thus collected as

H(q,K ) = ⋃
q−K+1≤|i |≤q

(
Θi1 ×·· ·×ΘiK

)
, (1.17)

where the number of collocation nodes #Θik = 1 if ik = 1, and #Θik = 2ik−1 +1 when ik > 1 in a nested
structure. Note that we denote U ik ≡ UNk defined in (1.10) for Nk = 2ik−1. Define the differential
operator ∆ik =U ik −U ik−1,k = 1, . . . ,K , with U 0 = 0, we have an equivalent expression of the Smolyak
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interpolation [8]

Sq u(y) = ∑
i∈X (q,K )

(
∆i1 ⊗·· ·⊗∆iK

)
u(y)

=Sq−1u(y)+ ∑
|i |=q

(
∆i1 ⊗·· ·⊗∆iK

)
u(y).

(1.18)

The above formula allows us to discretize the stochastic space in hierarchical structure based on nested
collocation nodes, such as the extrema of Chebyshev polynomials or Gauss-Patterson nodes, leading to
Clenshaw–Curtis cubature rule or Gauss-Patterson cubature rule, respectively [149, 110].

Figure 1.1: Two dimensional collocation nodes by Clenshaw–Curtis cubature rule in tensor product
grid q = 8 (Left), sparse grid q = 8 (Middle), anisotropic sparse grid q = 8 and α= (1,1.5)(Right)

The Smolyak sparse grid [207] is originally developed as isotropic in every one-dimensional polynomial
space. The convergence rate of the solution in each polynomial space may vary due to different
importance of each random variable, which helps to reduce further the computational effort by
interpolation based on anisotropic sparse grid [148] given by

S α
q u(y) = ∑

i∈Xα(q,K )

(
∆i1 ⊗·· ·⊗∆iK

)
u(y), (1.19)

where the weighted index Xα(q,K ) is defined as

Xα(q,K ) :=
{

i ∈ N K
+ , i ≥ 1 :

K∑
k=1

ikαk ≤ min(α)q

}
. (1.20)

Here, α = (α1, . . . ,αK ) represents the weights in different dimensions, provided by either a priori or
a posteriori error estimate; see [148]. Figure 1.1 displays the full tensor product grid, the sparse grid
and the anisotropic sparse grid based on Clenshaw–Curtis cubature rule. We can observe that the
isotropic and anisotropic sparse grids are much coarser than the full tensor product grid, leading to
considerable reduction of the stochastic computation without much loss of accuracy, as we shall see in
the convergence analysis and the numerical experiments in the following sections.

For certain specific problems, some other advanced techniques turn out to be more efficient than both
the isotropic and the anisotropic Smolyak sparse grid techniques. For example, the quasi-optimal
sparse grid [13] is assembled in a greedy manner to deal with the “accuracy-work” trade-off problem;
the adaptive hierarchical sparse grid [127, 74] is referred to constructing the sparse grid adaptively in
hierarchical levels with local refinement or domain decomposition in stochastic space, which is more
suitable for low regularity problems; the combination of analysis of variance (ANOVA) and sparse grid
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techniques [88, 100] to deal with high-dimensional problems, which will be studied in chapter 5.

1.3 Reduced basis method

Different from the interpolation approach used by the stochastic collocation method, the reduced
basis method employs Galerkin projection in the reduced basis space spanned by a set of deterministic
solutions [158, 178, 161]. Given any space X of dimension N for the approximation of the solution of
problem (46) (for instance, finite element space), we hierarchically build the N dimensional reduced
basis space XN for N = 1, . . . , Nmax , until satisfying tolerance requirement at Nmax ¿N , as

XN = span{u(yn),n = 1, . . . , N } (1.21)

based on suitably chosen samples SN = {y1, . . . , y N } from a training set Ξtr ai n ⊂ Γ (N is small under
smoothness hypothesis [158]). The solutions {u(yn),n = 1, . . . , N } are called “snapshots" corresponding
to the samples {yn ,n = 1, . . . , N }. Note that X1 ⊂ X2 ⊂ ·· · ⊂ XNmax . Given any realization y ∈ Γ, we seek
the solution uN (y) in the reduced basis space XN by solving the following Galerkin projection problem

A(uN , v ; y) = F (v) ∀v ∈ XN . (1.22)

Note we assume that f is deterministic for the comparison, so that F (v) does not depend on y . With
uN (y) we can evaluate the output sN (y) = s(uN (y)) as well as compute its statistics, e.g., expectation
E[sN ] , by using, e.g., Monte Carlo methods or quadrature formulas as used in stochastic collocation
method. Four specific ingredients of the reduced basis method play a key role in selecting the most
representative samples, hierarchically building the reduced basis space, and efficiently evaluating
the outputs. They are the training set, the greedy algorithm, the a posteriori error estimate and the
offline-online computational decomposition, which are addressed respectively follows.

1.3.1 Training set

Two criteria should be fulfilled in the choice of the training set: (i) we should minimize ineffectual
samples in order to avoid unnecessary computation with limited gain, and (ii) sufficient to capture
the most representative snapshots in order to build an accurate reduced basis space. In practice, the
training set is usually chosen as randomly distributed or log-equidistantly distributed in the parameter
space [178, 158]. As for stochastic problems with random variables obeying probability distributions
other than uniform type, we propose to choose the samples in the training set according to the
probability distributions. Furthermore, for the sake of comparison with the stochastic collocation
method, we take the training set such that it contains all the collocation points used by the stochastic
collocation method. Adaptive approaches for building the training set have also been explored starting
from a small number of samples to a more significant set in the space Γ; see for example [212].

1.3.2 Greedy algorithm

Given a training set Ξtr ai n ⊂ Γ and a first sample set S1 = {y1} as well as its associated reduced basis
space X1 = span{u(y1)}, we seek the sub-optimal solution to the L∞(Ξtr ai n ; X ) optimization problem
in a greedy way as [178]: for N = 2, . . . , Nmax , find y N = argmaxy∈Ξtr ai n 4N−1(y), where 4N−1 is a
sharp and inexpensive a posteriori error bound constructed in the current N −1 dimensional reduced
basis space (it will be specified later). Subsequently, the sample set and the reduced basis space
are enriched by SN = SN−1 ∪ {y N } and XN = XN−1 ⊕ span{u(y N )}, respectively, to have an efficient
hierarchical spaces and sample sets. For the sake of efficient computation of Galerkin projection and
offline-online decomposition, we can normalize the snapshots by Gram-Schmidt process to get the
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1.3. Reduced basis method

orthonormal basis of XN = span{ζ1, . . . ,ζN } such that (ζm ,ζn)X = δmn , 1 ≤ m,n ≤ N . We remark that
another algorithm that might be used for the sampling procedure is proper orthogonal decomposition
(POD [178]), which is rather expensive in dealing with L2(Ξtr ai n ; X ) optimization and thus more
suitable for low-dimensional problems.

1.3.3 A posteriori error estimate

The efficiency and reliability of the reduced basis approximation by the greedy algorithm relies critically
on the availability of a cheap and sharp a posteriori error bound 4N , which can be constructed as
follows: for every y ∈ Γ, let R(v ; y) ∈ X ′ be the residual in the dual space of X , defined as

R(v ; y) := F (v)− A(uN (y), v ; y) ∀v ∈ X . (1.23)

By the Riesz representation theorem [68], we have a unique function ê(y) ∈ X such that (ê(y), v)X =
R(v ; y)∀v ∈ X and ||ê(y)||X = ||R(·; y)||X ′ , where the X norm is defined as ||v ||X = A(v, v ; ȳ) at some
reference value ȳ ∈ Γ (we choose ȳ as the center of Γ by convention). Define the error e(y) := u(y)−
uN (y), by (46), (1.22), and (1.23) we have the following equation:

A(e(y), v ; y) = R(v ; y) ∀v ∈ X . (1.24)

By choosing v = e(y) in (1.24), recalling the coercivity constant α(y) with the definition of its lower
bound αLB (y) ≤α(y) of the bilinear form A(·, ·; y), and using Cauchy–Schwarz inequality, we have

αLB (y)||e(y)||2X ≤ A(e(y),e(y); y) = R(e(y); y) ≤ ||R(·, y)||X ′ ||e(y)||X = ||ê(y)||X ||e(y)||X , (1.25)

so that we can define the a posteriori error bound 4N for the solution u as

4N := ||ê(y)||X /αLB (y), (1.26)

which yields ||u(y)−uN (y)||X ≤4N by (1.25). As for the output in the compliant case, i.e., s = f , we
have the following error bound

|s(y)− sN (y)| = |s(u(y))− s(uN (y))| = A(e(y),e(y); y) ≤ ||ê(y)||2X /αLB (y) =: 4s
N (y). (1.27)

As for more general output where s 6= f , an adjoint problem of (46) can be employed to achieve a faster
convergence of the approximation error |s−sN | [163]. The efficient computation of a sharp and reliable
a posteriori error bound thus relies on the computation of a lower bound of the coercivity constant
αLB (y) as well as the value ||ê(y)||X for any given y ∈ Γ. For the former, we can apply the successive
constraint linear optimization method [102] to compute a lower bound αLB (y) of α(y) or simply use a
uniform lower bound αLB ≤α(y)∀y ∈ Γ provided that they are close to each other. For the latter, we
turn to an efficient offline-online computational decomposition procedure.

1.3.4 Offline-online computational decomposition

The evaluation of the expectation E[sN ] and the a posteriori error bound 4N requires to compute the
output sN and the solution uN many times. Similar situations can be encountered for other applications
in the context of many query (optimal design, control) and real time computational problems. One
of the key ingredients that make reduced basis method stand out in this ground is the offline-online
computational decomposition, which becomes possible due to the affine assumption such as that
made in (43). To start, we express the reduced basis solution in the form [178]

uN (y) =
N∑

m=1
uN m(y)ζm . (1.28)
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Upon replacing it in (1.22) and choosing v = ζn ,1 ≤ n ≤ N , we obtain the problem of finding uN m(y),1 ≤
m ≤ N , such that

N∑
m=1

(
A0(ζm ,ζn)+

K∑
k=1

yk Ak (ζm ,ζn)

)
uN m(y) = F (ζn), 1 ≤ n ≤ N . (1.29)

From (1.29) we can see that the values Ak (ζm ,ζn),k = 0,1, . . . ,K ,1 ≤ m,n ≤ Nmax , and F (ζn),1 ≤ n ≤
Nmax , are independent of y , we may thus precompute and store them in the offline procedure. In the
online procedure, we only need to assemble the stiffness matrix in (1.29) and solve the resulting N ×N
stiffness system with much less computational effort compared to solving the original N ×N stiffness
system. As for the computation of the error bound 4N (y), we need to compute ||ê(y)||X at the selected
sample y in the course of sampling procedure. We expand the residual (1.23) as

R(v ; y) = F (v)− A(uN , v ; y) = F (v)−
N∑

n=1
uN n

(
K∑

k=0
yk Ak (ζn , v)

)
, where y0 = 1. (1.30)

Set (C , v)X = F (v) and (L k
n , v)X =−Ak (ζn , v), ∀v ∈ X ,1 ≤ n ≤ N ,0 ≤ k ≤ K , where C and L k

n are the
representatives of F and An

k (defined as An
k (v) =−Ak (ζn , v),∀v ∈ X ) in X whose existence is guaranteed

by the Riesz representation theorem. By recalling (ê(y), v)X = R(v ; y), we obtain

||ê(y)||2X = (C ,C )X +
K∑

k=0

N∑
n=1

yk uN n(y)

(
2(C ,L k

n )X +
K∑

k ′=0

N∑
n′=1

yk ′uN n′ (y)(L k
n ,L k ′

n′ )X

)
. (1.31)

Therefore, we can compute and store (C ,C )X , (C ,L k
n )X , (L k

n ,L k ′
n′ )X ,1 ≤ n,n′ ≤ Nmax ,0 ≤ k,k ′ ≤ K , in

the offline procedure, and evaluate ||ê(y)||X in the online procedure by assembling (1.31).

Remark 1.3.1 Different from the stochastic collocation method that was presented regardless of the
underlying system, the reduced basis method is introduced for a linear, coercive and affine elliptic
problem. In fact, the same approach presented above can be extended to more general problems [178, 163],
e.g., time dependent, nonlinear, noncoercive and nonaffine problems , as long as an a posteriori error
bound is cheap to obtain and the offline construction and the online evaluation can be efficiently
decomposed using proper techniques [11, 129, 87, 86]; see, e.g., [162, 51, 163, 117, 175] for many different
kind of recent applications.

1.4 Comparison of convergence analysis

In this section, we provide a comparison of the theoretical convergence results between the stochastic
collocation method and the reduced basis method. In the first part, a preliminary comparison is carried
out based on the available convergence results in the literature at the best of our knowledge on the
state of the art. Then we perform a direct comparison between the approximation errors of the two
methods.

1.4.1 Preliminary comparison of convergence results

Let us first consider a priori error estimate for one-dimensional Lagrange interpolation for y ∈ Γ= [−1,1]
without loss of generality. In fact, we can map any bounded interval Γ into [−1,1] by shifting and
rescaling. The convergence result for the univariate approximation error is given as follows.

Proposition 1.4.1 Thanks to the analytic regularity in Corollary 1.1.2, we have the exponential conver-
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gence rate for the one-dimensional stochastic collocation approximation error in L∞(Γ; X ) norm

||u −UN u||L∞(Γ;X ) ≤CN r−N =CN e−(lnr )N , (1.32)

where r =
p

1+τ2 +τ≥ (
p

5+1)/2 ≈ 1.6 owing to (1.4) and assumption (44); see [8]. The constant CN is
bounded in a logarithmic rescaling CN ≤C ln(N +1), where C is a constant independent of N .

Remark 1.4.1 The same result has been obtained in L2(Γ; X ) norm in [8] except that the constant CN in
(1.32) is independent of N . For the sake of comparison with the convergence rate of the reduced basis
method, we consider (1.32) in the norm of L∞(Γ; X ) with the constant CN depending on N .

Proof Firstly, we demonstrate that the operator UN : C 0(Γ; X ) → L∞(Γ; X ) is continuous. In fact, by the
definition of UN in (1.5), we have the following estimate

||UN u||L∞(Γ;X ) = sup
y∈Γ

∣∣∣∣∣
∣∣∣∣∣ N∑
n=0

u(yn)l n(y)

∣∣∣∣∣
∣∣∣∣∣

X

≤ sup
y∈Γ

(
N∑

n=0
|l n(y)|

)
max

n=0,1,...,N
||u(yn)||X ≤Λ(N )||u||C 0(Γ;X ),

(1.33)

where Λ(N ) is the optimal Lebesgue constant bounded by (see [162])

Λ(N ) := sup
y∈Γ

(
N∑

n=0
|l n(y)|

)
≤ 3

4
+ 2

π
ln(N +1). (1.34)

Therefore, by the fact UN w = w∀w ∈ PN (Γ)⊗ X (where PN (Γ) is the space of polynomials of order
less than or equal to N ), we have that for every function u ∈C 0(Γ; X ),

||u −UN u||L∞(Γ;X ) ≤ ||u −w ||L∞(Γ;X ) +||UN (w −u)||L∞(Γ;X ) ≤ (1+Λ(N ))||u −w ||C 0(Γ;X ). (1.35)

Moreover, the following approximation error estimate holds for every function u ∈C 0(Γ; X ) (see [8])

inf
w∈PN (Γ)⊗X

||u −w ||C 0(Γ;X ) ≤
2

r −1
r−N max

z∈Σ
||u(z)||X . (1.36)

A combination of (1.33), (1.34), (1.35), and (1.36) leads to the result stated in (1.32) with the constant
CN such that CN ≤C ln(N +1), where C depends only on maxz∈Σ ||u(z)||X and r . ä

For the same one-dimensional parametric problem, a priori error estimates have been established for
the reduced basis approximation [130, 178]. Note that in the context of the reduced basis approximation,
the result is based on the assumption that the parameter y is positive with 0 < ymin ≤ y ≤ ymax <∞.
For the sake of consistent comparison with the stochastic collocation method, we still take the same
parameter range Γ = [−1,1] and introduce a new parameter by µ = y + (1+ δ) with δ > 0 so that
µ ∈ [δ,2+δ] with µmi n = δ> 0 and µmax = 2+δ. Correspondingly, the coefficient becomes a(x, y) =
a0(x)+a1(x)y = (a0(x)− (1+δ)a1(x))+a1(x)µ and will be denoted as â0(x)+a1(x)µ for convenience.
We state the convergence result for one-dimensional reduced basis approximation given in [158, 178]
in the following proposition.

Proposition 1.4.2 Suppose that lnµr = ln(µmax /µmi n) > 1/2e and N ≥ Ncr i t ≡ 1+ [2e lnµr ]+ ([s]+ is
the maximum integer smaller than s); then

||u −uN ||L∞(Γ;X ) ≤Ce−(N−1)/(Ncr i t−1), (1.37)
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where uN is the reduced basis approximation of the solution in the reduced basis space spanned by N
snapshots, and C is independent of N . Note that the samples µ1, . . . ,µN are taken as equidistant within
[ln(µmi n), ln(µmax )] in the way that ln(µn)− ln(µn−1) = ln(µr )/(N −1),2 ≤ n ≤ N ; see [158].

To our knowledge, the a priori error estimates in Proposition 1.4.1 for the stochastic collocation
approximation and in Proposition 1.4.2 for the reduced basis approximation are the state of the art
results currently available in the literature. Both of them show an exponential convergence rate for the
approximation of the analytic solution with respect to the parameter y ∈ Γ. In order to guarantee the
positiveness of â0(x) in Proposition 1.4.2, we require δ≤ 1/2 by assumption (44). Therefore, the minimal
value of Ncr i t is 1+[2e ln(ur )]+ = 9, so that the convergence rate in (1.37) becomes e−(N−1)/8 ≈ 1.13−(N−1)

for N dimensional reduced basis approximation, which is larger than r−(N−1) (r > 1.6) in the stochastic
collocation approximation (1.32) using N collocation nodes corresponding to UN−1. From this closer
look, it would seem that the error bound of stochastic collocation approximation converges faster than
that of the reduced basis approximation in the univariate case under the above specific assumptions.

In the multivariate case, the property of convergence rate inherits that of the univariate case thanks
to the full tensor product structure of the multivariate Lagrange interpolation (1.10) in the stochastic
collocation approximation. A priori error estimate is obtained in the following proposition.

Proposition 1.4.3 Under assumption (44) and the analytic regularity of the solution in Corollary 1.1.2,
being Γ= [−1,1]K for simplicity, the following convergence result holds:

||u −UN u||L∞(Γ;X ) ≤
K∑

k=1
CNk e− ln(rk )Nk , (1.38)

where rk =
√

1+τ2
k + τk > 1,1 ≤ k ≤ K , from (1.4) and N = (N1, . . . , NK ) is the interpolation order

corresponding to the interpolation operator (UN1 ⊗·· ·⊗UNK ).

Proof We split the interpolation error in (1.38) into K pairs by adding and subtracting the same term

||u −UN u||L∞(Γ;X ) = ||u − (UN1 ⊗·· ·⊗UNK )u||L∞(Γ;X )

≤ ||u − (UN1 ⊗I ⊗·· ·⊗I )u||L∞(Γ;X )

+||(UN1 ⊗I ⊗·· ·⊗I )u − (UN1 ⊗UN2 ⊗I ⊗·· ·⊗I )u||L∞(Γ;X )

+·· ·
+ ||(UN1 ⊗·· ·⊗UNK−1 ⊗I )u − (UN1 ⊗·· ·⊗UNK ||L∞(Γ;X )

≤
K∑

k=1
CNk e− ln(rk )Nk ,

(1.39)

where I is the identity operator and CNk ≤ C ln(Nk + 1). The first inequality is due to a recursive
application of triangular inequality, while the second is a direct consequence of Proposition 1.4.1 for
univariate interpolation. We remark that more general results have been obtained for unbounded Γ
and arbitrarily distributed random variables other than the uniform type in [8], with norm L2

ρ(Γ; X )
instead of L∞(Γ; X ). ä

Remark 1.4.2 If CNk = CN1 ,rk = r > 1,1 ≤ k ≤ K , and Nk = N1,2 ≤ k ≤ K . Then the total number of
collocation nodes is N = K N1 and the error estimate in Proposition 1.4.3 becomes

||u −UN u||L∞(Γ;X ) ≤CN1 K N− ln(r )
ln(K ) , (1.40)
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which decays very slowly when K is large and the region of analyticity r is small. For instance, when

K = 10 and r = 1.6 as in Proposition 1.4.1, we need at least N = 1010 in order to have K N− ln(r )
ln(K ) ≤ 0.1.

The convergence analysis of the isotropic and anisotropic Smolyak sparse grids stochastic collocation
methods have been studied in [149] and [148] in the norm L2

ρ(Γ; X ). Using the same argument in the
proof of Proposition 1.4.1, the following results in L∞(Γ; X ) norm are straightforward.

Proposition 1.4.4 Suppose that the function u can be analytically extended to a complex domainΣ(Γ;τ).
By using isotropic Smolyak sparse grid and Clenshaw–Curtis collocation nodes, we have

||u −Sq u||L∞(Γ;X ) ≤Cq−K+1N−r
q , (1.41)

where: Cq−K+1 is a constant depending on q−K+1 and r s.t. Cq−K+1 ≤C (r ) ln(2q−K+1+2); Nq = #H (q,K )
is the number of collocation nodes; r = min(ln(

p
r1), . . . , ln(

p
rK ))/(1+ ln(2K )) with r1, . . . ,rK defined in

(1.38). Using the anisotropic Smolyak sparse grid with Clenshw-Curtis collocation nodes, we have

||u −S α
q u||L∞(Γ;X ) ≤Cq−K+1N−r (α)

q , (1.42)

where r (α) = min(α)(ln(2)e −1/2)/
(
ln(2)+∑K

k=1 min(α)/αk
)

and αk = ln(
p

rk ),k = 1, . . . ,K .

As for the reduced basis approximation in multivariate problems, there is unfortunately no direct a
priori error estimate in the literature. However, there is indeed a comparison between the Kolmogorov
N -width given by (slightly different from the notation in [20])

dN (Γ; X ) := inf
dim(SN )=N

sup
y∈Γ

inf
wN∈XN

||u(y)−wN ||X , (1.43)

which defines the error of the optimal approximation, and the convergence rate of the N dimensional
reduced basis approximation error by the greedy algorithm. In (1.43), the notations are the same as in
section 1.3: SN is a subset of samples with cardinality N ; XN = span{u(y), y ∈ SN } is a function space
spanned by the snapshots. Essentially, the Kolmogorov N -width measures the error of the best or
optimal N dimensional approximation over all possible N dimensional approximation. As for the
reduced basis approximation with the reduced basis space XN constructed from a greedy algorithm,
we define its L∞(Γ) error as

σN (Γ) = sup
y∈Γ

inf
wN∈XN

||u(y)−wN ||X . (1.44)

In practice we use a posteriori error estimator 4N as introduced in section 1.3 instead of the true error
infwN∈XN ||u(y)−wN ||X for the greedy selection of quasi-optimal samples, which satisfies

c4N ≤ inf
wN∈XN

||u(y)−wN ||X ≤C4N , where 0 < γ≡ c

C
≤ 1. (1.45)

A recent result [20] established a relation between the Kolmogorov width dN and the reduced basis
approximation error σN , which is summarized in the following proposition.

Proposition 1.4.5 Suppose that ∃M > 0 s.t. d0(Γ; X ) ≤ M. Moreover, assume that ∃r > 0,

if dN (Γ; X ) ≤ M N−r then σN (Γ) ≤C M N−r ∀N > 0, (1.46)

where the constant C depends only on r and γ. Moreover, assume that ∃a > 0,

if dN (Γ; X ) ≤ Me−aN r
then σN (Γ) ≤C Me−cN s ∀N ≥ 0, (1.47)

where the constants s = r /(r +1) and c,C depends only on a,r and γ.
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This proposition basically states that whenever the Kolmogorov width decays at either an algebraic or
exponential rate, the greedy algorithm will also generate a quasi-optimal approximation space with the
error decaying in a similar way. By the definition of Kolmogorov width, which measures the error of the
optimal approximation among all the possible approximations, we have that the stochastic collocation
approximation error can not be smaller than or decay faster than the Kolmogorov width. In particular,
we have that the Kolmogorov width is smaller than the isotropic and anisotropic sparse grid collocation
approximation error, i.e.,

dNq (Γ; X ) ≤ min{||u −Sq u||L∞(Γ;X ), ||u −S α
q u||L∞(Γ;X )}. (1.48)

If dNq (Γ; X ) ≤ M N−r̃
q then r̃ ≥ max{r,r (α)}, where r and r (α) are the algebraic convergence rates in

(1.41) and (1.42), respectively. Therefore, we have the following a priori error estimate: the reduced
basis approximation error σNq (Γ) ≤ C M N−r̃

q , which decays faster than the stochastic collocation
approximation error. Moreover, if the stochastic solution is analytic in the probability space, as is the
case for the elliptic problem (39) with analytic solution in Corollary 1.1.2, the Kolmogorov width can
achieve exponential convergence rate for analytical problems in practice [20], so that the reduced
basis approximation error also decays exponentially and much faster than the stochastic collocation
approximation error, as demonstrated by numerical experiments presented and discussed in section
1.6.

Both the Kolmogorov width dN (Γ; X ) and the greedy error σN (Γ) are provided on the whole region Γ.
However, in practice they are defined over the training set Ξtr ai n ⊂ Γ. When the latter is dense enough,
i.e., dN (Γ; X ) and σN (Γ) are indistinguishable from dN (Ξtr ai n ; X ) and σN (Ξtr ai n), the comparison
above is valid. On the other hand, if the training set Ξtr ai n is rather sparse in Γ, which is usually the
case in high-dimensional problem, the comparison might be invalid. In order to have more rigorous
and fair comparison of the reduced basis approximation and the stochastic collocation approximation,
we perform a direct comparison of their approximation errors in the next section.

1.4.2 Direct comparison of approximation errors

As mentioned above, selecting an appropriate training setΞtr ai n for the reduced basis approximation is
crucial. For its effective comparison with the stochastic collocation approximation, we choose training
set as the set represented by the collocation points used in the latter approximation, which we denote
as Ξsc in general for both the full tensor product grid and the sparse grid. Let us denote also the
interpolation formula on Ξsc as Isc : C 0(Γ; X ) → L∞(Γ; X ); then we have the following proposition for a
direct comparison.

Proposition 1.4.6 Provided that the training set Ξtr ai n for the reduced basis approximation is taken
the same as the collocation set Ξsc for the stochastic collocation approximation, we have

||u −uN ||L∞(Γ;X ) ≤C ||u −Isc u||L∞(Γ;X ), (1.49)

where C = 3amax /ami n (with amax , ami n defined in (41)) is a constant independent of N .

Proof By the definition of the reduced basis approximation uN in (1.28), we have

||u −uN ||L∞(Γ;X ) = sup
y∈Γ

||u(y)−uN (y)||X

≤ C

3
sup
y∈Γ

inf
w∈XN

||u(y)−w ||X

≤ C

3
sup

y∈Ξsc /SN

inf
w∈XN

||u(y)−w ||X + C

3
sup

y∈Γ/Ξsc

inf
w∈XN

||u(y)−w ||X ,

(1.50)
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where C = 3amax /ami n is a constant independent of N according to the Céa lemma [165]; the first
inequality is due to the property of Galerkin projection on the space XN , the second one comes from
the fact that Γ= SN ∪ (Ξsc /SN )∪ (Γ/Ξsc ), and the reduced basis approximation error vanishes for any
y ∈ SN so that only the last two terms in (1.50) remain. For the second term of (1.50), we have

sup
y∈Γ/Ξsc

inf
w∈XN

||u(y)−w ||X ≤ sup
y∈Γ/Ξsc

inf
v∈Xsc

||u(y)− v ||X + inf
w∈XN

||v −w ||X , (1.51)

where the function v is defined in the space Xsc that is spanned by the solutions at the collocations
points in Ξsc . Therefore, the first term of (1.51) satisfies

sup
y∈Γ/Ξsc

inf
v∈Xsc

||u(y)− v ||X ≤ sup
y∈Γ/Ξsc

||u(y)−Isc u(y)||X = sup
y∈Γ

||u(y)−Isc u(y)||X , (1.52)

and the second term of (1.51) can be bounded by noting that v is one solution at some y ∈Ξsc as

inf
w∈XN

||v −w ||X ≤ sup
y∈Ξsc

inf
w∈XN

||u(y)−w ||X = sup
y∈Ξsc /SN

inf
w∈XN

||u(y)−w ||X . (1.53)

A combination of (1.50), (1.51), (1.52), and (1.53) leads to the following error bound:

||u −uN ||L∞(Γ;X ) ≤ 2C

3
sup

y∈Ξsc /SN

inf
w∈XN

||u(y)−w ||X + C

3
sup
y∈Γ

||u(y)−Isc u(y)||X . (1.54)

Moreover, we can construct the reduced basis space in such a way that the reduced basis approximation
error in the collocation/training setΞsc (the first term of (1.54)) is smaller than the stochastic collocation
approximation error over Γ (the second term of (1.54)), i.e.,

sup
y∈Ξsc /SN

inf
w∈XN

||u(y)−w ||X ≤ sup
y∈Γ

||u(y)−Isc u(y)||X , (1.55)

which is always viable and an extreme case is that all the collocation points are included in the sample
set, i.e., Ξsc = SN , so that the first term of (1.54) vanishes. Therefore, by substituting (1.55) into (1.54),
we obtain (1.49). ä

Since the evaluation of the statistics by the Monte Carlo algorithm converges very slowly, we propose
the approach of evaluating the solution by the reduced basis method at all the collocation nodes first
and then applying quadrature formula (56) to assess the statistics. To improve the accuracy of this
approach, we also build the training set Ξtr ai n as the collocation/quadrature nodes Ξsc =Ξtr ai n . In
fact, we have the error estimate between the expectation E[s] and the value E[sr b] approximated by
reduced basis method (E[ssc ] is the value approximated by the stochastic collocation method)

|E[s]−E[sr b]| ≤ |E[s]−E[ssc ]|+ |E[ssc ]−E[sr b]|, (1.56)

where the first term represents the quadrature error, and the second term is bounded by (1.27) as

|E[ssc ]−E[sr b]| ≤ ∑
y i∈Ξsc

w i |s(y i )− sr b(y i )|

≤ max
y∈Ξsc

|s(y)− sr b(y)|

≤ max
y∈Ξsc

||s||X ′ ||u(y)−uN (y)||X ,

(1.57)

where w i > 0 are quadrature weights. As long as the reduced basis approximation error is smaller than
the quadrature error, (1.56) is dominated by the first term, i.e. the quadrature error.
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1.5 Comparison of computational costs

In this section, we aim at comparing in detail the computational costs in terms of operations count
and storage of the reduced basis method and the stochastic collocation method. Let us begin with the
computational cost (C (·) stands for operations count and S(·) for storage) for the stochastic collocation
method, which is listed along side Algorithm 1. The major computational cost for the reduced basis
method is listed along side Algorithm 2.

A few notations are given in order: Nsc = #Θ= (N1 +1)×·· ·× (NK +1); Nt = #Ξtr ai n ; Nr b = Nmax ; Wα is
the average work to evaluate the lower bound αLB over the training set; Ws is the work to solve once the
linear system arising from (46) with C (N 2) ≤Ws ≤C (N 3), and Wm is the work to evaluate (L ,L )X

in (1.31) with C (N ) ≤Wm ≤C (N 2). The total computational costs (apart from that of the common
initialization) for the reduced basis method and stochastic collocation method are calculated from
Algorithms 1 and 2 and presented in Table 1.1.

computational cost SC RB
offline operations count C (Nsc (Ws +K )) C (Nt Wα+Nr bWs +K N 2

r bN +K 2N 2
r bWm +Nt K 2N 3

r b )

online operations count C (Nsc ) C (N 3
r b +K N 2

r b +K 2N 2
r b )

total storage S(Nsc (N +K )) S(Nr bN +K 2N 2
r b +K Nt )

Table 1.1: Computational costs of the stochastic collocation (SC) and the reduced basis (RB) methods

More in detail, the offline cost for the stochastic collocation method is dominated by the solution of
the problem (46) for Nsc times with total operations C (Nsc (Ws +K )). Its online cost scales as C (Nsc ) by
the multivariate barycentric formula or quadrature formula. The total storage is dominated by that
for all the solutions S(Nsc (N )). As for the reduced basis method, the offline cost is the sum of that
for precomputing the lower bound C (Nt Wα), solving the system for Nr b times with total operations
C (Nr bWs +K N 2

r bN ), computing error bound with operations C (K 2N 2
r bWm), and searching in the

training set with operations C (Nt K 2N 3
r b). The online cost is the sum of that for assembling (1.29) with

operations C (K N 2
r b), solving it with operations C (N 3

r b), and evaluating the error bound with operations

K 2N 2
r b ; as for statistics by quadrature formula, we need C (Nsc (N 3

r b +K N 2
r b)) operations. The total

storage for the reduced basis method takes S(Nr bN +K 2N 2
r b +K Nt ) for storing the solution, stiffness

matrix as well as the training set.

From Table 1.1 we can observe that an explicit comparison of computational costs for the reduced basis
method and the stochastic collocation method crucially depends on the number of collocation points
Nsc , the size of the training set Nt , the dimension of the reduced basis Nr b and parameters K , and the
work of computing the lower bound Wα. In general, provided that the problem is computationally
consuming in the sense that N is very large, and provided that Nsc ≈ Nt , we have Nr b ¿ Nsc so that
the reduced basis method is much more efficient in the offline procedure under the condition that
Wα¿Ws by the successive constraint linear optimization algorithm. As for the online evaluation of
the solution at a new y ∈ Γ, this advantage becomes even more evident especially in high dimensions
since the online operations count for the reduced basis method is much smaller than that for the
stochastic collocation method, i.e., C (N 3

r b +K N 2
r b +K 2N 2

r b) ¿C (Nsc ). However, as for the evaluation

of the statistics, e.g., expectation E[u], the online operations count C (Nsc (N 3
r b +K N 2

r b)) is larger for
the reduced basis method than the online operations count (C (Nsc )) for the stochastic collocation
method. Moreover, if we choose the size of the training set larger than the number of collocation
points Nt À Nsc , which is usually the case in practice for low-dimensional problems (K = 1,2,3), or
else the work Wα for the computation of the lower bound αLB is not significantly smaller than Ws , the
stochastic collocation method can perform as well as or even better than the reduced basis method
when Nt À Nsc .
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Algorithm 1 The stochastic collocation method

1: procedure OFFLINE CONSTRUCTION

2: Initialization: mesh, parameters, finite element functions ϕi ,1 ≤ i ≤N , etc;
3: Precompute and store stiffness matrix (Ak )i j = Ak (ϕi ,ϕ j ),0 ≤ k ≤ K and vector (F )i = F (ϕi );

4: Precompute and store the collocation nodes Θ=Θ1 ×·· ·×ΘK ; .C (Nsc )/S(K Nsc )
5: for k = 1, . . . ,K do
6: for nk = 0, . . . , Nk do
7: Precompute and store the barycentric weights w̄nk

k (ynk
k ), ynk

k ∈Θk ; .C (Nk )/S(1)

8: Precompute and store quadrature weights wk
nk

by formula (1.14); .C (Nk )/S(1)
9: end for

10: end for
11: for n = 1, . . . , Nsc do
12: Compute and store the solution u(yn), yn ∈Θ; .C (Ws )/S(N )
13: end for
14: end procedure

15: procedure ONLINE EVALUATION

16: Given y ∈ Γ, compute the solution u(y) by interpolation (1.12), (1.15), or (1.19); .C (Nsc )
17: Evaluate the expectation E[u] by (1.13); .C (Nsc )
18: end procedure

Algorithm 2 The reduced basis method

1: procedure OFFLINE CONSTRUCTION

2: Initialization: mesh, parameters, finite element functions ϕi ,1 ≤ i ≤N , tolerance ε, etc.;
3: Precompute and store stiffness matrix (Ak )i j = Ak (ϕi ,ϕ j ),0 ≤ k ≤ K and vector (F )i = F (ϕi );

4: Precompute and store Ξtr ai n and αLB (y), y ∈Ξtr ai n by SCM; . C (Nt Wα)/S(Nt )
5: Initialize y1 ∈Ξtr ai n , S1 = {y1}, X1 = {ζ1}, ζ1 = u(y1)/||u(y1)||X ; . C (Ws )/S(N )
6: Compute and store Ak (ζ1,ζ1) and F (ζ1), 0 ≤ k ≤ K ; . C (K N )/S(1)
7: Compute and store (C ,C )X , (C ,L k

1 )X , (L k
1 ,L k ′

1 )X ,0 ≤ k,k ′ ≤ K ; . C (K 2Wm)/S(K 2)
8: for N = 2, . . . , N̄max do
9: Compute 4u

N−1(y) = ||ê(y)||X /αLB (y) by (1.31); . C (K 2N 2Nt )/S(Nt )
10: Choose y N = argmaxy∈Ξtr ai n 4u

N−1(y); . C (Nt )/S(1)
11: if 4u

N−1(y N ) ≤ ε then
12: Nmax = N −1; Break;
13: end if
14: Set SN = SN−1 ∪ y N and compute u(y N ); . C (K +Ws )/S(N )
15: Orthogonalize XN = span{ζ1, . . . ,ζN−1,u(y N )}; . C (N )/S(N )
16: Compute and store Ak (ζm ,ζn) and F (ζN ) for (1.29); .C (K NN )/S(N 2)
17: Compute and store (C ,L k

N )X , (L k
n ,L k ′

n′ )X for (1.31); . C (K 2NWm)/S(K 2N )
18: end for
19: end procedure

20: procedure ONLINE EVALUATION

21: Given y ∈ Γ, assemble and solve (1.29) and compute 4N (y); . C (N 3
r b +K N 2

r b +K 2N 2
r b)

22: Evaluate statistics by quadrature formula with Nsc abscissas; . C (Nsc (N 3
r b +K N 2

r b))
23: end procedure
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Chapter 1. Comparison of stochastic collocation and reduced basis methods

1.6 Numerical experiments

In this section, we provide numerical substantiation to our previous analysis on the convergence rate
and on the computational costs for the comparison of the reduced basis method and the stochastic
collocation method. More precisely, we consider a stochastic elliptic problem in a two dimensional unit
square D = (0,1)2 with element x = (x1, x2). The deterministic forcing term f = 1 is fixed. The coefficient
a(x,ω) is a random field (depending only on x1) with finite second moment, whose expectation and
correlation are given as

E[a](x) = c

100
, for a suitable c > 0; C[a](x, x ′) = 1

1002 exp

(
− (x1 −x ′

1)2

L2

)
, x, x ′ ∈ D, (1.58)

where L is the correlation length. The Karhunen-Loève expansion of the random field a is

a(x,ω) = 1

100

(
c +

(p
πL

2

)1/2

y1(ω)+
∞∑

n=1

√
λn

(
sin(nπx1)y2n(ω)+cos(nπx1)y2n+1(ω)

))
, (1.59)

where the uncorrelated random variables yn ,n ≥ 1, have zero mean and unit variance, and the eigen-
values λn ,n ≥ 1, have the following expression

√
λn = (p

πL
)1/2

exp

(
− (nπL)2

8

)
, n ≥ 1. (1.60)

The random field a(x,ω) will be chosen as in (1.61) and (1.64) below. All the numerical computation is
performed in MATLAB on an Intel Core i7-2620M Processor of 2.70 GHz.

1.6.1 Numerical experiments for a univariate problem

For the test of a univariate stochastic problem, we take

a(x,ω) = 1

100

(
1+

(p
πL

2

)1/2

sin(2πx1)y1(ω)

)
, (1.61)

where y1(ω) obeys uniform distribution with zero mean and unit variance y1(ω) ∼U (−p3,
p

3). We
implement Algorithm 1 for the stochastic collocation approximation with Clenshaw–Curtis nodes (the
same as Chebyshev-Gauss-Lobatto nodes [35, 199]), defined for y1 ∈ Γ1 = [−p3,

p
3] as

yn
1 =−p3cos

(nπ

N

)
, n = 0, . . . , N . (1.62)

We also implement Algorithm 2 for the reduced basis approximation with equidistant training set
Ξtr ai n with cardinality Nt = 1000, which is rather dense in the interval [−p3,

p
3]. We take randomly

the testing set Ξtest with Ntest = 1000 samples and define the L∞(Γ) error between the “true" solution
u (here finite element solution) and approximate solution uappr ox as

||u −uappr ox ||L∞(Γ;X ) ≈ max
y∈Ξtest

||u(y)−uappr ox (y)||X . (1.63)

We also compute the statistical error |E[||u||X ]−E[||uappr ox ||X ]| with the expectation defined in (1.9).

Figure 1.2 illustrates the convergence of the error with respect to the number of collocation nodes
and reduced bases for the stochastic collocation approximation and reduced basis approximation,
respectively. From the left side of Figure 1.2, we observe that both approximations achieve the ex-
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Figure 1.2: Comparison for convergence rate of the error ||u−uappr ox ||L∞(Γ;X ) (left) and the expectation
|E[||u||X ]−E[||uappr ox ||X ]| (right) between the true and the approximate solutions in 1D

ponential convergence rates in accordance with Propositions 1.4.1 and 1.4.2. The reduced basis
approximation (with convergence rate ≈ exp(−1.8N )) turns out to be slightly better than the stochastic
collocation approximation (with convergence rate ≈ exp(−1.3N )). As for the computation of the ex-
pectation E[||u −uappr ox ||X ], we apply Clenshaw–Curtis rule [199] for the stochastic approximation
and Monte-Carlo algorithm for the reduced basis approximation. The right side of Figure 1.2 shows
that the quadrature rule with exponential convergence rate ≈ exp(−1.6N ) is apparently superior to
Monte-Carlo algorithm with algebraic convergence rate ≈ N−1/2 for the univariate problem.

As for the computational costs, though the reduced basis approximation needs slightly fewer snapshots
than the stochastic collocation approximation, it costs more for the computation of a posteriori error
estimator by greedy sampling over a large training set in the offline construction. In Table 1.2 for the
univariate problem, we observe that for small-scale problems, i.e., the mesh size h is large, the offline
construction of the reduced basis approximation is apparently more expensive than the stochastic
collocation approximation. When the problem becomes large-scale, i.e., the mesh size h is small, the
computational cost is dominated by the cost required for the solution of the finite element problem;
then the reduced basis approximation is as efficient as the stochastic collocation approximation or even
better. Moreover, it takes C (NSC ) =C (28) operations count for the online evaluation of the solution
u(y) for any given y ∈ Γ by the stochastic collocation method while the reduced basis method needs
more computation C (N 3

RB ) = C (8000) > C (NSC ) = C (28). From Table 1.2 we can see that the online
computational cost of the reduced basis approximation increases with the scale of the problem and
takes more cost than that of the stochastic collocation approximation, which depends only on the
number of collocation points NSC . In the computation of expectation, the reduced basis - Monte-
Carlo approximation is much more expensive than the stochastic collocation approximation with
corresponding quadrature rule for the univariate problem. In order to alleviate the computational
costs, we can first evaluate the solution at the collocation nodes by the reduced basis method and then
use the quadrature formula to compute the expectation. However, this is not so useful if the number
of collocation nodes is comparable to the number of reduced bases, as in the univariate case. We will
compare the proposed approach with the stochastic collocation method for multivariate case later.
From the univariate experiment, we conclude that the stochastic collocation approximation is more
efficient than the reduced basis approximation for small-scale problem in terms of computational
costs and become less efficient as the problem becomes large-scale and expensive to solve.

Figure 1.3 depicts the procedure of the reduced basis construction by greedy sampling algorithm and
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Chapter 1. Comparison of stochastic collocation and reduced basis methods

time t (s) | size h 1/8 1/16 1/32 1/64 1/128
tRB (1D,Nt = 103) 4(0.0003) 7(0.0003) 12(0.002) 14(0.005) 33(0.02)
tSC (1D,NSC = 28) 0.04(0.0002) 0.1(0.0002) 1(0.0002) 6(0.0002) 31(0.0002)

Table 1.2: 1D offline (online in brackets) computational costs measured in CPU time by the reduced
basis (RB) and the stochastic collocation (SC) methods achieving the same accuracy.

Figure 1.3: Comparison of greedy sampling (top) and hierarchical Clenshaw–Curtis rule (bottom). The
bigger the size of the nodes, the earlier they are selected in the hierarchical approximation. Middle: the
distribution of the greedy samples for reduced basis (◦) and Clenshaw–Curtis nodes (·).

the hierarchical stochastic collocation construction based on Clenshaw–Curtis nodes. At the top of
Figure 1.3, we use larger size of dots to show earlier samples selected in the greedy algorithm, which is
very similar to the hierarchical collocation construction shown at the bottom of Figure 1.3 in terms of the
position and selected order of the nodes. This effect can be observed more closely in the middle figure,
where the greedy samples is in full consistency with the Clenshaw–Curtis nodes. In fact, the maximum
distance of the corresponding points between the greedy samples and the Clenshaw–Curtis nodes (CC)
is 0.074, and the mean distance is 0.023. For comparison, we also test Chebyshev–Gauss nodes (CG),
Legendre–Gauss nodes (LG) and Legendre–Gauss–Lobatto nodes (LGL) (see[35]), and the results are
listed in Table 1.3, from which we can see that Clenshaw–Curtis nodes are the best choice, followed
by Legendre–Gauss–Lobatto nodes. Note that the average distances of the samples in the training set
are 2

p
3/1000 = 0.0035 and 2

p
3/10000 = 0.00035, which are much smaller than the quantities in Table

1.3, so that we are confident with the intrinsic difference between the samples selected by the greedy
algorithm and the collocation nodes. This numerical coincidence has also been observed for empirical
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1.6. Numerical experiments

interpolation method [11, 129], which is efficiently used in affinely approximation of nonlinear terms
for nonlinear problems in the framework of the reduced basis approximation. This fact sheds light on
the similarity of projection and interpolation in the common framework of nonlinear approximation,
in the way that the greedy algorithm for the reduced basis projection tends to select the points on
which the Lebesgue constant, arising in the stochastic collocation/interpolation, is minimized.

Nt CC CG LG LGL
1000 0.074(0.023) 0.108(0.033) 0.131(0.047) 0.082(0.024)

10000 0.076(0.022) 0.110(0.034) 0.134(0.049) 0.085(0.024)

Table 1.3: Comparison of the maximum distance (average distance in ( · )) between greedy samples in
the reduced basis approximation and collocation nodes for the stochastic collocation approximation.

1.6.2 Numerical experiments for multivariate problems

For the test of a multivariate problem, we truncate the random field a(x,ω) from Karhunen-Loève
expansion (1.59) with five uniformly distributed random variables y = (y1, · · · , y5) ∈ Γ= [−p3,

p
3]5, and

the correlation length L = 1/8 so that the two eigenvalues λ1 ≈ 0.2132,λ2 ≈ 0.1899, written as

a(x,ω) = 1

100

(
4+

(p
πL

2

)1/2

y1(ω)+
2∑

n=1

√
λn

(
sin(nπx1)y2n(ω)+cos(nπx1)y2n+1(ω)

))
. (1.64)
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Figure 1.4: Comparison for the convergence rate of the error ||u −uappr ox ||L∞(Γ;X ) (left) and the expec-
tation |E[||u||X ]−E[||uappr ox ||X ]| (right) between the true and the approximated solutions in 5D.

The tensor product of one-dimensional Clenshaw–Curtis nodes (1.62) for N = 1,2,3,4,5,6,7 as well as a
single node [0,0,0,0,0] are used for the stochastic collocation approximation, while the Smolyak sparse
grid with level q −5 = 1,2,3,4,5,6,7 are used for the stochastic sparse grid collocation approximation.
For the reduced basis approximation, we select the same 75 samples as used in the tensor product
stochastic collocation nodes. The convergence results for L∞(Γ) error and the expectation error are
displayed in Figure 1.4. From the left side of Figure 1.4, we observe obviously a larger convergence rate
for the reduced basis approximation (still achieving an exponential convergence rate ≈ exp(−0.2N ))
than the stochastic collocation approximation (only gaining a convergence rate ≈ exp(0.0002N ) or
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Chapter 1. Comparison of stochastic collocation and reduced basis methods

time t (s) | size h 1/8 1/16 1/32 1/64 1/128
tRB (5D,Nt = 103) 50(0.0008) 55(0.001) 57(0.002) 76(0.01) 159(0.05)
tRB (5D,Nt = 75) 839(0.0005) 843(0.001) 846(0.002) 864(0.009) 949(0.05)

tSC (5D,NSC = 75) 17(0.02) 58(0.02) 755(0.02) 3619(0.02) 17252(0.02)

Table 1.4: 5D offline (online in brackets) computational costs measured in CPU time by the reduced
basis (RB) and the stochastic collocation (SC) methods achieving the same accuracy.

rather an algebraic convergence rate ≈ N−1.5). The sparse grid collocation achieves more accurate
approximation than the tensor product collocation at the beginning, and loses this advantage to the
latter due to slower convergence for our specific experiment in five dimensions (5D).

As for the convergence of the expectation E [||u||X ], as seen from the right side of Figure 1.4, the highest
convergence rate (gaining an exponential convergence rate) is still achieved by the reduced basis -
collocation approximation, essentially by constructing the reduced basis at first and then evaluating the
solution at the collocation/quadrature points by the reduced basis approximation. Similar convergence
behaviour can be observed for the tensor product and the sparse grid collocation approximations,
which are still better than the reduced basis - Monte-Carlo approximation, though this advantage
becomes less important than that in the univariate case.

For the comparison of computational costs, besides the same 75 training samples as used in the tensor
product stochastic collocation nodes, we also use Nt = 1000 ¿ 75 randomly generated samples as the
training set and obtain the same number of reduced bases to achieve the same accuracy due to the
smoothness of the solution in the parameter space. From Table 1.4, we may see that the offline compu-
tational cost for the stochastic collocation approximation grows exponentially fast as the complexity of
the problem, while for the reduced basis approximation, it increases slightly and is dominated linearly
by the cardinality of the training set Ξtr ai n from the comparison between 75 ≈ 1.7×104 and 103, which
is almost the same ratio of the CPU time 839/50 ≈ 17. In comparison, the reduced basis approximation
becomes much more efficient than the stochastic collocation approximation in offline construction
for large-scale problems while it loses moderately to the latter for the online computational cost. In
the computation of the expectation, the reduced basis - collocation approximation is much faster
than the stochastic collocation approximation: 949(offline)+ 0.05× 75(online) ≈ 1789 ¿ 17252 for
large-scale problem (h = 1/128) while this becomes opposite for small-scale problem (h = 1/8) since
839+0.0005×75 ≈ 847 À 17.
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Figure 1.5: Empirical convergence (left) and fitted convergence (right) rates in dimension 1 ≤ k ≤ 9.
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In solving the five dimensional stochastic problems, we can see that both the stochastic collocation
and the reduced basis methods achieve better convergence property than the Monte-Carlo algorithm.
However, when the number of random variables or parameters becomes very large, the tensor product
stochastic collocation approximation would need too many collocation points so that the quadrature
formula losses its advantage over the Monte-Carlo algorithm. Meanwhile, the size of the training set for
reduced basis construction also grows exponentially with the dimensions of the problem. Therefore,
it is necessary to alleviate the computational cost. When the random variables yk ,1 ≤ k ≤ K have
different importance for the stochastic problem, it would be worthless to put the same weight on
the ones with little importance as on those with much larger influence. For instance, the first few
eigenvalues λ1 ≈ 0.4782,λ2 ≈ 0.0752,λ3 ≈ 0.0034,λ4 ≈ 0.000045 decay so fast for a large correlation
length (L = 1/2) in the Karhunen-Loève expansion (1.59) that the random variables have distinct
weights in determining the value of the coefficient a(x, y1, . . . , yK ).

The key idea behind the anisotropic sparse grid is that we take advantage of the anisotropic weights,
placing more collocation points in the dimensions that has a slower convergence in order to balance
and minimize the global error [148]. How to obtain a sharp estimate of the importance or the weight of
different dimensions is crucial to use the anisotropic sparse grid. One way is to derive a priori error
estimate with the convergence rate, e.g., exp(− ln(rk )N ),1 ≤ k ≤ K in (1.38), as accurate as possible.
However, deriving an analytical estimation of the convergence rate for general problems is rather
difficult. Alternatively, we may perform empirical estimation by fitting the convergence rate from
the numerical evaluation for each dimension (see Figure 1.5), and use the estimated convergence
rates as α in (1.19) for the anisotropic sparse grid construction [148]. For the test of the efficiency of
the anisotropic grid, we take the correlation length L = 1/2, c = 5 for the coefficient a(x,ω) in (1.59)
and truncate it with nine random variables y = (y1, . . . , y9) ∈ Γ = [−p3,

p
3]9. Instead of the norm

||u −uappr ox ||L∞(Γ,X ), we use ||||u||X −||uappr ox ||X ||L∞(Γ) to reduce the evaluation cost.
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Figure 1.6: Comparison for the convergence rates of ||||u||X −||uappr ox ||X ||L∞(Γ) (left) and the expecta-
tion |E[||u||X ]−E[||uappr ox ||X ]| (right) between the true and the approximate solutions in 9D.

We use the isotropic sparse grid and the anisotropic sparse grid at the interpolation level q − 9 =
1,2,3,4,5,6 for the stochastic collocation approximation in (1.15) and (1.19), and choose the training
samples as the collocation nodes in the sparse grid at the deepest interpolation level q−9 = 6 (100897 ≈
105 nodes) for the reduced basis approximation. From Figure 1.6 we can see that the reduced basis
approximation converges much faster than the stochastic collocation approximation in both L∞(Γ)
norm and the expectation norm. The offline computational cost of the reduced basis approximation for
small-scale problems h = 1/8,1/16,1/32 is larger than that of the stochastic collocation approximation,
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time t (s) | size h 1/8 1/16 1/32 1/64 1/128
tRB (9D,Nt = 103) 85(0.0007) 91(0.001) 93(0.002) 121(0.01) 235(0.04)
tRB (9D,Nt ≈ 105) 8577(0.0008) 8582(0.001) 8585(0.002) 8610(0.01) 8722(0.04)

tSC (9D,NSC ≈ 105) 154(0.13) 305(0.13) 4804(0.13) 23401(0.13) 101795(0.13)

Table 1.5: 9D offline (online in brackets) computational costs measured in CPU time by the reduced
basis (RB) and the stochastic collocation (SC) methods achieving the same accuracy.

while for large-scale problems h = 1/64,1/128 this becomes rather opposite; see Table 1.5. Besides,
we also use 103 randomly generated training samples for the reduced basis approximation, and we
still obtain the high accuracy in both L∞(Γ) norm and the expectation norm because the solution
is very smooth in the parameter space. We can see from Table 1.5 that the computational cost with
103 samples is far less than that of the sparse grid stochastic collocation approximation for both
the offline construction and the online evaluation. In fact, the online construction of the reduced
basis approximation stays the same as dominated by the number of reduced basis Nr b as O(N 3

r b +
K N 2

r b +K 2N 2
r b), while the online cost for the stochastic collocation approximation grows with the

number of collocation points in an approximately linear way O(Nsc )(105/75 ≈ 0.13/0.02). Figure 1.6
also brings us to the fact that the anisotropic sparse grid is more efficient than the isotropic sparse grid
for anisotropic problems. Meanwhile, we can see that the stochastic collocation approximation based
on tensor product grid starts to converge slower than N−1/2, which is the typical convergence rate of
the Monte-Carlo method.

1.6.3 Numerical experiments for higher dimensional problems

In this last numerical experiment of this chapter, we deal with high-dimensional stochastic problems,
pushing the number of dimensions from 9 to 21, and from 51 up to 101, and comparing the perfor-
mance of the reduced basis approximation and the stochastic collocation approximation. Note that in
high dimensions K = 101, it is prohibitive to use the stochastic collocation method with tensor product
grid (since we would need 3101 ≈ 1.5×1048 collocation points in total with 3 collocation points in each
dimension), we use instead sparse grid of the anisotropic type to reduce the computational cost. The
correlation length is L = 1/128, which enables us to consider an anisotropic problem but with the eigen-
values decaying very slowly (λ1 = 0.0138,λ50 = 0.0095). The constant in (1.59) is chosen as c = 20 to
guarantee that the stochastic problem is well posed with coercive elliptic operator. For the reduced ba-
sis approximation, we use 1000 samples randomly selected in Γ= [−p3,

p
3]K ,K = 9,21,51,101 thanks

to the rather smooth property of the solution in the parameter space, and for the stochastic colloca-
tion approximation, we construct adaptively an anisotropic sparse grid with 101,102,103,104,105,106

collocation nodes in an hierarchical way governed by the hierarchical surpluses [110]. To evaluate
the error ||(||u||X − ||uappr ox ||X )||L∞(Γ), we randomly select 100 samples in Γ. For the computation
of the expectation as well as the error |E[||u||X ]−E[||uappr ox ||X ]|, we apply the reduced basis - collo-
cation approximation with 105 collocation nodes constructed from the anisotropic grid. The error
|E[||u||X ]−E[||uappr ox ||X ]| is evaluated as a posteriori error by taking the best stochastic collocation
approximation as the true or reference value.

The results for the high-dimensional stochastic problems are displayed in Figure 1.7, from which we can
observe an exponential decay rate for both the L∞(Γ) error and the expectation error by the reduced
basis approximation, which is much larger than that of the stochastic collocation approximation.
As the dimension increases from 9 to 101, the convergence rate decreases very fast for both the
reduced basis approximation and the stochastic collocation approximation. As for the computational
cost of the reduced basis method, it takes 86(K = 9),424(K = 21),2479(K = 51),8986(K = 101) CPU
seconds, respectively, for the offline construction with the mesh size h = 1/8, growing as tRB ∝O(K 2),
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which verify the formula in Table 1.1 by Algorithm 2. In contrast, it would take tSC ∝ O(K w ) where
w = q −K = 0,1,2, . . . is the interpolation level of the isotropic Smolyak formula (1.15), which prevents
large w for high-dimensional problems. We remark that although our numerical results are very
promising for the reduced basis approximation, the size of the samples in the training set #Ξtr ai n = 1000
and the testing set #Ξtest = 100 is rather small for the high-dimensional problems, which may bring
insufficiency as for the approximation elsewhere. In order to increase the accuracy of the reduced
basis approximation, we may construct the training set adaptively by replacing it with new set once the
reduced basis approximation is good enough in the current one; see [212]. We also remark that the cost
of the offline construction grows linearly with respect to the cardinality of the training set tRB ∝ Nt , as
seen in Table 1.1.
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Figure 1.7: Comparison for the convergence rates of ||||u||X −||uappr ox ||X ||L∞(Γ) (left) and |E[||u||X ]−
E[||uappr ox ||X ]| (right) between the anisotropic sparse grid stochastic collocation (SC) and the reduced
basis (RB) methods in high dimensions 9D, 21D, 51D and 101D.

1.7 Summary

In this chapter, we carried out a detailed comparison of computational costs and accuracy between the
reduced basis method and the stochastic collocation method for linear stochastic elliptic problems.
The reduced basis method adopts Galerkin projection on the reduced basis space constructed from
a greedy algorithm governed by a posteriori error estimate. It takes advantage of the affine structure
of the stochastic problem to decompose the computation into an offline more expensive procedure
and an online quite inexpensive procedure. The stochastic collocation method, on the other hand,
follows essentially the Lagrange interpolation on the collocation nodes, which are taken as quadratures
abscissas in order to achieve high order interpolation as well as integration for statistical computation.

The reduced basis method achieves an exponential convergence rate for smooth problems regardless
of dimensions in our test case. The stochastic collocation method also exhibits an exponential conver-
gence rate in the low-dimensional cases, though with a slower rate than the one featured by the reduced
basis method; in contrast, in the multivariate case, especially for high-dimensional problems, it only
achieves algebraic convergence rate. The computation of the stochastic collocation method takes less
effort than the one needed by the reduced basis method in small-scale and low-dimensional problems,
while it grows much faster than the reduced basis method in large-scale and high-dimensional prob-
lems, resulting in much heavier computational effort than the latter one. Note that the comparison
depends essentially on the regularity of the stochastic solution, the dimension of the parameter space
as well as the complexity of solving the underlying deterministic system, so that we presume that
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similar comparison results hold reasonably beyond the case of linear stochastic elliptic problems
considered here.

We succeeded in applying the reduced basis method and the anisotropic sparse grid stochastic colloca-
tion method in high-dimensional problems up to the order of (100). Nevertheless, the application is
admittedly insufficient since the number of samples and collocation nodes is rather small. More ad-
vanced techniques such as sensitivity analysis and adaptive construction [88, 100] for both methods are
being actively developed from the research community, more specifically to deal with high-dimensional
stochastic systems. Moreover, the comparison has only been carried out for problems with solutions
which depend smoothly on the parameters. As for non-smooth or low regularity stochastic problems,
we expect that the reduced basis method, by taking advantage of solving a reduced problem (1.22)
with the same mathematical structure as the original problem (46), can avoid Gibbs phenomenon
as encountered by stochastic collocation method built upon dictionary basis (here Lagrange basis
function), thus gaining further benefit on convergence; see also further examples in chapter 4 and
in [41]. More research focusing on both theoretical and computational aspects is still needed when
considering the reduced basis method and the stochastic collocation method, as well as their efficient
combination, for solving more general problems, e.g., nonlinear, multiscale and multiphysics problems
that feature low regularity and high dimensionality in the stochastic space.
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2 A weighted reduced basis method for
arbitrary probability measures

The results of the comparison between the reduced basis method and the stochastic collocation method
in chapter 1 demonstrate that the former method is more efficient and cheaper than the latter for
solving large-scale uncertainty quantification problems. However, our comparison was carried out only
for uniformly distributed random variables. To our knowledge, the reduced basis method is currently
used only for stochastic problems with uniformly distributed random inputs or parameter space with
Lebesgue measure [24, 50]. In order to deal with more general uncertainties problems with arbitrary
probability measures, we propose and analyze a extended version of the reduced basis method and
name it the “weighted reduced basis method."

The basic idea of the weighted reduced basis method is to suitably assign a larger weight to those
samples that are more important or have a higher probability to occur according to either the probability
distribution function or some other available weight function depending on the specific application at
hand. The benefit is to lighten the reduced space construction using a smaller number of bases without
affecting the numerical accuracy. This idea is inspired by the generalization of polynomial chaos [208],
where different polynomial bases representing the stochastic solution are chosen according to the
probability density function of the input random variables, leading to fewer bases with the weights of
the orthogonal polynomials exactly the same as the probability density function.

A priori convergence analysis for reduced basis method by greedy algorithm has been carried out
in previous works [131, 30, 20, 115] under various assumptions. More specifically, the exponential
convergence rate for a single-parameter elliptic PDE was obtained in [131] by exploring an eigenvalue
problem; the algebraic or exponential convergence rate for greedy algorithm in multidimensional
problem was achieved implicitly depending on the convergence rate of Kolmogorov N-width in [30]
and improved in [20]; an exponential convergence rate was also recently obtained in [115] through
direct expansion of the solution on a series of invertible elliptic operators. Different from these work, in
this chapter we carry out a priori convergence analysis of the weighted reduced basis method based
on Fourier analysis or constructive spectral approximation for analytic functions, as used in [8] for
convergence analysis of the stochastic collocation method, which results in a direct a priori convergence
rate for both single and multidimensional problems, and can be straightforwardly generalized to more
general stochastic models once the stochastic regularity of the solution is obtained.

This chapter is organized as follows. Section 2.1 is devoted to the development of the weighted reduced

Reference for this chapter:

P. Chen, A. Quarteroni, and G. Rozza. A weighted reduced basis method for elliptic partial differential equation with random input
data. SIAM Journal on Numerical Analysis, 51(6):3163–3185, 2013.
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basis method, which is followed by regularity analysis and a priori convergence analysis in section
2.2. Numerical examples for both the one-dimensional problem and the multidimensional problem
are presented as verification of the efficiency and convergence properties in section 2.3. Some brief
remarks about further research perspectives are provided in the last section 2.4.

2.1 A weighted reduced basis method

We employ the linear and coercive stochastic elliptic PDE introduced in the preliminary chapter as the
benchmark model to develop the weighted reduced basis method in this section. The basic idea of the
weighted method is to assign different weights in the construction of reduced basis space at different
values of parameter y ∈ Γ according to a prescribed weight function w(y). The motivation is that when
the parameter y has distinctive weights w(y) at different values y ∈ Γ, e.g., stochastic problems with
random inputs obeying probability distribution far from uniform type, the weighted approach can
considerably attenuate the computational effort for large scale computational problems. The weighted
reduced basis method consists of the same elements, namely greedy algorithm, a posteriori error
estimate and offline-online decomposition, as presented in chapter 1, section 1.3. In this chapter, we
only highlight the new weighted scheme.

Let X be a high-fidelity approximation space of H 1
0 (D), equipped with the norm ||v ||X =√

A(v, v ; ȳ)
∀v(y) ∈ H 1

0 (D) at some reference value ȳ ∈ Γ. Let Xw be a weighted approximation space with norm

||v(y)||Xw = w(y)||v(y)||X ∀v ∈ X ,∀y ∈ Γ, (2.1)

where w : Γ → R+ is a weight function taking positive real values. Note that both X and Xw are
equivalent to H 1

0 (D). The weighted greedy algorithm essentially deals with the L∞(Γ; Xw ) optimization
problem in a greedy way [178], seeking a new parameter y N ∈ Γ such that

y N = argsup
y∈Γ

||u(y)−uN (y)||Xw , (2.2)

where we recall that uN is the reduced basis approximation of the solution u. By solving the infinite
dimensional problem (2.2) we would locate the least matching point y N ∈ Γ in || · ||Xw norm. A com-
putable (finite dimensional) greedy algorithm relies on (i) replacing the parameter domain Γ by a finite
training set Ξtr ai n ⊂ Γwith cardinality |Ξtr ai n | = ntr ai n <∞, and (ii) replacing the mismatching term
||u(y)−uN (y)||Xw by a cheap weighted a posteriori error bound 4w

N that should be as sharp as possible,
i.e.,

cN4w
N (y) ≤ ||u(y)−uN (y)||Xw ≤CN4w

N (y), (2.3)

where CN /cN is expected to be close to 1. Let us look at an example of the weight function.

Example 2.1.1 As shown in (1.27), the reduced basis approximation of the compliant output sN =
F (uN ; y) has an error that scales quadratically with respect to the reduced basis approximation error of
the solution [178], i.e.

|s(y)− sN (y)|∝ ||u(y)−uN (y)||2X . (2.4)

Therefore, in the evaluation of the expectation of s by formula (56), we may choose the weight as the
following function of the probability density ρ:

w(y) =√
ρ(y) ∀y ∈ Γ, (2.5)

so that the approximation error of the expectation can be bounded by

E[s]−E[sN ] =
∫
Γ

(s(y)− sN (y))ρ(y)d y ≤ |Γ|sup
y∈Γ

|s(y)− sN (y)|ρ(y) ≤ |Γ|sup
y∈Γ

(4w
N (y))2, (2.6)
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where we assume that Γ is bounded.

Similar to (1.29), the reduced basis system can be written as

N∑
m=1

(
A0(ζm ,ζn)+

K∑
k=1

yk Ak (ζm ,ζn)

)
uN m(y) = ( f0,ζn)+

K∑
k=1

( fk ,ζn)yk , 1 ≤ n ≤ N . (2.7)

To solve (2.7) efficiently, we precompute and store Ak (ζm ,ζn),0 ≤ k ≤ K ,1 ≤ m,n ≤ Nmax and ( fk ,ζn),0 ≤
k ≤ K ,1 ≤ n ≤ Nmax in the offline procedure. In the online procedure, we only need to assemble the
stiffness matrix in (2.7) and solve the resulting N ×N stiffness system with much less computational
effort compared to solving a full N ×N stiffness system. As for the computation of the error bound
4w

N (y), we need to evaluate ||ê(y)||X at y chosen in the course of sampling procedure. The residual can
be expanded as

R(v ; y) = F (v ; y)− A(uN , v ; y) =
K∑

k=0
( fk , v)yk −

N∑
n=1

uN n

(
K∑

k=0
Ak (ζn , v)yk

)
, where y0 = 1. (2.8)

Set (Ck , v)X = ( fk , v) and (L k
n , v)X =−Ak (ζn , v), ∀v ∈ X ,1 ≤ n ≤ N ,0 ≤ k ≤ K , where Ck and L k

n are the
representatives of fk and An

k (defined as An
k (v) =−Ak (ζn , v),∀v ∈ X ) in X , respectively, whose existence

is secured by the Riesz representation theorem. By recalling (ê(y), v)X = R(v ; y), we obtain

||ê(y)||2X =
K∑

k=0
yk

(
K∑

k ′=0

yk ′ (Ck ,Ck ′ )X

)

+
K∑

k=0

N∑
n=1

yk uN n(y)

(
K∑

k ′=0

yk ′2(Ck ′ ,L k
n )X +

K∑
k ′=0

N∑
n′=1

yk ′uN n′ (y)(L k
n ,L k ′

n′ )X

)
.

(2.9)

Therefore, we can compute and store (Ck ,Ck ′ )X , (Ck ′ ,L k
n )X , (L k

n ,L k ′
n′ )X ,1 ≤ n,n′ ≤ Nmax ,0 ≤ k,k ′ ≤

K , in the offline procedure and evaluate ||ê(y)||X in the online procedure by assembling (2.9) with
O((K +1)2N 2) scalar products, which is far more efficient provided that O((K +1)2N 2) ¿N .

2.2 Regularity and a priori error estimates

We work in the full space, which we still denote as X for ease of notation, rather than in the high fidelity
discretization space (e.g., finite element space) for proving regularity and a priori error estimates for the
weighted reduced basis method; the regularity with respect to random variables y ∈ Γ and convergence
results of the weighted reduced basis approximation hold the same in the discretization space.

2.2.1 Regularity results

Lemma 2.2.1 Under Assumption 0.3, the solution to problem (46) satisfies u ∈C 0(Γ; H 1
0 (D)). Moreover,

if u and ũ are two weak solutions of problem (46) associated with data a, f and ã, f̃ , respectively, we
have the stability estimate

||u − ũ||C 0(Γ;H 1
0 (D)) ≤

CP

ami n
|| f − f̃ ||C 0(Γ;L2(D)) +

CP

a2
mi n

|| f̃ ||C 0(Γ;L2(D))||a − ã||C 0(Γ;L∞(D)) (2.10)

Proof We rewrite (46) explicitly as

∀y ∈ Γ,
∫

D
a(x, y)∇u(x, y) ·∇v(x)d x =

∫
D

f (x, y)v(x)d x ∀v ∈ H 1
0 (D). (2.11)
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A similar problem holds for f̃ and ã. By subtraction we obtain the difference equation:∫
D

a∇(u − ũ) ·∇vd x =
∫

D
( f − f̃ )vd x +

∫
D

(ã −a)∇ũ ·∇vd x. (2.12)

By taking v = u − ũ, applying the Cauchy–Schwarz and Poincaré inequalities, and using Assumption
0.2 we have

ami n ||u − ũ||2
H 1

0 (D)
≤CP || f − f̃ ||L2(D)||u − ũ||H 1

0 (D) +||ũ||H 1
0 (D)||u − ũ||H 1

0 (D)||a − ã||L∞(D), (2.13)

so that the following stability estimate holds for ∀y ∈ Γ by the fact ||ũ||H 1
0 (D) ≤ (CP /ami n)|| f̃ ||L2(D) (due

to the Lax–Milgram theorem and Assumption 0.2 holding also for ã):

||u(y)− ũ(y)||H 1
0 (D) ≤

CP

ami n
|| f (y)− f̃ (y)||L2(D) +

CP

a2
mi n

|| f̃ (y)||L2(D)||a(y)− ã(y)||L∞(D). (2.14)

Setting ã(y) = a(y +δy) and f̃ (y) = f (y +δy) such that y +δy ∈ Γ, we have by Assumption 0.3 that
ã(y) → a(y) in L∞(D) and f̃ (y) → f (y) in L2(D) so that ũ(y) = u(y +δy) → u(y) in H 1

0 (D) when δy → 0.
Therefore, the solution is continuous with respect to the parameter y ∈ Γ, i.e., u ∈C 0(Γ; H 1

0 (D)). ä

A direct application of Lemma 2.2.1 leads to the following lemma for the existence of partial derivatives
of the solution with respect to the parameter y ∈ Γ as well as their bound in H 1

0 (D).

Lemma 2.2.2 For any y ∈ Γ, there exists a unique ∂νy u(y) in H 1
0 (D) provided that Assumption 0.3 are

satisfied for any y ∈ Γ and ν= (ν1, . . . ,νK ) ∈Λ, where Λ⊂NK is a multiple index set. Moreover, we have
the following estimate:

||∂νy u(y)||H 1
0 (D) ≤ B(y)|ν|!ην+ CP

ami n
|ν|! ∑

k:νk 6=0

(
ην−ek || fk ||L2(D)

)
, (2.15)

where

B(y) = CP

ami n
|| f (y)||L2(D), |ν|! = (ν1 +·· ·+νK )!, ην =

K∏
k=1

η
νk
k , ηk = ||ak ||L∞(D)

ami n
. (2.16)

Proof We use an induction argument for the proof in the following few steps.

Step 1. First, when |ν| = 0, there exists a unique solution u ∈ H 1
0 (D) of problem (46) for every y ∈ Γ

thanks to the Lax–Milgram theorem. Moreover, the estimate

||∂νy u(y)||H 1
0 (D) = ||u(y)||H 1

0 (D) ≤
CP

ami n
|| f (y)||L2(D) = B(y) (2.17)

holds, which verifies (2.15) for |ν| = 0.

Step 2. For |ν| ≥ 1, we are about to prove that there exists a unique function ∂νy u(y) satisfying the
following general recursive equation (write a(y) in short for a(x, y), etc.),∫

D
a(y)∇∂νy u(y) ·∇v =− ∑

k:νk 6=0
νk

∫
D

ak∇∂ν−ek
y u(y) ·∇v + ∑

k:ν=ek

∫
D

fk v ∀v ∈ H 1
0 (D), (2.18)

where ek is a K dimensional vector with the k-th element as 1 and all the other elements as 0. To see
this, let us first show that for |ν| = 1, i.e., ν= ek ,1 ≤ k ≤ K , there exists a unique solution ∂νy u(y) to (2.18).
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We take the perturbation ã(y) = a(y −hek ), f̃ (y) = f (y −hek ), and ũ(y) = u(y −hek ) in (2.12) and set
Dk

hu = (u(y)−u(y −hek ))/h; then (2.12) becomes∫
D

a(y)∇Dk
hu(y)∇v =

∫
D

fk v −
∫

D
ak∇u(y −hek ) ·∇v ∀v ∈ H 1

0 (D), (2.19)

which results in a unique solution Dk
hu(y) ∈ H 1

0 (D) by the Lax–Milgram theorem. Taking the limit h → 0,

we have by the continuity result in Lemma 2.2.1 that u(y −hek ) → u(y) so that Dk
hu(y) → ∂νy u(y) exists.

Therefore, ∂νy u(y) is a unique solution of (2.18) for ν= ek ,1 ≤ k ≤ K . By induction we suppose that there

exists a unique function ∂ν̃y u(y) satisfying (2.18) for |ν̃| = |ν| −1, i.e., ν̃ = ν− e j for some j = 1, . . . ,K ;
then we claim that there exists a unique function ∂νy u(y) satisfying (2.18) for each ν such that |ν| > 1. By
the same argument of perturbation and continuity property, we are able to take the derivative of (2.18)
with respect to y j , where ν is replaced by ν̃= ν−e j in (2.18), yielding∫

D
a(y)∇∂νy u(y) ·∇v+

∫
D

a j∇∂ν−e j
y u(y) ·∇v =− ∑

k 6= j :νk 6=0
νk

∫
D

ak∇∂ν−ek
y u(y) ·∇v

−(ν j −1)
∫

D
a j∇∂ν−e j

y u(y) ·∇v + ∑
k:ν=ek

∫
D

fk v,
(2.20)

which can be simplified by summing up the same terms to end up with (2.18). By the Lax–Milgram
theorem, we have that there exists a unique solution ∂νy u(y) ∈ H 1

0 (D) to (2.18).

Step 3. We are going to show that the estimate (2.15) holds for |ν| ≥ 1 in this step. Upon replacing v by
∂νy u(y) in (2.18), we have by Assumption 0.2 as well as the Cauchy–Schwarz and Poincaré inequalities
the following estimate:

||∂νy u(y)||H 1
0 (D) ≤

∑
k:νk 6=0

νkηk ||∂ν−ek
y u(y)||H 1

0 (D) +
CP

ami n

∑
k:ν=ek

|| fk ||L2(D). (2.21)

Observe that when |ν| = 1, i.e., ν= ek ,1 ≤ k ≤ K , estimate (2.21) becomes

||∂νy u(y)||H 1
0 (D) = ||∂yk u(y)||H 1

0 (D) ≤ B(y)ηk +
CP

amin
|| fk ||L2(D), (2.22)

which is the same as in (2.15). If |ν| > 1, estimate (2.21) becomes

||∂νy u(y)||H 1
0 (D) ≤

∑
k:νk 6=0

νkηk ||∂ν−ek
y u(y)||H 1

0 (D). (2.23)

Suppose estimate (2.15) holds for any |ν̃| < |ν| with |ν| > 1; then we have

||∂νy u(y)||H 1
0 (D) ≤

∑
j :ν j 6=0

ν jη j ||∂ν−e j
y u(y)||H 1

0 (D)

≤ ∑
j :ν j 6=0

ν jη j

(
B(y)(|ν|−1)!ην−e j + CP

amin
(|ν|−1)!

∑
k:νk 6=0

(
ην−e j −ek || fk ||L2(D)

))

= B(y)

( ∑
j :ν j 6=0

ν j

)
(|ν|−1)!ην+ CP

amin

( ∑
j :ν j 6=0

ν j

)
(|ν|−1)!

∑
k:νk 6=0

(
ην−ek || fk ||L2(D)

)
= B(y)|ν|!ην+ CP

ami n
|ν|! ∑

k:νk 6=0

(
ην−ek || fk ||L2(D)

)≡Ca, f (y)|ν|!ην,

(2.24)
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where

Ca, f (y) = B(y)+CP
∑

k:νk 6=0,||ak ||L∞(D) 6=0

|| fk ||L2(D)

||ak ||L∞(D)
, (2.25)

so that estimate (2.15) also holds for ν with |ν| > 1. ä

An analytic extension of the solution u in a certain region Σ such that Γ⊂ Σ is a consequence of the
regularity result in Lemma 2.2.2 provided conditions are suitable, as stated in the following lemma.

Lemma 2.2.3 Holding all the assumptions in Lemma 2.2.2, and defining

Σ=
{

z ∈CK : ∃ y ∈ Γ s.t. |(η · |z − y |)| =
K∑

k=1
ηk |zk − yk | < 1

}
, (2.26)

we can find an analytic extension of the stochastic solution u in the complex region Σ and we define
Σ(Γ;τ) := {z ∈Σ : di st (z,Γ) ≤ τ} ⊂Σ for the largest possible vector τ= (τ1, . . . ,τK ).

Proof By the Taylor expansion of u(z) about y ∈ Γ in the complex domain we obtain

u(z) =∑
ν

∂νy u(y)

ν!
(z − y)ν (2.27)

with ν! = ν1! · · ·νK !. Thanks to the regularity result in Lemma 2.2.2, we obtain∣∣∣∣∣
∣∣∣∣∣∑ν

∂νy u(y)

ν!
(z − y)ν

∣∣∣∣∣
∣∣∣∣∣

H 1
0 (D)

≤∑
ν

|z − y |ν
ν!

||∂νy u(y)||H 1
0 (D)

≤Ca, f (y)
∑

n≥0:|ν|=n

|ν|!
ν!

(
η · |z − y |)ν

=Ca, f (y)
∑

n≥0

(
K∑

k=1
ηk |zk − yk |

)n

= Ca, f (y)

1−∑K
k=1ηk |zk − yk |

,

(2.28)

where the second inequality is due to Lemma 2.2.2 and the first equality follows from the generalized
Newton binomial formula. In the complex region defined in (2.26), we obtain that the function u(z)
admits a Taylor expansion around y ∈ Γ so that the solution u can be analytically extended to the
complex region (2.26). ä

2.2.2 A priori convergence analysis

To prove the exponential convergence of the weighted reduced basis method for problem (46) for the
case of one random variable, i.e., Γ⊂R, we bound the error by another type of constructive spectral
approximation or more specifically, extension of the Chebyshev polynomial approximation for analytic
functions (see [61, Chapter 7]). The idea has also been used in the proof of the exponential convergence
property of the stochastic collocation method [8]. Based on this idea we also obtain the a priori error
estimate of the reduced basis approximation for multidimensional problems, e.g., Γ⊂RK ,K > 1.

We define the weighted space C 0
w (Γ; X ) equipped with the following norm

||v ||C 0
w (Γ;X ) = max

y∈Γ
(w(y)||v(y)||X ) (2.29)
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for any positive continuous bounded weight function w : Γ→ R+. Because of Assumption 0.3, the
linear coefficient a and forcing term f satisfy a ∈C 0(Γ;L∞(D)) and f ∈C 0

w (Γ;L2(D)).

Theorem 2.2.4 Under Assumption 0.3 with Γ⊂ R, the error between the reduced basis solution uN =
PN u (recall that PN : u → uN represents the Galerkin projection operator) and the “truth" solution u of
problem (46) enjoys the exponential convergence

||u −PN u||C 0
w (Γ;X ) ≤C w e−r N max

z∈Σ(Γ;τ)
||u(z)||X (2.30)

where the constant C w depends on the weight w and is independent of N , and the rate r is defined as

1 < r = log

(
2τ

|Γ| +
√

1+ 4τ2

|Γ|2
)

, (2.31)

where τ is defined in Lemma 2.2.3.

Remark 2.2.1 The convergence rate stated above does not depend on the specific problem (39). In fact,
as long as u = u(y) is an analytic function, the exponential convergence rate (2.30) holds for reduced
basis approximation as demonstrated in the proof of this theorem later. The same a priori convergence
property can therefore be established for problems other than the elliptic problem (39) under linear or
affine assumptions (43) as studied in [131, 115].

Proof First, we note that the results obtained in the above lemmas in H 1
0 (D) norm are still valid in the

equivalent X norm. Given a bounded and continuous one-dimensional domain Γ⊂R, we introduce
the change of variables y(t ) = ȳ+ |Γ|

2 t with t ∈ [−1,1] and ȳ the center of domain Γ, so that y : [−1,1] → Γ

is bijective. Let the solution of problem (46) be set as û(t) = u(y(t)) for t ∈ [−1,1]; then we have that
û : [−1,1] → X can be analytically extended to Σ([−1,1],2τ/|Γ|) by Lemma 2.2.3. Consequently, there
exists a spectral expansion of û on the standard Chebyshev polynomials ck : [−1,1] → R and |cn | ≤
1,n = 0,1, . . . , in the form

û(t ) = u0

2
+

∞∑
n=1

ûncn(t ). (2.32)

The n-th Chebyshev coefficient fulfils [61]

ûn = 1

π

∫ π

−π
û(cos(t ))cos(nt )d t , ||ûn ||X ≤ 2%−n max

z∈D%

||û(z)||X , n = 0,1, . . . , (2.33)

where the elliptic disc D% is bounded by the ellipse E% with foci ±1 and the sum of the half-axes

%= 2τ/|Γ|+
√

1+ (4τ2/|Γ|2). Define the N -th order Chebyshev polynomial approximation of û as the
truncation of (2.32) up to N terms, written as

ΠN û = u0

2
+

N∑
n=1

ûncn(t ); (2.34)

then the truncation error is bounded by using |cn | ≤ 1,n = N +1, . . . , and (2.33) as follows:

||û −ΠN û||C 0([−1,1];X ) ≤
∑

n≥N+1
||ûn ||X ≤ 2

%−1
e− log(%)N max

z∈D%

||û(z)||X , (2.35)

Therefore, by the identity û(t ) = u(y(t )), t ∈ [−1,1], we have

||u −ΠN u||C 0(Γ;X ) ≤
2

%−1
e−r N max

z∈D%

||û(z)||X ≤ 2

%−1
e−r N max

z∈Σ(Γ;τ)
||u(z)||X , (2.36)
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where we define r := log(%), as given in (2.31). It is left to prove that the reduced basis approximation
error can be bounded by the above truncation error. In fact, for any function v ∈PN (Γ)⊗X , a tensor
product of polynomials with total degree at most N and X , we have that IN v = v [36, 8], where IN is
the Lagrange interpolation operator based on the interpolation points yn ,n = 1, . . . , N +1; see [8]. We
have the following estimate with the help of the Lagrange interpolation operator

||u −PN+1u||X ≤C0 inf
v∈XN+1

||u − v ||X
≤C0||u −IN u||X
≤C0 inf

v∈PN (Γ)⊗X
(||u − v ||X +||v −IN u||X )

=C0 inf
v∈PN (Γ)⊗X

(||u − v ||X +||IN v −IN u)||X )

≤ (C0 +C1) inf
v∈PN (Γ)⊗X

||u − v ||X ,

(2.37)

where the first inequality is due to Cea’s lemma [165] with constant C0 <∞ and the second due to
the fact infv∈XN+1 ||u − v ||X ≤ ||u −IN u||X ; as for the last inequality, we have used the property that
the Lagrange interpolation operator IN is linear and ||IN v ||X ≤C1||v ||X ∀v ∈C 0(Γ, X ) for a constant
C1 <∞, see [8]. Moreover, because the Chebyshev polynomials ck ∈PN ([−1,1]),k = 0,1, . . . , N , we have

inf
v∈PN (Γ)⊗X

||u − v ||X = inf
v̂∈PN ([−1,1])⊗X

||û − v̂ ||X ≤ ||û −ΠN û||X = ||u −ΠN u||X . (2.38)

A combination of (2.36), (2.37), and (2.38) leads to the following bound for the reduced basis approxi-
mation error with C = 2(C0 +C1)er /(%−1):

||u −PN u||X ≤Ce−r N max
z∈Σ(Γ;τ)

||u(z)||X . (2.39)

Since the reduced basis approximation PN u satisfies the linear system (2.7), which can be written in
the compact form as

A(PN u, v ; y) = F (v ; y) ∀v ∈ XN , (2.40)

we obtain the same regularity for PN u as for the solution u to system (46) with respect to the parameter
y . In particular, PN u ∈ C 0

w (Γ; X ), so that u −PN u ∈ C 0
w (Γ; X ). Multiplying both sides of (2.39) by

the weight function w and taking the maximum value over the parameter domain Γ, we obtain the
exponential convergence result (2.30) with the constant C w =C maxy∈Γw(y).

ä

Remark 2.2.2 The exponential convergence result (2.30) holds for the case of a single parameter in
a bounded parameter domain |Γ| < ∞. Extension to a single parameter in the unbounded domain,
e.g., a normal distributed random variable, requires that the data a and f feature a fast decrease at
the parameter far away from the origin, and the constructive approximation by spectral expansion on
Chebyshev polynomials (2.32) is replaced by the one on Hermite polynomials [8]. The proof follows the
same procedure as for Theorem 2.2.4 and we omit it for simplicity.

As for the reduced basis approximation in the multidimensional case, we have the following a priori
error estimate:

Theorem 2.2.5 Under Assumption 0.3 with Γ⊂RK ,K > 1, the approximation error of the reduced basis
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solution can be bounded by

||u −PN u||C 0
w (Γ;X ) ≤ max

z∈Σ(Γ;τ)
||u(z)||X

K∑
k=1

C w
k e−rk Nk , (2.41)

where the constants C w
k ,1 ≤ k ≤ K , depend on the weight w and dimension k but is independent of the

number of nodes in the k-th dimension Nk , N =∏K
k=1 Nk , and the rate rk is defined as

1 < rk = l og

 2τk

|Γk |
+

√
1+

4τ2
k

|Γk |2

 ,1 ≤ k ≤ K . (2.42)

Proof Let us choose the training set as all the nodes of a tensor product grid, i.e.,Ξtr ai n := {(yn1
1 , . . . , ynK

K ),
1 ≤ nk ≤ Nk ,1 ≤ k ≤ K }, for instance the Gauss quadrature nodes corresponding to the probability
density function of the random vector y . We define the reduced basis space X k

N ,1 ≤ k ≤ K , as a
linear combination of the snapshots u(y) at y = (y1

k , y∗
k ), . . . , (y N

k , y∗
k ), where yn

k ∈ Γk ,1 ≤ n ≤ N , and
y∗

k is any point in the rest of the K − 1 dimensional domain denoted as Γ∗k . Correspondingly, we

define the Galerkin projection operator P k
N : X → X k

N ,1 ≤ k ≤ K , such that P k
N u is the solution of

the reduced problem (2.40) in X k
N whenever u is the solution of the original problem (46) in X at

any y = (yk , y∗
k ) ∈ Γk ×Γ∗k . Let XN be the reduced basis space spanned by the snapshots at all the

N =∏K
k=1 Nk samples and PN : X → XN be the associated Galerkin projection operator; then we have

for the solution u ∈ X of problem (46) at any y = (y1, y∗
1 ) ∈ Γ1 ×Γ∗1 ,

PN u = P 1
N ◦ · · · ◦P K

N u, (2.43)

the symbol ◦ being the composition of the projection operators. By triangular inequality, we have

||u −PN u||X ≤ ||u −P 1
N u||X +||P 1

N (u −P 2
N ◦ · · · ◦P K

N u)||X , (2.44)

where we can bound the first term as in (2.39) by

||u −P 1
N u||X ≤C1e−r1N1 max

(z1,z∗1 )∈Σ(Γ1×Γ∗1 ;τ)
||u(z)||X ≤C1e−r1N1 max

z∈Σ(Γ;τ)
||u(z)||X , (2.45)

where z1, z∗
1 are the complex elements associated with y1 and y∗

1 ; the constant C1 has similar definition
as C in (2.39) and rk is defined in (2.42). As for the second term, thanks to the fact that ||P 1

N v ||X ≤ ||v ||X
we have

||P 1
N (u −P 2

N ◦ · · · ◦P K
N u)||X ≤ ||u −P 2

N ◦ · · · ◦P K
N u||X . (2.46)

By iteration, we obtain the error bound

||u −PN u||X ≤ max
z∈Σ(Γ;τ)

||u(z)||X
K∑

k=1
Ck e−rk Nk , (2.47)

which leads to the a priori error estimate (2.41) by multiplying by the weight function w on both sides
and noting that PN u ∈C 0

w (Γ; X ), where the constants C w
k :=Ck maxy∈Γw(y),1 ≤ k ≤ K . ä

Remark 2.2.3 In practice, the training set Ξtr ai n can be chosen in a more general way, e.g., by sampling
according to the probability density function, and the cardinality of the reduced basis space XN is much
lower than

∏K
k=1 Nk given in the theorem. In fact the error estimate obtained in this theorem is rather

crude. An improved convergence rate e−r ′Nβ/(β+1)
was achieved in [20] provided that the Kolmogorov

N-width by the optimal N dimensional approximation decays as e−r Nβ
in a more general setting, e.g., if
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Γ is not bounded. However, the Kolmogorov N-width is not available in general.

A direct consequence of Theorems 2.2.4 and 2.2.5 for the convergence of quantity of interest and its
statistical moments is summarized in the following corollary:

Corollary 2.2.6 Suppose that the assumptions in Theorem 2.2.4 hold, we have

||s(u)− s(PN u)||C 0
w (Γ) ≤ ||s||X ′ ||u −PN u||C 0

w (Γ;X ), (2.48)

and for the k-th order statistical moment, where k = 1,2, . . . , we have

|E[sk (u)]−E[sk (PN u)]| ≈
∣∣∣∣∣ M∑
m=1

w(ym)(s(u; ym)− s(PN ; ym))

(
k−1∑
l=0

sk−1−l (u; ym)sl (PN u; ym)

)∣∣∣∣∣
≤ M ||s(u)− s(PN u)||C 0

w (Γ)C
k
s ,

(2.49)

where C k
s is a constant depending on the output s and the statistical moment k with C 1

s = 1.

2.3 Numerical examples

In this section, we present several numerical examples to illustrate the efficiency of the weighted
reduced basis method compared to the classical reduced basis method and the stochastic collocation
method. The output of interest is defined as the integral of the solution over the physical domain D

s(y) =
∫

D
u(x, y)d x. (2.50)

We define the following two errors as criteria of different numerical methods:

||s − sN ||C 0
w (Γ) and |E[s]−E[sN ]|, (2.51)

where sN is the approximated value of s obtained using N bases for (weighted) reduced basis method
or N collocation points for the stochastic collocation method. In particular, we use the weight func-
tion in one dimension as the probability density function of the random variable obeying Beta(α,β)
distribution with shape parameter α and β providing distinctive property of the weight, defined as

w(y ;α,β) = 1

2B(α,β)
(1+ y)α−1(1− y)β−1 y ∈ [−1,1], (2.52)

where the beta function B is a normalization constant such that the total probability integrates to 1. In
our numerical experiments, we use the Gauss-Jacobi quadrature formula to compute the expectation
(2.51) with the solution at the abscissas evaluated by the reduced basis methods. As for the stochastic
collocation method, we use the Gauss-Jacobi abscissas as the collocation points, which is more accurate
than other choices, especially when the weight function is more concentrated. We specify the detailed
setting of the weighted reduced basis method in the following subsections. The physical domain is
a square D = (−1,1)2 and homogeneous Dirichlet boundary conditions are prescribed on the entire
boundary ∂D .
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2.3. Numerical examples

2.3.1 One-dimensional problem

We set the stochastic coefficient a(x,ω), x = (x1, x2) ∈ D , in problem (39) (depending only on x1) as

a(x,ω) = 1

10
(1.1+ sin(2πx1)Y (ω)) (2.53)

with random variable Y ∼ Beta(α,β) with (α,β) = (1,1), (10,10) and (100,100), respectively. We remark
that when (α,β) = (1,1) the weighted reduced basis method becomes a reduced basis method with
uniformly distributed random variable, which has been examined in [50]. The left of Figure 2.1 depicts
the shape of weight at different locations. For simplicity, the forcing term is taken with a deterministic
value f = 1. We use the same tolerance ε= 1×10−15 for three different weight functions to stop the
greedy algorithm; ntr ai n = 1000 samples are uniformly selected to construct the reduced basis space.
Another 1000 samples are used to test the accuracy of different methods. The exponential convergence
of the error ||s−sN ||C 0

w (Γ) and its error bound in logarithmic scale for three different weight functions are
displayed on the right side of Figure 2.1 for the weighted reduced basis method. The maximum number
of bases Nmax = 16,11,6 built at the training samples are visualized with selection order identified by
the marker size on the left side of Figure 2.1; they are quite different for different weight functions.
From the location and selecting order of the samples on the left of Figure 2.1, we can conclude that the
weight function plays an important role in choosing the most representative bases.
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Figure 2.1: Left: probability density function of Beta(α,β) distribution with different α,β and samples
selected by weighted reduced basis approximation; the bigger the size the earlier it has been selected.

Right: convergence of the error log10

(
||s − sN ||C 0

w (Γ)

)
by the weighted reduced basis method.

In the comparison of the convergence property of the reduced basis method, the weighted reduced
basis method as well as the stochastic collocation method, we select the weight function of Beta(10,10)
and compute the two errors defined in (2.51) with the results shown in Figure 2.2. It is evident that the
weighted reduced basis method outperforms the reduced basis method in both norms, and these two
methods are more accurate than the stochastic collocation method in the || · ||C 0

w (Γ) norm. As for the
expectation, the weighted reduced basis method is the best and the reduced basis method does not
beat the stochastic collocation method because it does not take the weight into account.

However, as demonstrated in [50], the computation of both reduced basis methods for the one-
dimensional stochastic problem is more expensive than that of the stochastic collocation method
because of the offline construction with a large number of training samples, especially for the problem
requiring low computational effort in one deterministic solving. Similar numerical examples for some
other weight functions are presented in the appendix for expository convenience.
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Figure 2.2: Left: convergence of the error log10

(
||s − sN ||C 0

w (Γ)

)
by the reduced basis method (RBM),

the weighted reduced basis method (wRBM) and the stochastic collocation method (SCM). Right:
convergence of the error log10 (|E [s]−E [sN ]|) by RBM, wRBM, and SCM, both with K = 1,Beta(10,10).

2.3.2 Multidimensional problem

For the test of a multidimensional problem, we consider the following coefficient

a(x,ω) = 1

10

(
4+

(p
πL

2

)1/2

y1(ω)+
2∑

n=1

√
λn

(
sin(nπx1)y2n(ω)+cos(nπx1)y2n+1(ω)

))
, (2.54)

where yk ,1 ≤ k ≤ 5, obeying Beta(100,100), L = 1/4 and λ1 = 0.3798,λ2 = 0.2391. A sufficient number of
ntr ai n = 10000 samples (in fact ntr ai n = 1000 provides almost the same result in this example) obeying
independent and identically distributed yk ∼ Beta(100,100),1 ≤ k ≤ 5, are taken within the parameter
domain Γ= [−1,1]5 to construct the reduced basis space and another 1000 samples following the same
distribution are taken independently to test different methods. We compare the performance of the
weighted reduced basis method, the reduced basis method, and a sparse grid collocation method, with
results displayed in Figure 2.3. The two reduced basis methods are obviously more efficient in both
norms (2.51) with the weighted type providing faster convergence: the number of bases constructed
for the weighted reduced basis method (Nmax = 15) is half that necessary for the reduced basis method
(Nmax = 30).

As for the computational effort, the stochastic collocation method with sparse grid depends critically
on the dimension [149], while the reduced basis methods are near the best approximation in the
sense that they considerably alleviate the “curse of dimensionality" for analytic problems and save the
computational effort significantly for high-dimensional problems, especially those with big cost for
one deterministic solving. The weighted reduced basis method uses fewer bases than the conventional
reduced basis method in both offline construction and online evaluation and thus costs less compu-
tational effort, particularly for high concentrated weight function, as shown in the above examples.
For a detailed comparison of computational cost for the reduced basis method and the stochastic
collocation method in various conditions, notably for large-scale and high-dimensional problems, see
[50] and results anticipated in chapter 1.
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Figure 2.3: Left: convergence of the error log10

(
||s − sN ||C 0

w (Γ)

)
. Right: convergence of the error

log10 (|E [s]−E [sN ]|), computed by RBM, wRBM, and SCM, both with K = 5,Beta(100,100).

2.4 Summary

We proposed a weighted reduced basis method to deal with parametric elliptic problems with distinctive
weight or importance at different values of the parameters. This method is particularly suited in
solving stochastic problems with random variables obeying various probability distributions. Analytic
regularity of the stochastic solution with respect to random variables was obtained under certain
assumptions for the random input data, based on which an exponential convergence property of this
method was studied by constructive approximation of general functions with analytic dependence
on the parameters. The computational efficiency of the proposed method was compared to the ones
of the classical reduced basis method and the (sparse grid) stochastic collocation method and was
demonstrated numerically for both univariate and multivariate stochastic elliptic problems.

There are a few potential limitations we would like to warn the reader about: first, the performance
of the weighted reduced basis method for low regularity problems is to be investigated, possibly
improved by combination with the hp-adaptive reduced basis method [65]. Second, the efficient
empirical interpolation method [11, 48] needs to be applied in order to use the weighted reduced basis
method to solve nonlinear stochastic problems or linear stochastic problems with nonaffine random
inputs exhibiting various probability structure. Finally, we would like to mention that application of
the weighted reduced basis method to more general problems, e.g., parabolic problems [87], fluid
dynamics [162], multiscale and multiphysics problems [117], stochastic optimization problems [47],
and inverse problems [133], as well as more general stochastic problems with different probability
structures is seen as upcoming perspectives.

Appendix A

To further illustrate the efficiency of the weighted reduced basis method, we present the following
numerical examples with some widely used weight functions other than those introduced in section
2.3.

1. Weight function as truncated probability density function of normal distributed random variable:

a(x,ω) = 1

10
(3.1+ sin(2πx1)Y (ω)I(|Y | ≤ 3)),Y ∼ Normal(µ,σ); w(y) = 1p

2πσ
exp

(
− (y −µ)2

2σ2

)
;
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2. Weight function as truncated probability density function of gamma distributed random variable:

a(x,ω) = 1

10
(10.1+ sin(2πx1)Y (ω)I(Y ≤ 10)),Y ∼ Gamma(k,γ); w(y) = 1

γkΓ(k)
yk−1 exp(− y

γ
);

3. Weight function as truncated probability density function of Poisson distributed random variable:

a(x,ω) = 1

10
(100.1+ sin(2πx1)Y (ω)I(Y ≤ 100)),Y ∼ Poisson(λ); w(y) = λy e−λ

y !
.

The selected samples for different weight functions and error of log10(||s − sN ||C 0
w (Γ)) are displayed

in Figures 2.4, 2.5, and 2.6, respectively, from which we can observe that the samples are effectively
chosen according to the weight functions. Consequently, both the offline construction and the online
evaluation become more efficient by the weighted reduced basis method than the conventional one.
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Figure 2.4: Left: probability density function of Y ∼ Normal(µ,σ) with different µ,σ and samples
selected by weighted reduced basis approximation; the bigger the size the earlier it has been selected.

Right: convergence of the error log10

(
||s − sN ||C 0

w (Γ)

)
by the weighted reduced basis method.
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Figure 2.5: Left: probability density function of Y ∼ Gamma(k,γ) with different γ and samples selected
by weighted reduced basis approximation; the bigger the size the earlier it has been selected. Right:

convergence of the error log10

(
||s − sN ||C 0

w (Γ)

)
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Figure 2.6: Left: probability density function of Y ∼ Poisson(λ) with different λ and samples selected
by weighted reduced basis approximation; the bigger the size the earlier it has been selected. Right:
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3 Decomposition of nonaffine fields – a
weighted empirical interpolation

A critical assumption made in both chapter 1 and chapter 2 to achieve the efficiency of the reduced
basis method is that the random fields have an affine structure, which makes the offline-online decom-
position possible. However, in practice the random fields are not necessarily given in the form of affine
expansion; for instance, a lognormal random field

g (x, y) = exp

(
K∑

k=1
gk (x)yk

)
, (3.1)

is most often assumed for a diffusion coefficient that is strictly positive. This is of course nonaffine in the
random variables y = (y1, . . . , yK ). In order to retain the advantage of the offline-online decomposition,
a common strategy consists in approximating the nonaffine structure by an affine function involving a
separation of physical variables and random variables.

The empirical interpolation method [11] was originally developed to approximate the nonaffine coeffi-
cients of a partial differential equation in order to effectively decompose the reduced basis method into
the offline construction and the online evaluation. Since its development, many applications of this
method have been considered and several extentions proposed [86, 129, 201, 63, 176, 118, 40, 163]. In
particular, we mention its application and analysis in the context of the reduced basis approximation
for nonlinear elliptic and parabolic equations [86], in the geometrical parametrization of domains and
shapes [132], and its extension to a general, multipurpose interpolation procedure [129], in which a
priori error estimate compared to Kolmogorov N-width was obtained.

The basic idea behind empirical interpolation for parametric function g (x, y) is to choose the parameter
samples y1, y2, . . . and the interpolation nodes x1, x2, . . . recursively in a greedy approach according
to the criteria that the values ym and xm selected at each step m = 1,2, . . . are the most representative
ones in L∞ norm, that is the ones where the function is worst approximated by the interpolation
formula constructed from the previous steps [11]. This is essentially different from the conventional
interpolation construction which requires the interpolation nodes to be chosen a priori according
to a specific rule, e.g., roots of orthogonal polynomials [164]. The so called “magic points" [129]
(ym , xm),m = 1,2, . . . obtained by the goal-oriented or the function-specified empirical interpolation
procedure are supposed to identify an interpolation formula by capturing some specific features (e.g.,
regularity, extreme values) of the given function, thus providing higher interpolation accuracy. Another

Reference for this chapter:

P. Chen, A. Quarteroni, and G. Rozza. A weighted empirical interpolation method: A priori convergence analysis and applications.
ESAIM: Mathematical Modelling and Numerical Analysis, in press, online doi: 10.1051/m2an/2013128, 2013.
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superiority of the empirical interpolation construction is attributed to the affine expansion of the
function given in whatever form, leading to the separation of the physical variables and the random
variables in the following expression:

g (x, y) ≈IM [g ] =
M∑

j=1
Θ j (y)q j (x), (3.2)

which can be efficiently exploited in conducting mathematical manipulation, e.g., numerical integra-
tion or reduced basis approximation [86]. Conventionally, one supposes that the parameter y , if viewed
as a random variable, is uniformly distributed in a bounded space Γ.

However, in many applications, e.g., stochastic problems with parametrized random variables that obey
normal distribution, the request of the boundedness of the parameter space Γ and that of the uniform
distribution of the parameter y is quite difficult to be fulfilled. In these situations, the approximation
to some quantities of interest (e.g., statistics of the function) based on the parameter samples and
interpolation nodes, selected by the empirical interpolation procedure, would not lead to results that
are as accurate or efficient as those expected when taking distinct weights of the parameter at different
values into account. In this chapter we propose a weighted empirical interpolation method (wEIM) by
considering a weighted optimization problem and analyzing its convergence properties by improving
the a priori error estimate obtained in [129]. To demonstrate numerically its effectiveness and efficiency,
we apply the wEIM to approximating nonlinear parametric functions, geometric Brownian motion in
one dimension, exponential Karhunen–Loève expansion in multiple dimensions as well as reduced
basis approximation to nonaffine stochastic elliptic problems, and we compare it with the conventional
empirical interpolation method (EIM) and sparse grid stochastic collocation method. It is worth
mentioning that constructing a goal-oriented numerical method is a quite common procedure in
adaptive finite element methods [14, 82] and has also been applied to construct adaptive reduced basis
method [41].

This chapter is organized as follows. We present the weighted empirical interpolation method in section
3.1. A priori convergence analysis is carried out in section 3.2, followed by section 3.3 where different
applications of this method are addressed. Some limitations and perspectives of the weighted empirical
interpolation are provided in section 3.4.

3.1 Weighted empirical interpolation method (wEIM)

For notational convenience, we introduce the spaces L∞(D) defined in a bounded physical domain
D ⊂ Rd ,d ∈ N+ and C 0

w (Γ) defined in a parameter space (not necessarily bounded) Γ ⊂ RK ,K ∈ N+,
which are equipped with the following norms:

||g ||L∞(D) = esssup
x∈D

|g (x)| and ||g ||C 0
w (Γ) = max

y∈Γ
w(y)|g (y)| (3.3)

for a given positive weight function w : Γ→R+. We also define the Bochner space L∞(D ;C 0
w (Γ)) for a

parameter dependent function equipped with the norm

||g ||L∞(D ;C 0
w (Γ)) = esssup

x∈D

(
max
y∈Γ

w(y)|g (x, y)|
)
≡ max

y∈Γ
w(y)

(
esssup

x∈D
|g (x, y)|

)
. (3.4)

We note that L∞(D), as used in [11, 86, 129], is usually replaced with C 0(D) for conventional interpola-
tion of continuous functions [164].

At the discrete level, the physical domain D is replaced by a set of vertices x ∈Vx with finite cardinality
nx = |Vx | <∞, for instance finite element nodes, and the parameter space Γ is represented by a sample
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set Ξy of finite cardinality ny = |Ξy | <∞. We present the weighted empirical interpolation method
in Algorithm 3. We emphasize that the initial sample y1 is chosen such that the weighted function is
maximized in L∞(Vx ;C 0

w (Ξy )) norm:

y1 = argmax
y∈Ξy

[
w(y)

(
ess sup

x∈Vx

|g (x, y)|
)]

. (3.5)

In the course of the construction procedure, the quasi-optimal samples y M+1, M ≥ 1, can be chosen
by a greedy algorithm to minimize the weighted optimal approximation error (3.6) in the subspace
WM := span{g (·, y i ),1 ≤ i ≤ M }, i.e., find y M+1 ∈Ξy such that

y M+1 = argmax
y∈Ξy

[
w(y)

(
inf

h∈WM

||g (y)−h||L∞(Vx )

)]
. (3.6)

However, the weighted L∞ optimization problem (3.6) is expensive to solve by linear programming if
|Vx | and |Ξy | are large. In practice, it can be efficiently replaced by a weighted L2 optimization problem
[86] or by a surrogate weighted L∞ optimization problem (3.9) [129].

We state several properties of the weighted empirical interpolation method in the following lemmas,
whose proof is straightforward by noting the fact that the weight function w : Γ→R+ is positive, and
therefore omitted here; see, for instance, [11, 86, 129] for details.

Lemma 3.1.1 For any M < Mmax , the subspace QM = span{qm ,1 ≤ m ≤ M } is of dimension M. More-
over, the matrix B M formed in (3.12) is lower triangular with unity diagonal and thus invertible.

Lemma 3.1.2 For any function h ∈QM , the empirical interpolation formula given by (3.7) is exact, i.e.,
rM+1(x, y) = 0∀x ∈Vx and y ∈Ξy . In general, for any function g ∈ L∞(D ;C 0

w (Γ)), we have

||g −IM [g ]||L∞(D) ≤ (1+ΛM ) inf
h∈QM

||g −h||L∞(D) with ΛM ≤ 2M −1. (3.13)

Remark 3.1.1 In practice, the empirical interpolation method is always carried out on a discrete finite
vertex set Vx instead of the domain D. In order to make this idea more explicit, a variant version of the
empirical interpolation method, under the name of discrete empirical interpolation method (DEIM), is
proposed in [40] to solve nonlinear problems. In particular, nonlinear systems of ordinary differential
equations (which have similar structure as nonlinear time-dependent partial differential equations after
spatial discretization) were efficiently treated by the DEIM in [40].

3.2 A priori convergence analysis

The interpolation error obtained in (3.13) with the Lebesgue constantΛM ≤ 2M −1 (see proof in [86])
by the empirical interpolation procedure is too pessimistic, far from the result for conventional
interpolation error based on certain prescribed interpolation nodes (e.g., Chebyshev nodes with
ΛM ∼ log(M) [164]). An explicit a priori convergence rate of the weighted empirical interpolation error
is not available for generic functions. In order to measure the accuracy of the approximation by the
weighted empirical interpolation method, in the following theorem we compare it with the Kolmogorov
N -width [160], which quantifies the optimal approximation error of a subset F in a Banach space H

by any possible N dimensional subspace FN , defined as

dN (F ,H ) := inf
FN⊂H

sup
g∈F

inf
f ∈FN

||g − f ||H . (3.14)
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Algorithm 3 The weighted empirical interpolation method

1: procedure INITIALIZATION:
2: Given finite vertex set Vx ⊂ D , sample set Ξy ⊂ Γ, weight w and function g ∈ L∞(Vx ;C 0

w (Ξy ));
3: find y1 ∈Ξy such that y1 = argmaxy∈Ξy w(y)(esssupx∈Vx

|g (x, y)|); set W1 = span{g (x, y1)};

4: find x1 ∈Vx such that x1 = argesssupx∈Vx
|g (x, y1)|;

5: define r1 = w g , q1(x) = r1(x, y1)/r1(x1, y1),B 1
11 = 1, set M = 1, specify tolerance εtol ;

6: end procedure
7: procedure CONSTRUCTION:
8: while M < Mmax & rM (xM , y M ) > εtol do
9: find ΘM (y) = (ΘM

1 (y), . . . ,ΘM
M (y))T by solving

M∑
j=1

ΘM
j (y)q j (xi ) = g (xi , y) 1 ≤ i ≤ M ; (3.7)

10: define rM+1 : D ×Γ→R as

rM+1(x, y) = g (x, y)−
M∑

j=1
ΘM

j (y)q j (x); (3.8)

11: find y M+1 ∈Ξy such that

y M+1 = argmax
y∈Ξy

[
w(y)

(
ess sup

x∈Vx

|rM+1(x, y)|
)]

, (3.9)

12: find xM+1 ∈Vx such that

xM+1 = argess sup
x∈Vx

|rM+1(x, y M+1)|; (3.10)

13: define qM+1 : D →R as

qM+1(x) = rM+1(x, y M+1)

rM+1(xM+1, y M+1)
; (3.11)

14: update matrix B M+1 ∈R(M+1)×(M+1) as

B M+1
i j = q j (xi ) 1 ≤ i , j ≤ M +1; (3.12)

15: set M = M+1;
16: end while
17: end procedure
18: procedure EVALUATION:
19: For ∀y ∈Ξy , construct approximation (3.2) by solving (3.7), then evaluate (3.2) at ∀x ∈Vx .
20: end procedure

In the context of empirical interpolation, we consider H ≡ L∞(D) and F ≡ Fg (D) as the image of the
function g in Γ, i.e. g : Γ→ Fg (D).

Theorem 3.2.1 The error of the weighted empirical interpolation method can be bounded as follows:

||g −IM [g ]||L∞(Vx ) ≤Cw (M +1)2M dM (Fg (Vx ),L∞(Vx )), (3.15)

where the constant Cw depends on the weight function w but is independent of M.
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Remark 3.2.1 In fact, the result (3.15) is obtained in the subspace L∞(Vx ) for the constructive weighted
empirical interpolation method and can be straightforwardly extended to L∞(D) when the vertex set
Vx tends to D such that the points outside the vertex set Vx can be sufficiently well represented by the
points inside. To be rigorous, we take the vertex set Vx such that for almost every x ∈ D, there exists y ∈Vx

satisfying
|g (x)− g (y)| ≤ ||g −IM [g ]||L∞(Vx ). (3.16)

Consequently, we have the error bound

||g −IM [g ]||L∞(D) ≤ ||g −IM [g ]||L∞(D\Vx ) +||g −IM [g ]||L∞(Vx )

≤ 2||g −IM [g ]||L∞(Vx )

≤Cw (M +1)2M+1dM (Fg (Vx ),L∞(Vx ))

≤Cw (M +1)2M+1dM (Fg (Vx ),L∞(D)).

(3.17)

The proof of (3.15) adopts a constructive approach inspired from that for the greedy algorithm for the
reduced basis method [20]. Some preliminary results are provided in the next two lemmas.

For simplicity, we use the shorthand notation rm(x) = rm(x, ym),1 ≤ m ≤ M +1, obtained in Algorithm
3 and define the functions t j (xi ) = ri (x j ),1 ≤ i , j ≤ M +1, and t j (xi ) = 0,1 ≤ j ≤ M +1, i > M +1.

Lemma 3.2.2 The matrix T M+1 defined by T M+1
i j = t j (xi ),1 ≤ i , j ≤ M + 1, is upper triangular with

dominating diagonal elements, i.e., t j (xi ) = 0, i > j , and |t j (xi )| ≤ |t j (x j )|, i ≤ j .

Proof From the result of Lemma (3.1.1), we know that the matrix B M+1 is lower triangular with unity
diagonal. By the definition of qi ,1 ≤ i ≤ M +1, in (3.11) and the definition of t j ,1 ≤ j ≤ M +1, we
have t j (xi ) = qi (x j )ri (xi ), so that t j (xi ) = qi (x j ) = 0, i > j , and |t j (xi )| ≤ |t j (x j )| = |r j (x j )|, i ≤ j , due to
(3.10). ä

Lemma 3.2.3 For any 1 ≤ m ≤ M +1, there exists a unique b = (b1, . . . ,bm)T ∈Rm such that

rm(x)em(x) =
m∑

j=1
b j t j (x) ∀x ∈Vx , (3.18)

where em ,1 ≤ m ≤ M +1, are unit vectors, i.e., em(xm) = 1 and em(xn) = 0 if n 6= m. In addition, we have
bm = 1 and the bound |bi | ≤ 2m−i−1,1 ≤ i < m, so that |b1|+ · · ·+ |bm | ≤ 2m−1.

Proof For any x = xi , i > M +1, we have em(x) = 0 and t j (x) = 0, so that both sides of the equation
vanish and we only need to verify the statement for x = xi ,1 ≤ i ≤ M +1, in which case the system (3.18)
becomes

s = T b with s = (0, . . . ,0,rm(xm))T . (3.19)

Thanks to Lemma 3.2.2, we have that T is invertible and thus there exists a unique solution b. Moreover,
the last row of the system (3.19) rm(xm) = tm(xm)bm leads to the solution bm = 1 since rm(xm) = tm(xm).
For any other row i ,1 ≤ i < m, we have by the fact that T is an upper triangular matrix

0 =
m∑

j=i
b j t j (xi ). (3.20)
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Recall that |t j (xi )| ≤ |ti (xi )|, j > i , which yields the following bound for bi ,1 ≤ i < m,

|bi | =
∣∣∣∣∣− m∑

j=i+1
b j

t j (xi )

ti (xi )

∣∣∣∣∣≤ m∑
j=i+1

|b j |, (3.21)

so that |bi | ≤ 2m−i−1,1 ≤ i < m, and |b1|+· · ·+|bm | ≤ 2m−1 being bm = 1 and using a recursive argument.
ä

We are now ready to prove Theorem 3.2.1 using the representation of the residual in Lemma 3.2.3.

Proof Suppose there exists a subspace HM ⊂ L∞(Vx ) of dimension M achieving the Kolmogorov
M-width as defined in (3.14), then we have a sequence of elements h j ∈ HM ,1 ≤ j ≤ M +1, such that

||t j −h j ||L∞(Vx ) ≤ dM (Fg (Vx ),L∞(Vx )),1 ≤ j ≤ M +1. (3.22)

We define the functions

sm(x) =
m∑

j=1
b j h j (x),1 ≤ m ≤ M +1. (3.23)

Since all the elements h j ,1 ≤ j ≤ M +1, belong to the M dimensional subspace HM and sm is a linear
combination of these elements for any m = 1, . . . , M , there exists a vector α = (α1, . . . ,αM+1)T with
|α1|+ · · ·+ |αM+1| = 1 such that

M+1∑
m=1

αm sm = 0. (3.24)

Thanks to the result in Lemma 3.2.3, together with bound (3.22) and representation (3.23) and (3.24),
we obtain the following bound for every x ∈Vx :

∣∣∣∣∣M+1∑
m=1

αmrm(x)em(x)

∣∣∣∣∣=
∣∣∣∣∣M+1∑

m=1
αm (rm(x)em(x)− sm(x))

∣∣∣∣∣
≤

(
M+1∑
m=1

|αm |
)

max
m=1,...,M+1

||rmem − sm ||L∞(Vx )

≤ max
m=1,...,M+1

(
m∑

j=1
|b j |

)
max

j=1,...,m
||t j −h j ||L∞(Vx )

≤ 2M dM (Fg (Vx ),L∞(Vx )).

(3.25)

Since |α1|+ · · ·+ |αM+1| = 1, there must exist αm such that |αm | ≥ 1/(M +1). Setting x = xm in (3.25),
we have |αmrm(xm)| ≤ 2M dM (Fg (Vx ),L∞(Vx )), and thus

|rm(xm)| ≤ (M +1)2M dM (Fg (Vx ),L∞(Vx )). (3.26)

By the construction of the weighted empirical interpolation approximation in Algorithm 3, we have

ess sup
x∈Vx

|rM+1(x)| ≤ |rM+1(xM+1)| ≤ |rM (xM )| ≤ · · · ≤ |rm(xm)|. (3.27)

A combination of (3.26) and (3.27) leads to the following error bound:

||g −IM [g ]||L∞(Vx ) ≤ ess sup
x∈Vx

|rM+1(x)| ≤ (M +1)2M dM (Fg (Vx ),L∞(Vx )). (3.28)
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ä

Corollary 3.2.4 Under the assumption dM (Fg (Vx ),L∞(Vx )) ≤ ce−r M with r > log(2), we have the fol-
lowing a priori error estimate of the wEIM: ∀g ∈ L∞(Vx ;C 0

w (Ξy ))

||g −IM [g ]||L∞(Vx ) ≤ c(M +1)e−(r−log(2))M . (3.29)

Remark 3.2.2 The result (3.29) is an improvement of that recently obtained in [129], in which r is
required to satisfy r > 2log(2) and the exponential convergence rate becomes r −2log(2). In fact, when
the function g is analytic with respect to the parameter y ∈R, the Kolmogorov width is bounded by the
exponentially decaying error from the truncation of Fourier expansion of order M of g ; see [61].

Remark 3.2.3 The result obtained in Theorem 3.2.1 can not be improved in the exponential growth
2M for a priori convergence analysis of general parametric functions. In fact, it can be proved that
||g −IM [g ]||L∞(Vx ) ≥ (1−ε)2M dM (Fg (Vx ),L∞(Vx )) for arbitrary small ε> 0 under certain assumptions;
see [20].

3.3 Numerical experiments

In this section, we study the accuracy and the efficiency of the weighted empirical interpolation method
(wEIM) compared to the conventional empirical interpolation method (EIM) as well as the stochastic
collocation method (SCM) for one-dimensional problems and the sparse grid stochastic collocation
method (SG-SCM) [149] for multidimensional problems. Given a function g , we denote by gM its
approximation using M “elements" (either basis functions for wEIM and EIM, or interpolation nodes
for SCM and SG-SCM) and we define the approximation error in the following two norms

||g − gM ||L∞(D ;C 0(Γ)) and ||E[g ]−E[gM ]||L∞(D), (3.30)

where the expectation E[g ] is computed by Gauss quadrature formula specified when in need.

3.3.1 Parametric function in one dimension – geometric Brownian motion

We consider a geometric Brownian motion St satisfying a stochastic ordinary differential equation
dSt = kSt d t +σSt dBt (This is, e.g., the most widely used model of stock price St at time t with drift k,
volatility σ and standard Brown motion Bt [157]). The solution is given by St = exp(σBt + (k −σ2/2)t ).
For simplicity, we set S0 = 1, σ= 1 and k = 1/2 so that St can be written as St = exp(

p
tB1), where B1 is

a standard Gauss random variable B1 ∼N (0,1). By denoting x ≡ t , y ≡ B1 ∈RK ,K = 1, and g = St , we
seek the following affine expansion by wEIM given in Algorithm 3

g (x, y) = exp(
p

x y) ≈ gM (x, y) =
M∑

j=1
Θ j (y)q j (x) where y ∼N (0,1). (3.31)

Moreover, we are interested in the expectation of g at time x, which can be approximated by Gauss-
Hermite quadrature with abscissas and weights (yn , wn),1 ≤ n ≤ N ,

Ey [g ](x) ≈
M∑

j=1

(∫ ∞

−∞
Θ j (y)ρ(y)d y

)
q j (x) ≈

M∑
j=1

(
N∑

n=1
Θ j (yn)wn

)
q j (x), (3.32)

where ρ is standard normal density function. The advantage of (3.32) is that we do not need to compute
the function g for yn ,1 ≤ n ≤ N , at every x but only at the empirical interpolation nodes xm ,1 ≤ m ≤ M ,
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which is attributed to solving a small linear system (3.7) for Θ j (yn),1 ≤ j ≤ M ,1 ≤ n ≤ N . When the
evaluation of the function itself at (x, y) is expensive and we have a large number of points x, the wEIM
can be employed for efficient computation of the statistics. We set the tolerance as εtol = 1×10−12, and
take 1000 equidistant points in the vertex set Vx and 1000 normal distributed samples in the sample
set Ξy ; we also take an independent 1000 normal distributed samples to test different interpolation
methods. The weight in Algorithm 3 is taken as the normalized Gauss density function w(y) = ρ(y)/ρ(0).
As for the evaluation of the expectation of E[gM ], we use 12 quadrature abscissas in (3.32), which is
sufficiently accurate for this example. We examine the convergence of “EIM bound" and “wEIM bound"
(rM (xM )), error by “EIM test" and “wEIM test" (error computed from test samples) and test error by
stochastic collocation method “SCM test".
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Figure 3.1: Comparison of the convergence rates of EIM, wEIM and SCM in different norms. Left:
decreasing of the error ||g − gM ||L∞(D ;C 0(Γ)); right: decreasing of the error ||E[g ]−E[gM ]||L∞(D).

The convergence property of different methods is displayed in Figure 3.1, from which we can see that
all the methods achieve an exponential convergence rate and wEIM converges faster than both SCM
and EIM in L∞(D;C 0(Γ)) norm. However, as for the expectation in L∞(D) norm, SCM is the best and
wEIM is evidently better than EIM, which does not take the weight into consideration. The reason for
these results is that wEIM and EIM select the samples by L∞

w (Ξy ) and L∞(Ξy ) optimization, leading to
small error in L∞(D ;C 0(Γ)) norm and relatively large error for the evaluation of the expectation.

3.3.2 Parametric function in multiple dimensions – Karhunen–Loève expansion

For the case of multidimensional parameters, we consider the function g truncated from Karhunen–
Loève expansion of a Gaussian random field with correlation length L and eigenvalues λn ,1 ≤ n ≤ Nt ,
written as [149]

g (x, y)− g0(x) =C exp

((p
πL

2

) 1
2

y1(ω)+
Nt∑

n=1

√
λn

(
sin(nπx)y2n(ω)+cos(nπx)y2n+1(ω)

))
, (3.33)

where yi ∼N (0,1),1 ≤ i ≤ 2Nt +1, are standard Gauss random variables defined in the sample space
Ω 3 ω. This function is widely used, e.g., in modelling the random property of porous medium in
material science, geophysics, etc.. To compare the convergence properties of different methods, we
take g0 = 0, C = exp(5), Nt = 2, L = 1/8, and λ1 = 0.213,λ2 = 0.190; x ∈ [0,1] is discretized by 1000
equidistant vertices. We set tolerance εtol = 1×10−12, and use 1000 five dimensional independent nor-
mal distributed samples and another 1000 test samples. For the computation of E[g ], we apply SG-SCM
based on Gauss-Hermite quadrature with the deepest interpolation level 4 in each dimension [149].
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Figure 3.2: Comparison of the convergence rates of EIM, wEIM and SG-SCM in different norms. Left:
decreasing of the error ||g − gM ||L∞(D ;C 0(Γ)); right: decreasing of the error ||E[g ]−E[gM ]||L∞(D).

Figure 3.2 depicts the convergence rate of different methods, from which we can observe that in multi-
dimensional problems wEIM and EIM perform much better than SG-SCM in both ||g − gM ||L∞(D ;C 0(Γ))
error and ||E[g ]−E[gM ]||L∞(D) error. Both wEIM and EIM achieve fast exponential convergence rate and
considerably alleviate the “curse of dimensionality" suffered by SG-SCM. wEIM uses only 29 samples
while EIM needs 80 samples and thus 80 expansion terms, which is far less efficient than the weighted
version in practical applications, e.g., in approximating the nonaffine terms of reduced basis method.

3.3.3 Parametric PDEs – application to the reduced basis method

As mentioned before, EIM was originally developed to deal with nonaffine terms in reduced basis
discretization of partial differential equations (PDEs) in [11]. The efficiency of the reduced basis
method depends critically on the number of affine terms for both offline construction and online
evaluation [86, 50, 116, 134]. Therefore, wEIM is more suitable for reduced basis approximation of
nonaffine parametric equation with weighted parameters or random variables with arbitrary probability
measures.

We consider the following elliptic equation with a random coefficient and homogeneous Dirichlet
boundary condition: find u : D ×Ω→R such that

−∇(g (x,ω)∇u(x,ω)) = f (x) (x,ω) ∈ D ×Ω, (3.34)

where the random coefficient g (x,ω) is a Gauss random field represented by a truncated Karhunen–
Loève expansion as in (3.33). We set D = (0,1)2, f = 1, g0 = 0.1, C = exp(5), L = 1/16, Nt = 5,
λ1 = 0.110,λ2 = 0.107,λ3 = 0.101,λ4 = 0.095,λ5 = 0.087, and identify the eigenfunctions in (3.33) as
sin(nπx1) and cos(nπx2) with x1, x2 ∈ [0,1]. The tolerance for weighted empirical interpolation method
is taken as εtol = 1×10−12. Note that the problem has 11 independent and normal distributed random
variables yK ∼N (0,1),1 ≤ K ≤ 11, and all the random variables have relatively equivalent importance
due to very close eigenvalues. Therefore, we employ isotropic sparse grid stochastic collocation method
based on Gauss-Hermite quadrature [149] for the computation of statistics.

We first run wEIM and EIM with finite element vertices |Vx | = 185 and normal distributed samples |Ξy | =
10000 to build an affine expansion 3.2 for the coefficient g of problem (3.34). Another independent 1000
normal distributed samples are used to test the accuracy of the two expansions. The results are shown
on the left of Figure 3.3, from which we can observe that wEIM is much more efficient with only 31
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affine terms than EIM requiring 94 terms to achieve the same approximation accuracy in L∞(D ;C 0(Γ))
norm.
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Figure 3.3: The convergence rate of wEIM in reduced basis approximation. Left: decreasing of the error
||g − gM ||L∞(D ;C 0(Γ)) for EIM and wEIM; right: decreasing of the error ||s − sN ,M ||L∞(Γ).

We use the affine expansion constructed by wEIM to build a weighted reduced basis approximation,
as introduced in chapter 2, with finite element discretization in physical domain D to the stochastic
elliptic problem (3.34). The quantity of interest is the integral of the solution over the physical domain
D , s = ∫

D ud x, which is computed from the finite element solution. We denote sN ,M the approximation
of s based on using N reduced bases and M affine terms. The convergence of ||s − sN ,M ||L∞(Γ) is
displayed on the right side of Figure 3.3, which demonstrates that wEIM is efficient in the application
of the reduced basis method resulting in only a few elements in the reduced basis space. Moreover, we
can see that the accuracy of wEIM, represented by different number of affine terms M = 1,11,21,31, is
clearly quite influential to the accuracy of the reduced basis approximation.
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Figure 3.4: Comparison of the convergence rates between methods wEIM-RBM and SG-SCM. Left:
decreasing of the error ||s − sN ,M ||L∞(Γ); right: decreasing of the error |E[s]−E[sN ,M ]|.

Finally, we compare the proposed approach, a combination of weighted empirical interpolation with
reduced basis approximation (wEIM-RBM), to one of the most efficient stochastic computational
methods - SG-SCM [149] for their accuracy and efficiency. The result of this comparison, for the
||s − sN ,M ||L∞(Γ) norm, is depicted on the left of Figure 3.4, from which the curse of dimensionality of
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SG-SCM can be obviously observed. In contrast, wEIM-RBM effectively alleviates this computational
burden, using merely 15 bases to accurately approximate the stochastic solution depending on 11
independent normal distributed random variables.

As for the approximation of expectation E[s], we only need to compute the quantity sN ,M with N = 15
and M = 31 by online evaluation of reduced basis method at the sparse Gauss quadrature abscissas
and then E[sN ,M ] by sparse grid Gauss quadrature formula.

The comparison of wEIM-RBM with SG-SCM on the right side of Figure 3.4 shows that in order to
achieve the same accuracy, it takes only 7 bases by reduced basis approximation while 2575 collocation
nodes for stochastic collocation approximation. It is worth to mention that the online evaluation of
the reduced basis method is independent of the degree of freedom (|Vx |) of the deterministic system.
Therefore, when solving the underlying deterministic system is computational demanding (with large
|Vx |) and the dimension of the stochastic space becomes high (with more random variables), wEIM-
RBM is much more efficient than SG-SCM for nonaffine stochastic problems; see [50] for detailed
comparison of computational cost.

3.4 Summary

In order to approximate parametric functions with weighted parameters, e.g., random variables with
various probability distributions, we extended the empirical interpolation method by taking the weight
into account for the construction of the interpolation formula. A priori convergence analysis of the
weighted empirical interpolation method has been provided. We obtained a direct comparison of the
interpolation error to the Kolmogorov width, which improved the result obtained recently in [129].

By the applications in approximating geometric Brownian motion in one dimension and exponential
Karhunen–Loève expansion in multiple dimensions, we demonstrated numerically the exponential
convergence rate of the weighted empirical interpolation method and its advantage in accuracy and
efficiency over the empirical interpolation method as well as over the sparse grid stochastic collocation
method. We also applied the proposed method to the weighted reduced basis approximation [49] for
a nonaffine stochastic elliptic equation and illustrated its efficiency and especially its effectiveness
in alleviating the curse of dimensionality in comparison with the sparse grid stochastic collocation
method.

The weighted empirical interpolation method can be straightforwardly applied to nonlinear stochastic
partial differential equations with reduced basis approximation and can also be employed effectively in
several fields embracing weighted parameters or random variables, e.g., image science, geophysics,
mathematical finance, material science, bioengineering, to cite a few without being exhaustive.
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4 Hybrid and goal-oriented adaptive re-
duced basis methods for risk analysis

In chapter 1, the reduced basis method was demonstrated to be very efficient and sufficiently accurate
in solving uncertainty quantification problems, then further improved in chapter 2 thanks to the
weighted algorithm for evaluation of statistical moments. Besides statistical moments and their related
quantities of interest, such as variance-based sensitivity analysis, other quantities of interest depend
on pointwise evaluation of the stochastic/parametric outputs. In this framework, risk analysis provides
the most representative example. This chapter is devoted to the development of suitable algorithms in
order to accurately apply the reduced basis method for uncertainty quantification problems requiring
pointwise evaluation, in particular, but not limited to, evaluation of failure probability.

Several computational methods, such as the Monte Carlo method [72], the first or second order re-
liability method [166, 187], the response surface method [69, 29], etc., have been developed for the
evaluation of failure probability for risk prediction or reliability analysis of a given system featuring var-
ious uncertainties or random inputs. However, efficient and accurate evaluation of failure probability
is difficult to achieve, especially for a given system modeled by partial differential equations (PDEs)
with high-dimensional random inputs. As a matter of fact, evaluation of the output at each realization
requires a complete solution of the underlying PDE with expensive computational cost, making the
direct approach of solving PDEs and evaluating outputs for a large number of realizations sampled
from the high-dimensional probability space prohibitive [187, 148]. Secondly, the topological and
geometrical properties of the limit state surface defined by a critical failure value play a crucial role in
the design of appropriate computational methods, which bring a significant difficulty for accurate ap-
proximation when the surface lacks smoothness and/or features possible discontinuity, disconnectivity
and singularity [69, 166]. At third, it is a common challenge to perform effective and efficient sampling
in the probability space in order to evaluate an extreme failure probability of some rare event with high
consequence [29, 120]. In this chapter, we are mainly treating the first two difficulties of computational
complexity and accurate approximation. The third one will be tackled in a forthcoming research work
by combining the computational strategies developed in this work with suitable sampling techniques,
such as importance sampling with efficient adaptive procedure guided by sensitivity analysis [38].

To avoid solving the full PDE many times, efficient computational methods have been designed for
constructing accurate and inexpensive surrogate models of the original PDEs. However, it has been
noticed [121] that no matter how accurate the surrogate model is, the resulting failure probability
evaluated via the surrogate model can be incorrect due to the nonsmoothness of the limit state surface.

Reference for this chapter:

P. Chen and A. Quarteroni. Accurate and efficient evaluation of failure probability for partial differential equations with random
input data. Computer Methods in Applied Mechanics and Engineering, 267(0):233–260, 2013
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For instance, when approximating a function by either projective or interpolative methods based on
prescribed dictionary bases, the approximation error of the surrogate function can converge to zero
when the number of basis functions increases. Nevertheless, the surrogate function may oscillate
about the original function due to jump discontinuity because of the Gibbs phenomenon, producing
therefore erroneous failure probability estimates if the discontinuity lies in the limit surface space. To
deal with this problem, a hybrid approach consisting in combining the outputs computed from both
the surrogate and the original models was proposed in [121]. The idea is that whenever the surrogate
output is close enough to the critical value controlled by a threshold parameter, one uses the original
output computed by solving the full PDE. However, the threshold parameter of the proposed direct
algorithm as well as the step size and the stopping criterion of the iterative algorithm are exposed
to arbitrariness, potentially leading to a biased failure probability estimate or less efficient surrogate
model. When it comes to high-dimensional problems, most of the surrogate models constructed by
projective and interpolative approximation based on prescribed dictionary bases may become poorly
accurate. In real-world engineering problems, most of the high-dimensional stochastic problems
reside in a relatively low-dimensional stochastic manifold named universality phenomenon [196],
which provides rationality for the application of model order reduction techniques to reconstruct the
low-dimensional manifold of the stochastic solution based on a series of snapshots, i.e., solutions at
some representative samples.

In this chapter, we develop a hybrid and goal-oriented adaptive computational strategy based on the
certified reduced basis method introduced in chapter 1 and 2 in order to efficiently and accurately
evaluate the failure probability of a PDE with random inputs. In dealing with high-dimensional random
input problems, we introduce a reduced basis approximation space constructed by a goal-oriented
greedy algorithm. An accurate and sharp a posteriori error bound for the approximate output is
employed for the construction, which results in a limited number of reduced bases when the output
lives in a low-dimensional manifold. For an accurate evaluation of the failure probability when the
limit state surface is nonsmooth, we design a hybrid computational approach. The idea is to use the
surrogate model constructed by the reduced basis method to evaluate a surrogate output. If the latter
can be determined to be a failure or a success by a certification indicator, we use this certified output
and do not need to solve the full PDE. Otherwise, we solve the full PDE and evaluate the truth output in
order to judge if it is a failure. Since the sample of the uncertified output is very near to or lives in the
limit state surface, we enrich the reduced basis space by the solution at this sample to build a more
accurate surrogate model, especially for samples near the limit state surface.

For efficient application of the computational strategy to more general PDE models, we present some
generalizations of our technique, including the adapted primal-dual approach, POD-greedy sampling
algorithm, and empirical interpolation algorithm for efficient decomposition of nonaffine functions.

This chapter is organized as follows. In section 4.1 we state the problem of failure probability evaluation
based on a benchmark model, followed by section 4.2 for the development of the hybrid and goal-
oriented adaptive algorithm based on the reduced basis method. We extend the proposed methods to
more general PDE models in section 4.3 and carry out a series of experiments to compare and illustrate
the advantages of our methods in section 4.4. Summary on the advantages of this algorithm and further
development is provided in the last section 4.5.

4.1 Problem statement

We first present the generic formulation of failure probability of some quantities of interest depending
on the stochastic solution of a given elliptic partial differential equation (PDE) with random inputs as
introduced in the preliminary chapter, and we will later extend our proposed methods to more general
PDE models in section 4.3.
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Recall that u : D̄ ×Ω→R stands for the solution of the stochastic elliptic problem (39). Suppose that
it depends only on a given finite random vector y(ω) = (y1(ω), . . . , yK (ω)) :Ω→ Γ=∏K

k=1Γk ⊂RK with
probability density function ρ : Γ→R. In the context of risk prediction or reliability analysis, without
loss of generality we are interested in computing the following failure probability [121]:

P0 := P (ω ∈Ω : s(u(y(ω))) < s0) =
∫
Γ
XΓ0 (y)ρ(y)d y, (4.1)

where s is a functional of the stochastic solution u, conventionally called limit state function or
performance function in reliability problem; s0 is a critical value defining the failure domain Γ0 := {y ∈
Γ : s(u(y)) < s0} and the characteristic function XΓ0 is defined as

XΓ0 (y) =
{

1 if y ∈ Γ0,
0 if y ∉ Γ0.

(4.2)

The Monte Carlo method can be straightforwardly applied to solve the stochastic system as well as
evaluate the failure probability [72]. The idea is to generate a series of samples ym ∈ Γ,m = 1,2, . . . , M
according to the probability density function ρ(y), solve the underlying PDE problem at each sample
to get the stochastic solution u(ym), compute the output of interest s(u(ym)) and evaluate the failure
probability (Monte Carlo failure probability, denoted as P m

0 ) by taking the average as

P m
0 = 1

M

M∑
m=1

XΓ0 (ym). (4.3)

This method requires no additional effort for modification of the deterministic solver of the PDE.
However, in practical application it is too expensive because one PDE has to be fully solved for each of
a large number of samples, leading in general to a prohibitive computational cost. Several accelerated
variations of Monte Carlo method have been developed and used in evaluation of failure probability,
such as quasi Monte Carlo, Latin hypercube sampling, multi-level techniques, to name a few [171, 81,
62].

4.2 Reduced basis methods for evaluation of failure probability

We first present the formula for the reduced basis method in the evaluation of failure probability, then
we propose a hybrid approach for evaluation of the failure probability guided by a posteriori error
bound. Finally, we present a goal-oriented adaptive reduced basis method for efficient evaluation of
the failure probability.

4.2.1 The reduced basis method

We apply the reduced basis method introduced in chapter 1 to first compute the surrogate output sN

with Algorithm 2 and then evaluate the surrogate failure probability by

P s
0 =

1

M

M∑
m=1

XΓs
0
(ym), (4.4)

where the surrogate approximate failure domain is defined as Γs
0 := {y ∈ Γ : sN (y) < s0}. Unfortu-

nately, the surrogate output sN may lead to an inaccurate failure probability due to the reduced basis
approximation error. In fact, this drawback is commonly present for most of the surrogate models.
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4.2.2 A hybrid reduced basis method

As already noticed, the Monte Carlo method is an accurate and straightforward approach for evaluation
of the failure probability by (4.3), however it is prohibitively expensive as it requires the solution of a
large number of PDEs. In contrast, surrogate models built on other methods may improve compu-
tational efficiency at the expense of producing incorrect output and thus wrong failure probability
estimate. In order to balance the trade-off of computational efficiency and numerical accuracy, a
hybrid approach with either direct or iterative algorithms has been developed in [121]. The direct
hybrid algorithm predefines a neighborhood region of the critical value by a threshold parameter, then
it uses a surrogate model to compute the (surrogate) outputs at samples outside that region and directly
solves the PDEs to evaluate the (direct) outputs at samples inside the region. However, the choice of
the threshold value depends crucially on the accuracy of the surrogate model, which is not provided in
general. On the other hand, the iterative hybrid algorithm replaces some surrogate output closest to
the critical value by direct outputs and conduct the replacement iteratively until meeting a posteriori
error tolerance. This algorithm does not need to choose the value of a threshold parameter but the
accuracy of the failure probability estimate is again affected by the unknown error of the surrogate
model. To improve on this, we propose a hybrid reduced basis method certified by a posteriori error
bound, achieving both the computational efficiency and the numerical accuracy.

Since the approximation error of the output at sample y can be bounded by (1.27), we can define the
certified surrogate failure domain

Γc
0 := {y ∈ Γ : sN (y) < s0,4s

N (y) < s0 − sN (y)}, (4.5)

and the uncertified surrogate failure domain

Γu
0 := {y ∈ Γ : 4s

N (y) ≥ |s0 − sN (y)|}. (4.6)

Whenever the sample y falls in the certified surrogate failure domain Γc
0, we have

s(y) = (s(y)− sN (y))+ sN (y) ≤4s
N (y)+ sN (y) < s0 − sN (y)+ sN (y) = s0, (4.7)

so that any sample y ∈ Γc
0 also falls in the original failure domain Γ0. As for the sample in uncertified

failure domain y ∈ Γu
0 , we compute a real output s(y) = s(u(y)) from the solution u(y) by fully solving

the PDE (46). Thus, the hybrid failure domain is defined as

Γh
0 := Γc

0 ∪
(
Γu

0 ∩ {y ∈ Γ : s(y) < s0}
)

, (4.8)

and the hybrid failure probability is evaluated by

P h
0 = 1

M

M∑
m=1

XΓh
0

(ym). (4.9)

By construction, we have that the evaluation of the hybrid failure probability is cheap thanks to the use
of the surrogate model and accurate, as it is equal to the Monte Carlo failure probability, P h

0 = P m
0 .

In dealing with high-dimensional problems, we usually apply an iterative algorithm for Monte Carlo
sampling with an increasing number of samples to enhance computational efficiency on the one hand
and provide a posteriori error estimate for the Monte Carlo evaluation on the other. The following
Algorithm 4 describes the hybrid reduced basis method.
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Algorithm 4 Iterative algorithm for the hybrid reduced basis method

1: procedure OFFLINE CONSTRUCTION:
2: Construct a reduced basis space XN by Algorithm 2.
3: end procedure

4: Initialize tolerance εtol and a posteriori error ep
1 = 2εtol , choose the number of initial samples M ,

adaptive size parameter β as well as a maximum iteration number Imax ;
5: procedure ITERATIVE EVALUATION:
6: for i = 1, . . . , Imax do
7: sample ΞM with |ΞM | = M , pre-compute and store αLB (y), y ∈ΞM by SCM [102];
8: compute surrogate output sN (y) and the error bound 4s

N (y) by (1.27) for ∀y ∈ΞM ;

9: evaluation the failure probability P h,i
0 by formula (4.9);

10: if i > 1 then
11: compute the a posteriori error for failure probability ep

i = |P h,i
0 −P h,i−1

0 |;
12: if ep

i < εtol then
13: Imax = i ;
14: return ;
15: end if
16: end if
17: increase the number of sample size by setting M =βi+1M ;
18: end for
19: end procedure

4.2.3 A goal-oriented adaptive reduced basis method

In order to avoid too many direct solves of the full underlying PDE, we need to increase the portion of
the samples in the certified surrogate failure domain, which in turn requires using a more accurate
surrogate model constructed with more reduced basis functions. However, the computational cost of
both the offline construction and the online evaluation of the reduced basis method critically depends
on the number of reduced basis functions, suggesting therefore the use of a low number of reduced
basis functions, especially for high-dimensional problems. In addition, when the surrogate output is far
from the critical value, a rather crude surrogate approximation with a small number of reduced basis
functions would be sufficient as long as the a posteriori error bound for the approximation error of the
output is smaller than the distance between the surrogate output and the critical value. To take full
advantage of the reduced basis approximation and a posteriori error bound, we develop a goal-oriented
adaptive strategy to construct a surrogate model with fine approximation of the output manifold close
to the limit state surface {y ∈ Γ : s(y) = s0} and coarse approximation of the output manifold far away
from it.

Goal-oriented adaptive strategies have been developed in many contexts (e.g. [155, 156]). For their
application in the construction of surrogate models, we first run the Algorithm 2 for the reduced basis
method with a relatively small training set Ξtr ai n and large tolerance εtol as stopping criteria. Given
any new sample set ΞM with M samples, we compute the surrogate outputs sN and the associated
error bounds 4s

N , from which we define the following adaptive criteria

4a
N (y) = 4s

N (y)

|sN (y)− s0|
∀y ∈ΞM . (4.10)

We remark that in some extreme case, there may exist too many samples for which sN is too close to s0.
In this case, we can pick the sample such that the condition |sN − s0| ≥ εs with εs > 0 very small is also
satisfied.

79



Chapter 4. Hybrid and goal-oriented adaptive reduced basis methods for risk analysis

We apply again the greedy algorithm to select the most mismatching sample

y N+1 = arg max
y∈ΞM

4a
N (y) such that 4a

N (y) ≥ 1, (4.11)

and enrich the reduced basis space by XN+1 = XN ⊕ span{ζN+1} where ζN+1 is the orthonormalized
version of the solution u(y N+1). We carry out the sample procedure of reduced basis construction
with N = N +1 until 4a

N (y N+1) < 1. Then we compute the failure probability by formula (4.4), which is
accurate (the same as Monte-Carlo evaluation) since 4s

N (y) < |sN (y)− s0|∀y ∈ΞM .

Algorithm 5 combines the goal-oriented adaptive strategy with the iterative scheme for Monte Carlo
evaluation of failure probability. As a byproduct of the adaptive construction of the reduced basis
space, the failure probability is computed asymptotically based on a posteriori error in Algorithm 4
and 5. In order to further quantify the precision of the failure probability, one may also provide the
binomial confidence interval for the failure probability [187], e.g. the normal approximation interval
P0 ± z1−αe /2

p
P0(1−P0)/M , being P0 the failure probability computed by either the hybrid or the

adaptive algorithm with M Monte Carlo samples, z1−αe /2 a percentile of a standard normal distribution
associated with a prescribed tail probability αe .

4.2.4 Remarks on approximation error and computational cost

The approximation error of the failure probability by the three different approaches described above
can be generally split into the one arising from the surrogate models and the other from Monte
Carlo method. In the first approach (described in section 4.2.1), the approximation error of the
surrogate model may lead to a large error or even wrong evaluation of the failure probability due to
the discontinuous or singular properties of the limit state surface, while in the last two approaches
(described in section 4.2.2 and 4.2.3), the contribution of the approximation error from surrogate
models is null and the Monte Carlo approximation error takes full responsibility with a slow algebraic
decaying rate M−1/2.

As for computational cost, the first approach is the cheapest one as it does not necessitate to solve a
full PDE in the evaluation procedure once the offline construction is finished. In contrast, the hybrid
approach is relatively expensive, as it requires to solve the full PDE whenever the a posteriori error
bound is larger than the distance between the surrogate output and the critical value. The goal-oriented
adaptive approach is much cheaper than the hybrid one since it starts from a rather crude reduced
basis construction and replaces many direct outputs in the hybrid approach by surrogate outputs
based on adaptively enriched reduced basis space. Moreover, it might be even cheaper than the first
approach if its total offline construction is less expensive than that of the first approach.

4.3 Extension to more general PDE models

The development of both hybrid and goal-oriented adaptive reduced basis methods is based on
the benchmark linear elliptic coercive affine PDE with random inputs (39), which is assumed to be
compliant in the output, time independent, affine in the random inputs and coercive. In this section,
we remove these limitations and extend the proposed methods to more general PDE models. The key
elements in the extension are to accurately compute cheap, reliable and sharp a posteriori error bound
for the approximation error of the output and efficiently decompose the approximation procedure into
the offline construction stage and the online evaluation stage. We remark that most of the techniques
we are using have been well studied for the development and application of the reduced basis method
[163], and we briefly summarize them with specific application in the context of failure probability
computation. In addition, most of the proposed algorithms can be extended to the case of multiple
functional outputs of the solution field. In fact, for a small number of independent functional outputs,
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Algorithm 5 Iterative algorithm for goal-oriented adaptive reduced basis method

1: procedure OFFLINE CONSTRUCTION:
2: Construct a crude reduced basis space XN by Algorithm 2.
3: end procedure

4: Initialize tolerance εtol and a posteriori error ep
1 = 2εtol , choose the number of initial samples M ,

adaptive size parameter β as well as a maximum iteration number Imax ;
5: procedure ADAPTIVE CONSTRUCTION:
6: for i = 1, . . . , Imax do
7: sample ΞM with |ΞM | = M , pre-compute and store αLB (y), y ∈ΞM by SCM [102];
8: compute surrogate outputs sN (y) and adaptive criteria 4a

N (y) by (4.10) for ∀y ∈ΞM ;
9: choose adaptive sample y N+1 = argmaxy∈ΞM 4a

N (y);
10: while 4a

N (y N+1) ≥ 1 do
11: augment the sample space SN+1 = SN ∪ {y N+1};
12: solve problem (46) at y N+1 to obtain u(y N+1);
13: orthonormalize the solution u(y N+1) by Gram-Schmidt process to get ζN+1;
14: augment the reduced basis space XN+1 = XN ⊕ span{ζN+1};
15: compute and store Aq (ζN+1,ζn), Aq (ζn ,ζN+1),1 ≤ q ≤ Qa ,1 ≤ n ≤ N + 1 and Fq (ζN+1),

1 ≤ q ≤Q f ;
16: compute and store (Cq ,Cq ′ )X , (Cq ,L N+1

p )X , (L N+1
p ,L n

p ′ )X , (L n
p ,L N+1

p ′ )X , 1 ≤ q, q ′ ≤Q f ,

1 ≤ p, p ′ ≤Qa ,1 ≤ n ≤ N +1;
17: set N = N + 1;
18: compute sN (y) and 4a

N (y) by (4.10) ∀y ∈ΞM ;
19: choose adaptive sample y N+1 = argmaxy∈ΞM 4a

N (y);
20: end while
21: evaluation the failure probability P s,i

0 by formula (4.4);
22: if i > 1 then
23: compute the a posteriori error for failure probability ep

i = |P s,i
0 −P s,i−1

0 |;
24: if ep

i < εtol then
25: Imax = i ;
26: return ;
27: end if
28: end if
29: increase the number of sample size by setting M =βi+1M ;
30: end for
31: end procedure

we may treat each of them separately as in the case of a single functional output. When there are many
coupled functional outputs, a common coarse reduced basis space is more convenient to be used in
combination with suitable refinement with respect to each functional output in order to keep the total
computational cost under control.

4.3.1 Noncompliant problems

When the output is compliant, i.e., s(y) ≡ s(u(y); y) = F (u(y); y), y ∈ Γ, we obtain a posteriori error
bound 4s

N (y) being quadratic with respect to the residual norm ||ê(y)||X . However, when the output is
noncompliant in more general conditions, i.e.

s(y) ≡ s(u(y); y) = L(u(y); y), (4.12)
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where L : X →R is a bounded and affine functional, L 6= F , we have the following upper bound

|s(y)− sN (y)| ≤ ||L(y)||X ′ ||u(y)−uN (y)||X ≤ 1

α(y)
||L(y)||X ′ ||ê(y)||X , (4.13)

which depends only linearly on the residual norm ||ê(y)||X . Moreover, evaluation of the dual norm of
the functional ||L(y)||X ′ is expensive and might not be uniformly bounded in the probability domain Γ.
In order to seek an effective and efficient a posteriori error bound for the output approximation error,
we apply the primal-dual computational strategy [178, 158, 163] by solving an additional problem,
known as the dual problem associated to the functional L: ∀y ∈ Γ find the dual variable ψ(y) ∈ X such
that

A(v,ψ(y); y) =−L(v ; y) ∀v ∈ X . (4.14)

By the same reduced basis approximation procedure as in section 4.2.1, we construct the reduced basis
space for the approximation of the dual variable ψ as X du

Ndu
:= span{ζdu

1 , . . . ,ζdu
Ndu

} where ζdu
n ,1 ≤ n,≤

Ndu are determined via orthonormalization from the solution {ψ(yn),1 ≤ n ≤ Ndu} (at suitable values
of yn ,1 ≤ n ≤ Ndu), then the reduced basis solution ψNdu (y) at sample y ∈ Γ is obtained by solving the
reduced system

A(v,ψNdu (y); y) =−L(v ; y) ∀v ∈ X du
Ndu

. (4.15)

Let us denote the primal reduced basis space as X pr
Npr

:= span{ζpr
1 , . . . ,ζpr

Npr
} and rewrite the reduced

system for the primal reduced basis solution uNpr as

A(uNpr (y), v ; y) = F (v ; y) ∀v ∈ X pr
Npr

. (4.16)

Furthermore, let us define the primal residual and dual residual respectively as

Rpr (v ; y) = F (v ; y)− A(uNpr (y), v ; y) and Rdu(v ; y) =−L(v ; y)− A(v,ψNdu (y); y). (4.17)

By solving the primal and dual reduced system, we can evaluate the noncompliant output by

sN (y) = L(uNpr (y))−Rpr (ψNdu (y); y). (4.18)

The following lemma provides an efficient a posteriori error bound for the output [178, 158, 163].

Lemma 4.3.1 The approximation error on the output |s(y) − sN (y)| is bounded from above by the
following a posteriori error bound 4s

N (y)

|s(y)− sN (y)| ≤4s
N (y) := ||Rpr (·; y)||X ′ ||Rdu(·; y)||X ′

αLB (y)
∀y ∈ Γ, (4.19)

where ||Rpr (·; y)||X ′ and ||Rdu(·; y)||X ′ are the dual norms of the primal and dual residuals, respectively.

Remark 4.3.1 Besides converging faster, the primal-dual computational strategy does not require the
computation of the dual norm ||L(y)||X ′ ,∀y ∈ Γ. On their turn, the dual norms ||Rpr (·; y)||X ′ and
||Rdu(·; y)||X ′ can be efficiently evaluated by the offline-online computational decomposition.

As for the evaluation of failure probability in noncompliant problems, the reduced basis method in
Algorithm 2 remains the same as in the compliant case, and the hybrid reduced basis method in
Algorithm 4 is essentially the same as in compliant problems except for the replacement of a posteriori
error bound (4.19). In the goal-oriented adaptive Algorithm 5, we enrich simultaneously both the
primal and the dual reduced basis spaces governed by the a posteriori error bound (4.19) in order to
gain more computational efficiency for the evaluation of failure probability in noncompliant problems.
In this way, we recover the “square effect" in the convergence of the error.
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4.3.2 Unsteady problems

If the state variable depends not only on the spatial variable x ∈ D but also on the temporal variable
t ∈ I ≡ [0,T ], we have to face an unsteady PDE; a suitable time discretization needs to be operated on
both the offline construction of reduced basis space and the online evaluation of the output. For the
sake of simplicity [87, 163], we consider the following parabolic problem in semi-weak formulation:
find u(y) ∈ L2(I ; X )∩C 0(I ;L2(D)) such that it holds, almost surely

M

(
∂u

∂t
(t ; y), v ; y

)
+ A(u(t ; y), v ; y) = g (t )F (v ; y) ∀v ∈ X , (4.20)

subject to initial condition u(0; y) = u0 ∈ L2(D). Here, g ∈ L2(I ) is a time dependent control function; X
is a spatial approximation space as defined in section 4.2.1, e.g., a finite element space; the bilinear
form A and linear form F are defined as in the elliptic problem, and the bilinear form M is assumed to
be uniformly continuous and coercive and featuring the following affine expansion

M(w, v ; y) =
Qm∑
q=1

Θm
q (y)Mq (w, v) ∀w, v ∈ X . (4.21)

Using (without loss of generality) the backward Euler scheme for time discretization, we find at every
time step

M(ui (y), v ; y)+4t A(ui (y), v ; y) =4t g (t i )F (v ; y)+M
(
ui−1(y), v ; y

)
∀v ∈ X , (4.22)

subject to the initial condition u(t 0; y) = u0, where 4t is the time step size, ui (y) ' u(t i ; y),0 ≤ i ≤ IT ≡
T /4t . We remark that we don’t take into account the time discretization error for the sake of simplicity.
We consider a compliant output s(t i ; y) = F (ui (y); y),1 ≤ i ≤ IT , y ∈ Γ. For noncompliant output, we
apply the primal-dual computational strategy presented in section 4.3.1; see unsteady problems with
more general outputs in [87, 173, 145]. A reduced problem associated to (4.22) can be formulated as:
find ui

N (y) ∈ XN ,1 ≤ i ≤ IT such that

M(ui
N (y), v ; y)+4t A(ui

N (y), v ; y) =4t g (t i )F (v ; y)+M
(
ui−1

N (y), v ; y
)

∀v ∈ XN , (4.23)

where the reduced basis space XN can be constructed by a POD-greedy sampling algorithm governed
by cheap a posteriori error bound as well as an efficient offline-online computational decomposition
procedure, which are presented in the following subsections respectively.

A POD-greedy algorithm

In unsteady problems, the samples for the construction of the reduced basis space involve not only the
random samples y ∈Ξtr ai n ⊂RK in multiple dimensions but also the temporal samples t i ∈ I ⊂R,1 ≤
i ≤ IT in one dimension. A pure greedy sampling algorithm in both probability space and temporal
space has been demonstrated inefficient and resulting in occasional infinite loop [93]. A POD-greedy
algorithm, based on POD selection in temporal space and greedy selection in probability space, has
been effectively used in [93, 146] for tackling these difficulties. A general formulation for POD is stated
as follows: given a training set X tr ai n with ntr ai n elements, the function XM = POD(X tr ai n , M) leads to
an optimal subset XM ⊂ span{X tr ai n} with M bases such that

XM = arg inf
YM⊂span{X tr ai n }

(
1

ntr ai n

∑
v∈X tr ai n

inf
w∈YM

||v −w ||2X
)1/2

. (4.24)
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In practice, we solve the eigenvalue problem Cζ=λζ, where the correlation matrix C is assembled by
the weighted correlation of the elements vn ∈ X tr ai n ,1 ≤ n ≤ ntr ai n as

Cmn = 1

ntr ai n
(vm , vn)X ,1 ≤ m,n ≤ ntr ai n , (4.25)

and the subset XM = span{ζm ,1 ≤ m ≤ M } where ζm ,1 ≤ m ≤ M are the orthonormal eigenfunctions
corresponding to the M largest eigenvalues. Provided a tolerance εpod is given, we can also redefine
the function XM = POD(X tr ai n ,εpod ) such that the sum of ntr ai n −M smallest eigenvalues is smaller
than εtol . The POD-greedy algorithm for the construction of reduced basis space in unsteady problems
is recalled in Algorithm 6 [163, 93, 146].

Algorithm 6 A POD-greedy algorithm

1: Initialize a random sample y∗ ∈Ξtr ai n , the tolerances εtol and εpod , an empty reduced basis space
Y as well as a maximum number of reduced basis functions Nmax , set N = 0;

2: procedure ITERATIVE CONSTRUCTION:
3: while N ≤ Nmax do
4: solve the parabolic problem (4.22) at sample y∗ and time t i ,1 ≤ i ≤ It ;
5: compute XM1 = POD({ui (y∗),1 ≤ i ≤ It },εpod );
6: enrich the reduced basis space Y = Y ∪XM1 ;
7: update the number of reduced basis functions N = N +M2, where M2 ≤ M1;
8: construct the reduced basis space XN = POD(Y , N );
9: choose sample y∗ = argmaxy∈Ξtr ai n 4s

N (T ; y) by greedy algorithm;
10: if 4s

N (T ; y∗) ≤ εtol then
11: Nmax = N ;
12: return ;
13: end if
14: end while
15: end procedure

We underline that in Algorithm 6 the step integer M1 is controlled by the tolerance of the internal POD
algorithm, offering flexibility in choosing the number of reduced basis functions from the elements
ui (y∗),1 ≤ i ≤ It , and M2 is chosen to be smaller than M1 in order to minimize duplication of the
reduced basis functions (several options/combinations are possible). The random sample y∗, which
might be the same in different iteration steps, is chosen by greedy algorithm governed by cheap and
sharp a posteriori error bound 4s

N (T ; y), y ∈ Γ constructed in the following sections.

Construction of a posteriori error bound

We follow the procedure in section 1.3.3 of chapter 1 to derive an a posteriori error bound for the
parabolic problem (4.22). Firstly, we define the reduced residual for 1 ≤ i ≤ It ,

R i (v ; y) = g (t i )F (v ; y)− 1

4t
M(ui

N (y)−ui−1
N (y), v ; y)− A(ui

N (y), v ; y) ∀v ∈ XN . (4.26)

By Riesz representation theorem [68], we have a unique function ê i (y) ∈ X ,1 ≤ i ≤ It such that
(ê i (y), v)X = R i (v ; y) and ||ê i (y)||X = ||R i (·; y)||X ′ ,1 ≤ i ≤ It . Furthermore, it can be proven that the
reduced basis approximation error for the output is bounded by [87]

|s(t i ; y)− sN (t i ; y)| ≤4s
N (t i ; y) := 1

αLB (y)

i∑
i ′=1

||ê i ′ (y)||2X ,1 ≤ i ≤ It . (4.27)
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Offline-online computational decomposition

By expansion of the reduced basis solution at time t i ,1 ≤ i ≤ It in the reduced basis functions

ui
N (y) =

N∑
m=1

ui
N m(y)ζm , (4.28)

we have the reduced basis problem by Galerkin projection in (4.22) as: find ui
N m(y),1 ≤ m ≤ N ,1 ≤ i ≤ It

such that

N∑
m=1

Qm∑
q=1

Θm
q (y)Mq (ζm ,ζn)ui

N m(y)+4t
N∑

m=1

Qa∑
q=1

Θa
q (y)Aq (ζm ,ζn)ui

N m(y)

=4t g (t i )
Q f∑
q=1

Θ
f
q (y)Fq (ζn)+

N∑
m=1

Qm∑
q=1

Θm
q (y)Mq (ζm ,ζn)ui−1

N m(y) 1 ≤ n ≤ N ,

(4.29)

where the matrices Mq (ζm ,ζn),1 ≤ q ≤Qm ,1 ≤ m,n ≤ N , Aq (ζm ,ζn),1 ≤ q ≤Qa ,1 ≤ m,n ≤ N and the
vectors Fq (ζn),1 ≤ q ≤Q f ,1 ≤ n ≤ N can be pre-computed and stored in the offline construction stage.
In the online evaluation stage, we only need to assemble and solve a N ×N system (4.29) to get the
solution ui

N (y) and evaluate the output by NQ f operations

sN (t i ; y) = F (ui
N (y); y) =

N∑
n=1

( Q f∑
q=1

Θ
f
q (y)Fq (ζn)

)
ui

N n(y). (4.30)

As for the evaluation of the error bound (4.27), we substitute the reduced basis solution (4.28) in the
residual (4.26) and compute the residual norm ||ê i (y)||X by assembling

||ê i (y)||2X = g 2(t i )
Q f∑
q

Q f∑
q ′
Θ

f
q (y)Θ f

q ′ (y)(Cq ,Cq ′ )X

+2
g (t i )

4t

N∑
n=1

Q f∑
q=1

Qm∑
q ′=1

Θ
f
q (y)Θm

q ′ (y)(Cq ,M n
q ′ )Xϕ

i
N n(y)

+2g (t i )
N∑

n=1

Q f∑
q=1

Qa∑
q ′=1

Θ
f
q (y)Θa

q ′ (y)(Cq ,L n
q ′ )X ui

N n(y)

+ 1

4t 2

N∑
n=1

N∑
n′=1

Qm∑
q=1

Qm∑
q ′=1

Θm
q (y)Θm

q ′ (y)ϕi
N n(y)(M n

q ,M n′
q ′ )Xϕ

i
N n′ (y)

+2
1

4t

N∑
n=1

N∑
n′=1

Qm∑
q=1

Qa∑
q ′=1

Θm
q (y)Θa

q ′ (y)ϕi
N n(y)(M n

q ,L n′
q ′ )X ui

N n′ (y)

+
N∑

n=1

N∑
n′=1

Qa∑
q=1

Qa∑
q ′=1

Θa
q (y)Θa

q ′ (y)ui
N n(y)(L n

q ,L n′
q ′ )X ui

N n′ (y),

(4.31)

where ϕi
N n(y) = ui

N n(y)−ui−1
N n (y), Cq ,1 ≤ q ≤Q f and L n

q ,1 ≤ q ≤Qa ,1 ≤ n ≤ N are defined as in the
elliptic case, and M n

q ,1 ≤ q ≤ Qm ,1 ≤ n ≤ N are defined such that (M n
q , v)X = −Mq (ζn , v),∀v ∈ X ,

which are pre-computed and stored in the offline stage. In the online stage, we only need to assemble
(4.31) by O((Q f +NQm +NQa)2) operations, which is very efficient because the values Q f ,Qm ,Qa , N ¿
N are small.

Methods for the evaluation of failure probability in unsteady problems is not different than those
used in the elliptic problems. In particular, we can use the same goal-oriented adaptive and iterative
procedure of Algorithm 5 with the POD-greedy sampling Algorithm 6 governed by the a posterior error
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bound (4.27).

4.3.3 Nonaffine problems

The affine assumption is crucial for an effective offline-online computational decomposition. In the
case of a more general nonaffine random field denoted by g (x, y), we apply the empirical interpolation
method as introduced in chapter 3 to approximate the random field g (x, y) by finite affine terms, given
by (3.2). Note that for pointwise evaluation, we assume a constant weight function w = 1 in Algorithm
3.

Global a posteriori error estimate

Let us now extend the affine Assumption 0.3 to more general nonaffine random fields for both the
diffusion coefficient a and the force term f in (39). By the empirical interpolation introduced in chapter
3, we obtain the following affine decomposition

a ≈ aQa ≡IQa [a] =
Qa∑

q=1
Θa

q (y)aq (x) and f ≈ fQ f ≡IQ f [ f ] =
Q f∑
q=1

Θ
f
q (y) fq (x). (4.32)

For the reduced basis approximation with affine decomposition of the nonaffine random inputs, we
state the following two lemmas for global a posteriori reduced basis approximation error estimate of
the solution and the output.

Lemma 4.3.2 Suppose the approximation by affine decomposition (4.32) results in a high-fidelity ap-
proximate solution uQ and a reduced basis solution uQ,N . The following a posteriori error bound for the
reduced basis approximation error holds

||u(y)−uQ,N (y)||X ≤ E u
Q (y)+4u

N (y), (4.33)

where 4u
N is the a posteriori error bound for the reduced basis approximation as defined in (1.26) of

chapter 1, EQ the error due to the affine approximation of the data a and f , defined as

E u
Q (y) := C1

αLB (y)
|| f (y)− fQ f (y)||L∞(D) + C1C2

α2
LB (y)

||a(y)−aQa (y)||L∞(D)|| fQ f (y)||L∞(D), (4.34)

C1,C2 two constants bounded by (4.52) and αLB (y), y ∈ Γ a lower bound of the coercivity constant of the
bilinear form (4.38) with respect to the norm || · ||X .

Remark 4.3.2 We remark that instead of using the L∞(D)-norm, we may use Lp (D)-norm for 1 ≤ p <∞
under the condition that a, f ∈ Lp (D), which leads to a smaller error estimate.

Proof The total approximation error can be bounded by the sum of two terms

||u(y)−uQ,N (y)||X ≤ ||u(y)−uQ (y)||X +||uQ (y)−uQ,N (y)||X , (4.35)

the former due to the affine approximation error of the random fields a and f , the latter arising from
the reduced basis approximation error, respectively. Using (1.26), we have

||uQ (y)−uQ,N (y)||X ≤4u
N . (4.36)
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Thus, we only need to control the first part with an error bound denoted as

||u(y)−uQ (y)||X ≤ E u
Q (y). (4.37)

To bound the first term, we consider the weak formulation of the problem (39) with the original random
fields a and f as well as the approximate aQa and fQa ,

(a∇u,∇v) = ( f , v) ∀v ∈ H 1
0 (D) (4.38)

and
(aQa∇uQ ,∇v) = ( fQ f , v) ∀v ∈ H 1

0 (D), (4.39)

respectively. Subtracting (4.39) from (4.38), we have

(a∇u −aQa∇uQ ,∇v) = ( f − fQ f , v) ∀v ∈ H 1
0 (D), (4.40)

which can be transformed by adding and subtracting a∇uQ as

(a∇(u −uQ ),∇v) = ( f − fQ f , v)+ ((aQa −a)∇uQ ,∇v) ∀v ∈ H 1
0 (D). (4.41)

By taking v = u −uQ in (4.41) and applying the coercive property, we have

l .h.s. ≥α(y)||u(y)−uQ (y)||2X ≥αLB (y)||u(y)−uQ (y)||2X . (4.42)

As for the right hand side of (4.41), we have the following bound by Hölder’s inequality,

r.h.s ≤ || f (y)− fQ f (y)||L∞(D)||u(y)−uQ (y)||L1(D)

+||a(y)−aQa (y)||L∞(D)||∇uQ (y)||L2(D)||∇(u(y)−uQ (y))||L2(D).
(4.43)

By applying Poincaré inequality in L1-norm [2], we have that

||u(y)−uQ (y)||L1(D) ≤CP ||∇(u(y)−uQ (y))||L1(D) (4.44)

where CP ≤ dD /2 with dD standing for the diameter of the domain D. Moreover, we have again by
Cauchy-Schwarz inequality the following relation

||∇(u(y)−uQ (y))||L1(D) ≤CD ||∇(u(y)−uQ (y))||L2(D), (4.45)

where CD =p|D| with |D| representing the Lebesgue measure of the domain D . By the definition of the
norm ||v ||X =√

(a(ȳ)∇v,∇v) at a reference value ȳ ∈ Γ, we have

||∇v ||L2(D) ≤CX ||v ||X ∀v ∈ H 1
0 (D), (4.46)

where CX ≤ √||1/a(ȳ)||L∞(D). Using the inequalities (4.44), (4.45) and (4.46), we have the following
bound for the right hand side (4.43)

r.h.s ≤CDCP CX || f (y)− fQ f (y)||L∞(D)||u(y)−uQ (y)||X
+C 2

X ||a(y)−aQa (y)||L∞(D)||uQ (y)||X ||u(y)−uQ (y)||X .
(4.47)

Furthermore, by setting v = uQ in the weak formulation (4.39), we obtain

||uQ (y)||X ≤ CDCP CX

αLB (y)
|| fQ f (y)||L∞(D), (4.48)
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for which we have used the following coercive property with lower bound αLB (y) ≤αQa (y)

(aQa∇uQ ,∇uQ ) ≥αQa (y)||uQ (y)||2X ≥αLB (y)||uQ (y)||2X (4.49)

as well as the following bound by the inequalities (4.44), (4.45) and (4.46)

( fQ f ,uQ ) ≤ || fQ f (y)||L∞(D)||uQ (y)||L1(D) ≤CDCP CX || fQ f (y)||L∞(D)||uQ (y)||X . (4.50)

A combination of (4.47) and (4.48) leads to the following bound for the right hand side of (4.41)

r.h.s ≤CDCP CX || f (y)− fQ f (y)||L∞(D)||u(y)−uQ (y)||X

+ CDCP C 3
X

αLB (y)
||a(y)−aQa (y)||L∞(D)|| fQ f (y)||L∞(D)||u(y)−uQ (y)||X .

(4.51)

By comparing the left hand side (4.42) and the right hand side (4.51), we obtain the error bound (4.34)
depending only on the data a, f and their empirical interpolation errors, where C1 and C2 are defined
as

C1 :=CDCP CX ≤
√

|D|dD

2

√∣∣∣∣∣∣∣∣ 1

a(ȳ)

∣∣∣∣∣∣∣∣
L∞(D)

and C2 :=C 2
X ≤

∣∣∣∣∣∣∣∣ 1

a(ȳ)

∣∣∣∣∣∣∣∣
L∞(D)

. (4.52)

ä

Lemma 4.3.3 As for the approximation error between the compliant output s(y) = ( f (y),u(y)) and the
approximate compliant output sQ,N (y) = ( fQ f (y),uQ,N (y)), we have

|s(y)− sQ,N (y)| ≤ E s
Q (y)+4s

N (y), (4.53)

where 4s
N is the a posteriori error bound for the reduced basis approximation corresponding to (1.27),

E s
Q is the error due to the affine approximation of data a and f , defined as

E s
Q (y) := C 2

1

αLB (y)
|| f (y)− fQ f (y)||L∞(D)|| fQ f (y)||L∞(D) +C1|| f (y)||L∞(D)E

u
Q (y), (4.54)

where the constant C1, the lower bound αLB (y) and E u
Q (y), y ∈ Γ, are defined in Lemma 4.3.2.

Proof Similar to the proof of Lemma 4.3.2, we split the output approximation error into

|s(y)− sQ,N (y)| ≤ |s(y)− sQ (y)|+ |sQ (y)− sQ,N (y)|, (4.55)

where the first part corresponds to the affine approximation error of the random fields a and f and the
second part arises from the reduced basis approximation error bounded by

|sQ (y)− sQ,N (y)| ≤4s
N (y), (4.56)

which can be evaluated from (1.27). As for the first part, we seek a bound denoted as

|s(y)− sQ (y)| ≤ E s
Q (y). (4.57)
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By definition of the output s = ( f ,u) and the approximate output sQ = ( fQ f ,uQ ), we have

|s(y)− sQ (y)| = |( f (y),u(y))+ ( fQ f (y),uQ (y))|
≤ |( f (y)− fQ f (y),uQ (y))|+ |( f (y),u(y)−uQ (y))|
≤ || f (y)− fQ f (y)||L∞(D)||uQ (y)||L1(D) +|| f (y)||L∞(D)||u(y)−uQ (y)||L1(D)

≤C1|| f (y)− fQ f (y)||L∞(D)||uQ (y)||X +C1|| f (y)||L∞(D)||u(y)−uQ (y)||X

≤ C 2
1

αLB (y)
|| f (y)− fQ f (y)||L∞(D)|| fQ f (y)||L∞(D) +C1|| f (y)||L∞(D)E

u
a, f (y),

(4.58)

where the first inequality is due to the triangular inequality, the second one to the Hölder’s inequality,
the third one follows from combining (4.44), (4.45) and (4.46), and the fourth inequality follows from
using (4.48) and the error bound (4.37), respectively. ä

Remark 4.3.3 As a result of Lemma 4.3.2 and Lemma 4.3.3, the approximation error for both the solution
and the output can be split into two components: one arising from the empirical interpolation error
of the random fields and another one from the reduced basis approximation error. Unfortunately,
the evaluation of the empirical interpolation error for each sample y ∈ Γ in (4.34) and (4.54) involves
computing || · ||L∞(D) norm with at least O(N ) operations, being N = |Vx | the number of the finite
element nodes. This would spoil the cheap online evaluation cost for a large number of samples required
in the computation of failure probability, especially when N becomes very large.

Inexpensive a posteriori error bound

To order to overcome the drawback of computational inefficiency pointed out in Remark 4.3.3, we seek
the upper bounds E u,b

Q and E s,b
Q for the affine approximation error of the solution E u

Q ≤ E u,b
Q and the

output E s
Q ≤ E s,b

Q , whose computational cost is small and independent of N .

By the empirical interpolation Algorithm 3, we obtain from (3.9) and (3.10) the error bound

||a(y)−aQa (y)||L∞(D) ≤ r a
Qa+1(xQa+1, yQa+1) ∀y ∈Ξa

y (4.59)

and
|| f (y)− fQ f (y)||L∞(D) ≤ r f

Q f +1(xQ f +1, yQ f +1) ∀y ∈Ξ f
y , (4.60)

where r a
Qa+1 and r f

Q f +1 are the the empirical interpolation errors defined in (3.8) corresponding to the

nonaffine random fields a and f , respectively. Although the relation (4.59) and (4.60) hold true only in

the sample sets Ξa
y and Ξ f

y , we remark that in practice they also often hold in the whole probability
domain Γ, especially when the cardinality of sample sets is big or the random fields are rather smooth
with respect to the random vector y .

Since computing || fQ f (y)||L∞(D) in (4.34) and (4.54) for y ∈ Γ is expensive, we bound the quantity
||uQ (y)||X in (4.47) directly by

||uQ (y)||X ≤ ||uQ,N (y)||X +4u
N (y), (4.61)

(instead than by (4.48)), which can be cheaply evaluated in the online stage. Now we can compute
the following error bound for the affine approximation error of the solution by using (4.59), (4.60) and
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(4.61),

E u,b
Q (y) := C1

αLB (y)
r f

Q f +1(xQ f +1, yQ f +1)

+ C2

αLB (y)
r a

Qa+1(xQa+1, yQa+1)(||uQ,N (y)||X +4u
N (y)).

(4.62)

As for the error bound E s,b
Q (y), we also need to compute || f (y)||L∞(D) for y ∈ Γ, which is rather expensive.

Alternatively, we can bound the second term |( f (y),u(y)−uQ (y))| in (4.58) by

|( f (y),u(y)−uQ (y))| = |(a(y)∇u(y),∇(u(y)−uQ (y)))|
≤ amaxC2||u(y)||X ||u(y)−uQ (y)||X
≤ amaxC2(E u,b

Q (y)+4u
N (y)+||uQ,N ||X )E u,b

Q (y),

(4.63)

where the first inequality follows from the definition of the constants amax in (41) and C2 in (4.46),
while the second inequality holds because of the triangular inequality with the associated error bounds

||u(y)||X ≤ ||u(y)−uQ (y)||X +||uQ (y)−uQ,N (y)||X +||uQ,N (y)||X . (4.64)

In conclusion, a cheaper error bound for the output E s,b
Q (y) reads

E s,b
Q (y) :=C1r f

Q f +1(xQ f +1, yQ f +1)
(||uQ,N (y)||X +4u

N (y)
)

+amaxC2

(
||uQ,N ||X +4u

N (y)+E u,b
Q (y)

)
E u,b

Q (y).
(4.65)

The error bound E s,b
Q (y) is cheap to evaluate since the solution uQ,N (y) and the error bounds 4u

N (y)

and E u,b
Q (y) can be computed online with at most O((Q f +NQa)2) operations, and the other constants

in (4.65), i.e., C1,r f
Q f +1(xQ f +1, yQ f +1), amax ,C2, are evaluated only once for all the samples.

On the evaluation of failure probability

In the evaluation of failure probability, the reduced basis method stays the same as presented in
Algorithm 2 , while the a posteriori error bound used in the hybrid reduced basis method in Algorithm
4 is modified as the global a posteriori error bound E s,b

Q +4s
N . In both methods, we prefer to construct

a more accurate empirical interpolation for the nonaffine random fields and a richer reduced basis
space with small approximation error in order to improve the computational accuracy and efficiency,
especially for N large entailing a costly solution of the full PDE. As for the goal-oriented reduced basis
method, we adopt different computational strategies for different properties of the nonaffine random
fields.

When the random fields are rather regular (smooth manifold) with respect to the random vector y ,
the decay of the optimal approximation error or Kolmogorov width dQ is very fast, so the empirical
interpolation error also converges rapidly to zero thanks to Theorem 3.2.1. In this case, the affine
approximation error could be very small and dominated by the reduced basis approximation error.
Therefore, goal-oriented adaptive reduced basis construction is still effectively governed by the a
posteriori reduced basis approximation error bound. Whenever the distance between the approximate
output and the critical value is smaller than the affine approximation error bound at sample y ∈ Γ, i.e.,
|sQ,N (y)− s0| ≤ E s,b

Q (y), which is extremely rare, we solve the full PDE to evaluate an accurate output.

On the other hand, if the nonaffine random fields are far from smooth in the probability space, the
affine approximation error bound E s,b

Q (y) could be relatively large for small Q. In order to guarantee
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that the affine approximation error bound is dominated by the reduced basis approximation error
bound, the number of the affine terms Qa ,Q f might be very large, resulting in relatively more expensive
online evaluation with O((Q f +NQa)2) operations. In this circumstance, we choose to start from a
crude approximation with small Qa ,Q f , N for sake of computational efficiency and adaptively enrich
the bases in the reduced basis space as well as refine the empirical interpolation with more affine terms
governed by the error bounds 4s

N and E s,b
Q .

4.4 Numerical experiments

In this section, we carry out several numerical experiments to illustrate the computational difficulties
encountered by conventional methods and demonstrate the accuracy and efficiency of our proposed
methods for the evaluation of failure probability. Moreover, we apply our methods to more general
PDE models including noncompliant, unsteady and nonaffine problems.

4.4.1 Benchmark models

One-dimensional problems

First of all, we study the benchmark model of the elliptic coercive affine scalar problem (39) with
different one-dimensional random inputs. The physical domain is specified as a square D = (0,1)2. We
take a deterministic force term f = 1 for simplicity and consider the random diffusion coefficient a in
different cases. The solution of the PDE model in the physical domain is approximated by piecewise
linear finite element functions. In the probability domain Γ, we approximate the solution by the
stochastic collocation method introduced in chapter 1 and the reduced basis method. For the latter, we
use a uniform lower bound αLB ≤α(y),∀y ∈ Γ, for the sake of computational efficiency, see [174, 178].

Figure 4.1: Finite element mesh for the physical domain D with 1 disk (left) and 9 disks (right).

In the first test, we take a random field a(x, y) = (1.1+ yX1(x))/10, x ∈ D, y ∈ Γ where y is a random
variable uniformly distributed in Γ= [−1,1] and X1 is a characteristic function supported on a disk with
radius 0.4 and center (0.5,0.5), i.e., X1(x) = 1 if (x1 −0.5)2 + (x2 −0.5)2 ≤ 0.42; see the left of Figure 4.1.
Note that the random field a is a first order polynomial of y , thus smooth in the probability domain Γ.
In the second test, we take a(x, y) = (1.1+ (1−2X0.5(y))X1(x))/10, x ∈ D, y ∈ Γ, where the characteristic
function is X0.5(y) = 1 if |y | ≤ 0.5. The random field a is now discontinuous in the probability domain

91



Chapter 4. Hybrid and goal-oriented adaptive reduced basis methods for risk analysis

Γ, in fact taking only two different values. The critical value of the output is taken as s0 = 0.2845 in the
first test and s0 = 0.2726 in the second. For the approximation of the output s in probability domain,
we first approximate the solution u by employing the stochastic collocation method with hierarchical
Clenshaw–Curtis rule [149], where the number of collocation nodes is N = 2n + 1,1 ≤ n ≤ 5, then
evaluate the output sN = s(uN ) at the approximate solution uN .
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Figure 4.2: The stochastic collocation approximation of the output with different collocation nodes.
Left: the random coefficient a is smooth; right, the random coefficient a is discontinuous in Γ.

Figure 4.2 displays the output s(y), y ∈ Γ and the stochastic collocation approximation of the output
for both the smooth and the discontinuous random fields. From the left of Figure 4.2, we can observe
that the output approximated by the stochastic collocation method converges to the accurate output
when increasing the number of collocation nodes. The worst approximation error maxy∈Γ |s(y)− sN (y)|
computed in the sample set Ξnew with |Ξnew | = 1000 is shown in Table 4.1, which decreases to zero
very fast and the failure probability P (ω ∈ Ω : s(y(ω)) < s0) converges to the true value 0.20. As for
the discontinuous test, we can see from the right of Figure 4.2 that the approximate output oscillates
around and does not converge to the accurate output, because of the Gibbs phenomenon (see also
[61]). Due to the Gibbs phenomenon, the worst approximation error does not converge to zero but
increases and the failure probability evaluated by the stochastic collocation method is far from the
true value 0, as can be seen in Table 4.1 for Test 2. In order to compute an accurate failure probability,
the threshold value in the hybrid approach must be so large that too many outputs (at samples in half
of the probability domain in this example) have to be evaluated by fully solving the underlying PDE,
which severely deteriorates the advantage of hybrid scheme. In the extreme case, the hybrid scheme
may not gain any computational efficiency due to the fact that the outputs at most of the samples have
to be evaluated by solving a full PDE.

Test \ Number of collocation nodes N = 3 N = 5 N = 9 N = 17 N = 33
Test 1, maxy∈Γ |s(y)− sN (y)| 0.41 0.16 0.026 7.7e-4 6.3e-7
Test 1, P (ω ∈Ω : s(y(ω)) < s0) 0.46 0.31 0.27 0.21 0.20
Test 2, maxy∈Γ |s(y)− sN (y)| 0.95 0.95 1.03 1.06 1.07
Test 2, P (ω ∈Ω : s(y(ω)) < s0) 0.00 0.28 0.22 0.24 0.20

Table 4.1: Worst approximation error and failure probability of Test 1 (smooth) and Test 2 (discontinu-
ous) evaluated by the stochastic collocation method with different number of nodes.

In comparison, the worst approximation error for the output by the reduced basis method (where we
have set εtol = 1.0×10−14) decreases extremely fast, reaching 2.4×10−14 with only four bases in the
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first test of smooth random field, and it completely vanishes with only two bases in the second test of
discontinuous random field. The failure probability evaluated by the reduced basis method is exact
in both tests. This remarkable computational accuracy and efficiency can be attributed to the fact
that the reduced basis method takes the solution (only two different solutions in the discontinuous
case) as the approximation basis and solves a reduced PDE that inherits the same structure of the
full PDE. Consequently, when the random input function is discontinuous as shown in this example,
the reduced basis method overcomes the challenge of Gibbs phenomenon by avoiding the usage of
dictionary basis. This conclusion holds for more general nonsmooth random input functions as long
as the model outputs depend smoothly on the inputs.

Multidimensional problems

To further investigate the computational accuracy and efficiency of different methods for the evaluation
of failure probability, we consider a multidimensional problem with many random inputs. The physical
domain D and force term f are specified as in previous case. We suppose that there are nine disks in the
domain (see the right of Figure 4.1) and define the background coefficient as a0(x, y) = 1, x ∈ D, y ∈ Γ
and coefficients in the disks as ak (x, y) = 10yk Xk (x),1 ≤ k ≤ 9, x ∈ D, y ∈ Γ, where yk ,1 ≤ k ≤ 9 are
independent and obeying uniform distribution in Γk = [−2,2], the characteristic functions are defined
as Xk (x) = 1,(x1−xk

1 )2+(x2−xk
2 )2 ≤ 0.12, with the centers at the points ((2i −1)/6,(2 j −1)/6),1 ≤ i , j ≤ 3

where 3(i −1)+ j = k. The random coefficient a is defined as a = (a0 +a1 +·· ·+a9)/10.
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Figure 4.3: Comparison of output error between stochastic collocation approximation and reduced
basis approximation. Left: error at one sample; right: worst approximation error.

In this numerical test, we employ the sparse grid stochastic collocation method introduced in chapter 1
to approximate the output s directly; 100 realizations of the random input y ∈ Γ are sampled according
to its probability distribution to specify the training set for the construction of the reduced basis space
and another 100 realizations are sampled to test the two approximation methods. Figure 4.3 reports
the comparison of the output error |s − sN | between stochastic collocation approximation and reduced
basis approximation. On the left, the comparison is performed at one sample randomly chosen from
the probability domain Γ, from which we can observe that the reduced basis approximation error
decreases monotonically and much faster than the stochastic collocation approximation error, which
starts to oscillate when the number of collocation nodes gets large due to over fitting problem (Gibbs
phenomenon). On the right, the comparison is carried out for the worst approximation error (the
largest approximation error among 100 test samples randomly chosen in the probability domain), which
shows that the reduced basis approximation is much more efficient than the stochastic collocation
approximation in that only a small number (≤ 38) of the full PDEs need to be solved in order to gain the
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same worst approximation error compared to a significant large number (≥ 26017) of samples for the
sparse grid collocation approach. The method becomes especially efficient when the solution resides
in a low-dimensional manifold while the random inputs are in high dimensions.

Figure 4.4 displays the effectivity of the employment of a posteriori error bound. On the left, we report
the decay of the error bound 4s

N and the real output error |s − sN | with respect to the number of
reduced basis functions at one sample randomly chosen from the probability domain. On the right, the
effectivity defined as 4s

N /|s − sN | at 100 test samples is shown. It proves that 4s
N ≥ |s − sN | for all the

samples and the error bound 4s
N is not far from the real error |s − sN | at most of the samples, so that it

is reasonable to use the a posteriori error bound for both certification of the approximation output and
construction of the reduced basis space.
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Figure 4.4: Left: comparison of error bound 4s
N and real error |s − sN | with respect to the number of

reduced basis functions N at one sample; right: effectivity 4s
N /|s − sN | at 100 test samples.

For the evaluation of the failure probability, we test both the hybrid reduced basis method and the
goal-oriented reduced basis method. From the same training set with 100 samples, we construct a fine
reduced basis space with tolerance εtol = 1×10−4 for the former method, resulting in 38 bases, and a
coarse reduced basis space with tolerance εtol = 1×10−2 for the latter method, leading to 18 bases. We
compute the failure probability by hybrid algorithm 4 and goal-oriented adaptive Algorithm 5 by setting
M0 = 1000 initial samples, the scaling parameter β= 4 and a posterior error tolerance εtol = 1×10−3.
We remark that a small value of the adaptive parameter β leads to a relatively small number of samples
in each adaptation step, which is favorable for computational efficiency for the offline construction of
the reduced basis space since there are less samples that need to be searched over. Large β potentially
produces large difference of the a posteriori error ep

i in Algorithm 5, which drives Imax big and results
in relatively more accurate failure probability. Here and in the following numerical experiments, we set
β= 4 as a trade-off between computational efficiency and numerical accuracy. The comparison results
are recorded in Table 4.2, from which we can see that the reduced basis space for the hybrid method is
fine enough and we only need to solve 329 full PDEs in total in order to evaluate the outputs at 341000
samples. By the goal-oriented adaptive approach, the total number of full PDEs that should be solved is
132. Nevertheless, only 36 PDEs need a full solving thanks to the adaptation of the reduced basis space
at each iteration, which achieves further computational efficiency. Moreover, owing to an effective and
cheap a posteriori error bound, both the hybrid approach and the goal-oriented adaptive approach
result in the same failure probability (0.027 for a critical value s0 = 0.25) as being solved directly by
Monte Carlo method. In summary, both the hybrid and the goal-oriented adaptive reduced basis
methods have been successfully applied to efficiently and accurately compute the failure probability,
with the goal-oriented adaptive approach gaining remarkable computational efficiency thus more
suitable to solve complex PDEs with time-consuming solver.
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Number of Monte Carlo samples 1M0 4M0 16M0 64M0 256M0 341M0

Hybrid RBM, # (|s − sN | <4s
N ) 0 3 22 59 245 329

Adaptive RBM, # (|s − sN | <4s
N ) 41 41 20 8 22 132

Adaptive RBM, # adapted bases 8 9 6 5 8 36
Failure probability P m

0 = P h
0 = P

g
0 0.043 0.033 0.030 0.027 0.027 0.027

Table 4.2: Comparison between hybrid RBM and goal-oriented adaptive RBM in terms of the number
of samples for which the full PDE have to be solved; M0 = 1000.

4.4.2 Noncompliant problems

We take D = (0,1)2 and suppose that the covariance fields of the random inputs are available and both
the diffusion coefficient a and the force term f are obtained from truncation of the Karhunen-Loève
expansion of covariance fields [189], expressed as

a(x, y(ω)) = E[a]+
Qa∑

q=1

√
λa

q aq (x)yq (ω) and f (x, y(ω)) = E[ f ]+
Q f∑
q=1

√
λ

f
q fq (x)y f

q (ω), (4.66)

where (λa
q , aq )Qa

q=1 and (λ f
q , fq )

Q f

q=1 are the eigenvalues and orthonormal eigenfunctions associated to

their corresponding covariance fields, y a
q ,1 ≤ q ≤Qa and y f

q ,1 ≤ q ≤Q f are mutually uncorrelated with
mean zero and unit variance. For the i−th coordinate, i = 1, . . . ,d , the general formula of a Gaussian
random field g (xi , y) is written as [149]

g (xi , y) = E[g ]+
(p

πL

2

)1/2

y g
1 (ω)+

K∑
k=1

√
λn

(
sin(kπxi )y g

2k (ω)+cos(kπxi )y g
2k+1(ω)

)
, (4.67)

where the random variables y g
k ,1 ≤ k ≤ 2K +1 are assumed to be uniformly distributed in [−p3,

p
3].

For simplicity, we assume that the covariance fields for a and f are Gaussian fields depending on x1

coordinate and x2 coordinate, respectively, with the same correlation length L = 1/4 and eigenvalues
λ1 = 0.3798,λ2 = 0.2391,λ3 = 0.1106,λ4 = 0.0376,λ5 = 0.0094,λ6 = 0.0017, etc.. We take Qa =Q f = 13
with K = 6 in (4.67) leading to a 26 dimensional problem, which accounts for around 99% uncertainties
of the random field. The expectation of the random force f given by (4.67) is taken as E[ f ] = 6; the
expectation of a random field ã given by (4.67) is specified as E[ã] = 5 and we take a = ã/10. The output
s(y) = s(u(y)) = ∫

D 10u(x, y)d x is different from the force term.

We adopt the primal-dual computational strategy for noncompliant problems presented in section 4.3.1.
We set the tolerance εtol = 1×10−4 for ||Rpr ||2X ′/αLB and ||Rdu ||2X ′/αLB (see the definition of residual in

(4.17)) in the hybrid reduced basis method and εtol = 1×10−2 in the goal-oriented adaptive reduced
basis method. The constructed hybrid reduced basis space for the primal problem contains 27 bases
and 14 bases for the dual problem, while for the construction of the goal-oriented adaptive reduced
basis method, there are 9 and 7 bases respectively. We test the reduced basis approximation for both
the primal and the dual problems with 100 test samples and present the worst approximation errors in
Figure 4.5, which illustrates the exponentially fast convergence of the reduced basis approximation
in high-dimensional random inputs. Figure 4.6 depicts the dependence of the worst approximation
error for the output maxy∈Ξtest |s(y)− sN (y)| (Ξtest denotes the test sample set with 100 samples) with
respect to the number of bases in the primal and dual reduced basis space (left) as well as the effectivity
of the a posterior error bound defined as 4s

N (y)/|s(y)− sN (y)| (right), from which we can observe that
simultaneous increase of the bases in both primal and dual reduced basis spaces not only leads to faster
convergence of the output approximation error but also improves the sharpness of the a posteriori error
bound thanks to the “square effect", thus enhances the computational efficiency for the evaluation of
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Figure 4.5: Worst primal-dual reduced basis approximation error of hybrid type with εtol = 1×10−4

(left) and goal-oriented adaptive type with εtol = 1×10−2 (right) at 100 test samples.
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Figure 4.6: The worst primal-dual hybrid reduced basis approximation error with εtol = 1×10−4 (left)
and goal-oriented adaptive type with εtol = 1×10−2 (right) at 100 test samples.

The error tolerance for the failure probability is set to εtol = 1×10−4 with a critical value s0 = 4. We
test both the hybrid and the goal-oriented adaptive approaches, with the results recorded in Table 4.3.
Due to the fact that the solution lies in a very low-dimensional stochastic manifold, the fine hybrid
reduced basis approximate output is very close to the true value and there are only 52 out of 1365000
samples that cannot be determined; as for the goal-oriented adaptive approach, 48 samples can not
be determined and only 21 PDEs are fully solved for adaptation of the primal and dual reduced basis
spaces. From this experiment, we can see that we do not gain much more computational efficiency by
the goal-oriented adaptive method than by the hybrid method, so that it is sufficient to use the hybrid
reduced basis method to compute failure probability for problems with very smooth solution in the
probability space.
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Number of Monte Carlo samples 1M0 4M0 16M0 64M0 256M0 1024M0 1365M0

Hybrid RBM, # (|s − sN | <4s
N ) 1 0 0 1 11 39 52

Adaptive RBM, # (|s − sN | <4s
N ) 3 4 7 5 15 14 48

Adaptive RBM, # adapted bases 2 1 3 4 6 5 21
Failure probability P m

0 = P h
0 = P

g
0 0.361 0.372 0.3823 0.3864 0.3832 0.3831 0.3831

Table 4.3: Comparison between hybrid RBM and goal-oriented adaptive RBM in terms of the number
of samples for which the full PDE have to be solved; M0 = 1000.

4.4.3 Unsteady problems

We consider a heat transfer problem in a thermal fin with the geometry displayed in Figure 4.7, where
the thermal conductivity in the main body and the four extended surfaces depends on five independent
random variables obeying uniform distribution in [−2,2], i.e.,

a0(x, y) = 1+10y0X0(x), and ak (x, y) = 10yk Xk (x),1 ≤ k ≤ 4,

where the characteristic functions Xk ,0 ≤ k ≤ 4 are supported in the sub domains Dk ,0 ≤ k ≤ 4.
Moreover, we consider the Biot number on the Robin boundaries as a random field as

b(x, y) = 10y5X∂Dr (x),

where the characteristic function X∂Dr (x) is supported on the Robin boundaries. The time dependent
heat transfer problem is formulated in the strong form as

∂u(t , x, y)

∂t
−

4∑
k=0

∇(ak (x, y)∇u(t , x, y)) = 0, (t , x) ∈ [0,T ]×D, a.s. y ∈ Γ, (4.68)

where Γ= [−2,2]6; we take T = 5 and impose homogeneous initial condition u(0, x, y) = 0 everywhere;
we also prescribe heat flux f (x) = 1, x ∈ ∂D1

n at the bottom edge, homogeneous Neuman condition on
the boundary ∂D2

n and the following Robin condition on the boundary of the extended surfaces ∂Dr :

4∑
k=0

ak (x, y)∇u(t , x, y) ·n+b(x, y)u(t , x, y) = 0, (t , x) ∈ [0,T ]×∂Dr , a.s. y ∈ Γ.

By the first order backward Euler scheme for time discretization with time step ∆t = 0.05, we can write
the semi-weak formulation of the problem (4.68) as: find ui (y) ∈ X ,1 ≤ i ≤ 100 such that the following
equation holds almost surely y ∈ Γ:

M(ui (y), v ; y)+∆t
4∑

k=0
Ak (ui (y), v ; y)+∆tB(ui (y), v ; y) =∆tF (v ; y)+M(ui−1(y), v ; y),∀v ∈ X , (4.69)

where B(ui (y), v ; y) = ∫
∂Dr

b(x, y)ui (x, y)v(x)d x and F (v ; y) = ∫
∂D1

n
f (x)v(x)d x.

We define the compliant output as the integrated temperature over the flux boundary at the final time
T = 5, i.e., s(y) = s(T ; y) = F (u(T ; y); y), and consider a critical value s0 = 2.3 with failure probability (in-
effective heat transfer) defined as P f (ω ∈Ω : s(y(ω)) > s0). Figure 4.8 displays temperature distribution
at three different samples at the end of the simulation, being the first one very effective for heat transfer
and the last one ineffective.

We build the reduced basis space for hybrid method with tolerance εtol = 1×10−4, resulting in 93
bases as shown in the left of Figure 4.9; as for goal-oriented adaptive method, we set the tolerance
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Figure 4.7: Geometry of a thermal fin, with domain D0 (blue) defined as the main body, Dk ,1 ≤ k ≤ K
(black) as the extended surfaces, ∂D1

n (red) where imposing heat flux, ∂D2
n (blue) for homogeneous

Neuman condition and the left boundary ∂Dr as Robin boundary.
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Figure 4.8: Temperature distribution at T = 5 for three different samples: left, yk = 2, effective heat
transfer; middle, reference yk = 0; right, yk =−2,0 ≤ k ≤ 5, ineffective heat transfer.
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Figure 4.9: Left: decay of worst approximation error maxy∈Ξtest |s(y)−sN (y)| with respect to the number
of reduced basis functions N ; right: error bound effectivity 4s

N /|s − sN | at 100 samples.

εtol = 1×10−2, leading to 42 initial bases. The effectivity for a posteriori error bound at 100 test samples
is displayed in the right of Figure 4.9, which are sharp and distributed close to a constant smaller than
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4.4. Numerical experiments

Number of Monte Carlo samples 1M0 4M0 16M0 64M0 256M0 341M0

Hybrid RBM, # (|s − sN | <4s
N ) 0 600 1500 3800 12400 18300

Adaptive RBM, # (|s − sN | <4s
N ) 700 1200 500 2300 1400 6100

Adaptive RBM, # PDE solves 400 400 200 700 300 2000
Adaptive RBM, # adapted bases 13 39 10 37 28 127
Failure probability P m

0 = P h
0 = P

g
0 0.0280 0.0315 0.0288 0.0304 0.0308 0.0308

Table 4.4: Comparison between hybrid RBM and goal-oriented adaptive RBM in terms of the number
of samples for which the full PDE have to be solved; M0 = 1000.

10. The results for the evaluation of failure probability with a tolerance εtol = 1×10−3 are shown in
Table 4.4, from which we can see that the goal-oriented adaptive approach is much more efficient than
the hybrid approach, involving the solution of only 2000 full PDEs (4.69) instead of 18300 in the latter
approach. We remark that the number of full PDE solves (2000 in total) is different from the number of
adapted bases (127 in total) in goal-oriented adaptive reduced basis method for unsteady problems.

4.4.4 Nonaffine problems

Instead of the affine expansion (4.66) of the random fields a and f , we consider the Karhunen-Loève
expansion for the logarithmic function of the random fields a and f , written as follows:

log
(
a(x, y(ω))−E[a]

)=Ca

Pa∑
q=1

√
λa

q aq (x)yq (ω),

log
(

f (x, y(ω))−E[ f ]
)=C f

P f∑
q=1

√
λ

f
q fq (x)y f

q (ω),

which are widely used in practical engineering models [149] in that the random fields are guaranteed to
be positive, so that the random variables in the Gaussian random field expansion (4.67) are allowed to
be standard Gaussian random variables with zero mean and unit variance. We take a correlation length
L = 1/16 smaller than in section 4.4.2 for both the diffusion random coefficient a(x1, y) depending
only in x1 and the random force f (x2, y) depending only in x2 in the formula (4.67). This leads to
Pa = P f = 51 terms to cover 99% of the total randomness, thus yielding a high-dimensional stochastic
problem with Pa +P f = 102 independent standard Gaussian random variables in total. The physical
domain is set as D = (0,1)2.

We perform an empirical interpolation procedure to affinely decompose the nonaffine random fields a
(with Ca = 50 and E[a] = 0.1) and f (with C f = 20 and E[ f ] = 0.1) with error tolerance εtol = 1×10−8

in Algorithm 3. The decay of the error bound rQ+1(xQ+1, yQ+1) and the worst approximation error
maxy∈Ξtest ||g (y)− gQ (y)||L∞(D) computed in a test set Ξtest with 100 samples are displayed in Figure
4.10, from which we can see that the empirical interpolation reaches very small error (1×10−8) by only
a few affine terms, Qa = 33 for aQa and Q f = 17 for fQ f in (4.32), which are smaller than 51. By setting

Θa
q ,1 ≤ q ≤ 33 andΘ f

q ,1 ≤ q ≤ 17 as new random variables in the affine decomposition formula (4.32),
we can view the empirical interpolation as an efficient dimension reduction method in order to alleviate
the curse-of-dimensionality, especially when the manifold of stochastic solution is in low-dimensional
probability space. Moreover, the error bound rQ+1(xQ+1, yQ+1) is accurate and very sharp (close to the
worst approximation error) as can be observed from Figure 4.10, so that the cheap a posteriori error
bounds constructed in (4.62) and (4.65) are also accurate and sharp.
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Figure 4.10: Decay of the error bound rQ+1(xQ+1, yQ+1) and the worst approximation error
maxy∈Ξtest ||g (y)− gQ (y)||L∞(D) for a (left) and f (right) by empirical interpolation method.

1 2 3 4 5 6 7 8 9 10
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 N

 e
rr

o
r

 

 
 RBM error bound ∆s

N

 EIM error bound Es,b
Q

 real error |s−s
Q,N

|

0 10 20 30 40 50 60 70 80 90 100
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

sample index

 e
rr

o
r 

b
o

u
n

d

 

 
 RBM error bound ∆s

N

 EIM error bound Es,b
Q

 real error |s−s
Q,N

|

Figure 4.11: Worst approximation error |s− sQ,N |, reduced basis error bound 4s
N and empirical interpo-

lation error bound E s,b
Q for N reduced basis functions (left), and at 100 test samples (right).

To evaluate the a posteriori error bound E s,b
Q in (4.65) from the contribution of affine decomposition,

we first compute C1 = 1, C2 = 1 from (4.52) and bound a almost surely by the estimate amax = 10; the
bound for the empirical interpolation error are taken from the construction of the affine decomposition

as r a
Qa+1(xQa+1, yQa+1) = 1.9×10−9 and r f

Q f +1(xQ f +1, yQ f +1) = 9.9×10−9. We construct the reduced

basis space with error tolerance εtol = 1×10−4, leading to 10 bases as shown on the left of Figure 4.11,
where the reduced basis error bound 4s

N (y) as well as the empirical interpolation error bound E s,b
Q (y)

are also shown at the sample y that leads to the worst approximation real error y = argmaxy∈Ξtest |s(y)−
sQ,N (y)|. It can be observed that the empirical interpolation error bound E s,b

Q is much smaller than
the reduced basis error bound 4s

N , so that we can enrich the reduced basis space in order to obtain
better approximation of the output with certified small error from affine decomposition. On the right
of Figure 4.11, the different error bounds computed with 10 bases in the reduced basis space as well as
the real output error are displayed at 100 test samples, which confirms the observation of the left figure
for most of the samples (with one exception where the reduced basis approximation of the output
is extremely close to the real output). Moreover, we can see that the reduced basis error bound is
accurate and sharp, being very close to the real error at most of the samples. In order to evaluate the
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4.5. Summary

failure probability with critical value s0 = 0.3 and tolerance εtol = 1×10−3, we set the reduced basis
construction tolerance εtol = 1×10−4 for hybrid approach, resulting in 10 bases and εtol = 1×10−2

for goal-oriented adaptive approach with 4 bases. The results are displayed in Table 4.5, which shows
that the reduced basis space is in very low dimensions (only 10 dimensions for the hybrid approach
and 4+7 = 11 dimensions for the goal-oriented adaptive approach) due to the fact that the stochastic
solution and output live in a very low-dimensional manifold, even though the random inputs are in
high dimensions.

Number of Monte Carlo samples 1M0 4M0 16M0 64M0 256M0 341M0

Hybrid RBM, # (|s − sN | <4s
N ) 0 1 1 7 33 42

Adaptive RBM, # (|s − sN | <4s
N ) 13 2 5 1 14 35

Adaptive RBM, # adapted bases 2 1 1 1 2 7
Failure probability P m

0 = P h
0 = P

g
0 0.064 0.059 0.062 0.065 0.064 0.064

Table 4.5: Comparison between hybrid RBM and goal-oriented adaptive RBM in terms of the number
of samples for which the full PDE has to be solved; M0 = 1000.

4.5 Summary

In this chapter, we developed hybrid and goal-oriented adaptive computational strategies based on the
reduced basis method to efficiently and accurately compute the failure probability of partial differential
equations with random inputs. In particular, we designed an efficient sampling scheme by the goal-
oriented greedy algorithm to construct an accurate reduced basis model to approximate the stochastic
output, especially for high-dimensional problems with many random inputs. In order to compute the
failure probability of low regularity systems with respect to the random inputs, we developed a hybrid
approach with goal-oriented adaptation governed by cheap and sharp a posteriori error bound for both
the construction of the reduced basis space and the approximation of the output with certification.
Using appropriate techniques, we extended the proposed methods for risk analysis to more general
PDE models of noncompliant, unsteady and nonaffine types. In the numerical experiments, we studied
different PDEs with uncertainties from physical parameters, external loadings, boundary conditions as
random inputs obeying uniform distribution and normal distribution.

At this step, however, our numerical experiments are based on simple academic examples with specific
design , with the sole aim of testing the computational properties of our proposed methods. Further
research will be devoted to the development and application of our methods in practical engineering
problems with more general PDE models and random inputs. It is worth to mention that Monte Carlo
error plays a significant role in accurate evaluation of rare failure probability of extreme events. We
will address this issue by efficiently combining model reduction with importance sampling techniques
in a coming work, where the proposed reduced basis method is used to reduce the cost in solving
the underlying PDE model and adaptive cross-entropy method is employed to reduce the number of
Monte Carlo samples. We also remark that we did not take temporal and spatial discretization errors
into account, which might be important, e.g., in highly nonlinear or advection-dominated problems. A
global error analysis and the design of suitable global error bounds would be helpful for more rigorous
evaluation of failure probability.
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5 Breaking the curse of dimensionality
– sparsity and reducibility

Forward uncertainty quantification (UQ) problems can be generally classified into two categories:
integration problems, including computation of statistical moments, variance-based sensitivity anal-
ysis, etc., which were considered in chapter 2; pointwise evaluation problems, such as evaluation of
probability density function, quantile, failure probability, etc., which were studied in chapter 4 in the
context of reliability analysis. Despite various computational methods, such as stochastic Galerkin
and collocation methods, can be effectively applied in solving forward UQ problems, a common com-
putational challenge is faced by these methods, which is known as curse of dimensionality. When
the dimension of the uncertainties becomes high (in the order of 100 and beyond), the number of
dictionary projection bases or collocation nodes grows exponentially fast such that the computational
burden can not be handled by even the most powerful computers. Another computational challenge
stems from the fact that when the solution of the underlying model at one sample is expensive, the
available computational resource can only afford the full solve at a few tens or hundreds samples,
which is far from the required number (in the order of million or beyond) in a high-dimensional space.
Any of the two challenges makes it impossible a direct application of the stochastic computational
methods introduced above in solving high-dimensional UQ problems.

An opportunity to tackle this “curse-of-dimensionality" is to take advantage of the sparsity – the im-
portance (or sensitivity) of different dimensions and their interaction/combination is very different
for the quantities of interest, so that only a limited number of dimensions play an effective role. This
role has lead to the development of the weighted function space based quasi Monte Carlo method
[62], a priori and a posteriori analysis based anisotropic sparse grid construction [148], (Sobol) de-
composition of function based techniques such as ANOVA (analysis of variance) [88, 78, 73], HDMR
(high-dimensional model representation) [128], hierarchical surplus based dimension-adaptive gen-
eralized sparse grid techniques [33, 79, 88], and so on [21, 19, 140]. The quasi Monte Carlo method
improves the convergence rate of the Monte Carlo method (which is O(1/

p
M) when using M randomly

chosen samples) by following some digit rules or lattice rules [62] that explore the “weights" of different
dimensions when choosing the samples. A faster convergence rate (typically O((log(M))K /M) for K
dimensional problems) can be achieved in this way. However, when the functions to be approximated
feature smoothness and sparsity in the sense that the effective dimensions are much less than the total
or nominal dimensions, the quasi Monte Carlo method is still too slow compared to the stochastic
Galerkin method or the stochastic collocation method. Smoothness and sparsity have been exploited
by anisotropic sparse grid techniques based on either a priori or a posteriori analysis of the convergence

Reference for this chapter:

P. Chen and A. Quarteroni. A new algorithm for high-dimensional uncertainty quantification problems based on dimension-
adaptive and reduced basis methods. Submitted, 2014
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Chapter 5. Breaking the curse of dimensionality – sparsity and reducibility

rate of the approximate error in each stochastic dimension [148]. This has proved to be more efficient
than the isotropic sparse grid in certain test cases. An essential drawback remains for this approach in
that the interaction of different dimensions can not effectively be taken into account, leading to either
too many useless grid nodes or less accurate approximation for some strongly interacting variables. As
the high-dimensional function may be decomposed into a series of low-dimensional additive functions
depending on the interaction of different dimensions, the variance based ANOVA (in combination
with HDMR) approach has been employed to detect the interactions. Nevertheless, this approach
may either be too expensive (more expensive than the original approximation problem based on
Lebesgue measure) or not enough accurate (due to arbitrary choice of anchored points based on Dirac
measure) and not suitable for high-dimensional interpolation (pointwise evaluation) for stochastic
problems with arbitrary probability measure. Another recently developed method under the name
of dimension-adaptive tensor-product integration [79] uses a generalized sparse grid construction
scheme and employs hierarchical surplus from the construction as error indicators to automatically
detect different importance and interaction of different dimensions. Although being essentially equiva-
lent to the anchored ANOVA approach, it is more versatile with different choice of hierarchical surpluses
and suitable for interpolation problems. Still, it is to blame for the drawback of running into stagnation
phenomenon, where too early stop of the grid construction in some region occurs before arriving at
the desired accuracy of approximation. Another drawback is it use one higher level of grid to assess the
error indicators, resulting in a very heavy computational cost.

In this chapter, we adopt the more versatile dimension-adaptive algorithm based on hierarchical
surpluses and generalized sparse grid construction for both integration and interpolation. However,
we propose two remedies in addressing the drawbacks and enhancing both its efficiency and accuracy
for solving different UQ problems. As for the first drawback of running into stagnation, a balanced
greedy algorithm was suggested in [79] and [110], where a purely greedy criteria of choosing the next
index by hierarchical surplus for grid construction is balanced by performing the conventional sparse
grid construction. However, it is neither possible to choose an optimal balance weight nor feasible
to use the same weight throughout the whole grid construction. Alternatively, we propose to carry
out a verification procedure in order to get rid of the stagnation phenomenon. The basic idea is that
whenever the construction is stopped at some region by meeting certain criteria, we check whether it
should be continued by some verification algorithms specific to different dimensional problems. This
approach avoids the difficulty in tuning the balanced weight parameter and works efficiently to get out
of the stagnation region for grid construction at the appropriate moment.

The verification remedy has not yet been studied in the literature or applied in practice because
it needs additional verification samples besides the ones used for assessing hierarchical surpluses
in one higher level. This drawback is critical for large-scale UQ problems that already require large
computational efforts in solving the underlying PDE model at one sample, as the second computational
challenge mentioned before. In order to harness the computational burden, we employ a reduced
basis method, which has been used in combination with ANOVA in [96], and develop an adaptive and
weighted algorithm in the framework of the verified hierarchical approximation. The rationale of this
computational approach is deeply rooted in probability theory: though the random inputs live in a
high-dimensional space, the output of interest (statistics of these random inputs) may only lie in a
low-dimensional manifold, for instance the arithmetic mean of a large number of independent random
variables fulfilling certain conditions (e.g. having finite variance) converge to a (Gaussian) random
variable, as guaranteed by the central limit theorem [64]. This fact enables us to construct a reduced
bases space with a few number of bases while achieving high accuracy in approximating the high fidelity
solution, e.g. finite element solution and the output of interest. Based on this idea and using the reduced
basis method for parametrized PDEs [131, 178, 158, 87, 86, 49], we develop an adaptive greedy algorithm
in combination with the verified dimension-adaptive hierarchical grid construction procedure to solve
high-dimensional UQ problems. In order to take the arbitrary probability measure into account, we
use a weighted a posteriori error bound for guiding the selection of the most representative bases [49].
This proves to be more efficient with much less bases in achieving the same approximation accuracy as
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5.1. High-dimensional uncertainty quantification

the a posteriori error bound without incorporating the weight.

By the end, an adaptive and reduced computational framework is developed in efficiently and ac-
curately solving high-dimensional UQ problems that feature sparsity and reducibility. Application
of the proposed framework in solving high-dimensional UQ problems based on more general PDE
models, such as non-affine, non steady, non-compliant, non-coercive and nonlinear problems can be
realized by resorting to specific techniques and computational approaches, e.g. empirical interpolation,
primal-dual approach, supermizers enrichment, POD-greedy algorithm and Newton iteration, respec-
tively, which will be summarized in this work. A series of numerical experiments featuring various
properties for both functions and PDEs are carried out in demonstrating the efficiency and accuracy of
our method and in comparing its computational performance to several other techniques.

This chapter is organized as follows. A family of UQ problems is introduced in section 5.1 based on
a general formulation. For their numerical solution, two computational challenges are identified
and briefly illustrated. Section 5.2 is devoted to the development of the verified dimension adaptive
hierarchical approximation based on generalized sparse grid construction. Some remarks regarding
the computational effectivity, efficiency and accuracy of this method in comparison with some other
techniques are provided at the end of the section. In section 5.3, the adaptive and weighted reduced
basis method is presented based on a simple PDE model. A large effort has been devoted to conducting
a variety of numerical experiments in section 5.4, including 10 examples in 6 different topics that
offer a rich diversity for demonstrating the accuracy and efficiency of the proposed computational
framework and comparing them with several other techniques. In the last section, we close this
chapter by drawing some conclusions based on the numerical experiments and providing a few further
research perspectives for developing and applying the adaptive and reduced computational framework
in solving more general high-dimensional UQ problems.

5.1 High-dimensional uncertainty quantification

In this section, we start with the presentation of several uncertainty quantification (UQ) problems
that have been largely studied in the literature, and then we identify some common computational
challenges in solving the UQ problems.

5.1.1 Formulation of UQ problems

Associated with the general stochastic PDEs (38) under finite dimensional noise assumption as in-
troduced in the preliminary chapter, the quantities of interest may be the solution u, the solution
restricted to a certain physical region or to the boundary, some functional, e.g. s : u(y) → s(y) ≡ s(u(y)).
Here is a list (far from exhaustive) of uncertainty quantification problems:

1. compute the probability density function or the cumulative distribution function of either u or s
[72];

2. evaluate statistical moments, e.g., mean E[s], variance V[s] := E[s2]− (E[s])2, etc. [10, 8];

3. perform derivative-based local sensitivity analysis, e.g., compute du(y)/d y or d s(y)/d y [182];

4. perform variance-based global sensitivity analysis, e.g., compute Vk [s]/V[s], where Vk [s] is the
variance of s from the contribution of the random variable Yk ,k = 1, . . . ,K [34, 46];

5. perform risk analysis, e.g., for a given a critical value s0, compute the failure probability [121, 41]

P (ω ∈Ω : s(ω) < s0); (5.1)
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Chapter 5. Breaking the curse of dimensionality – sparsity and reducibility

6. solve stochastic optimal control problems, e.g., the following minimization problem [47, 45, 197]

f = arg min
f ∈Uad

J (u, f ) such that u satisfies problem (38), (5.2)

where f is regarded as a deterministic control function living in an admissible space Uad , ud is a
given observation, α is a regularization parameter, and the cost functional is

J (u, f ) := ||u −ud ||H s +α|| f ||L 2 . (5.3)

7. estimate a parameter by Bayesian inference, e.g., given experiment data u or s with certain noise
η, evaluate the posteriori density ρpost of a random coefficient a of L based on its priori density
ρpr [18, 188, 211].

Etc...

From a numerical standpoint, the above UQ problems could be classified as follows: for problems 1, 3,
5, 7, we look for pointwise evaluation of the stochastic solution, i.e. compute u(y) or s(y) at many y ∈ Γ;
problems 2, 4, 6 require the evaluation of statistical moments. Interpolation techniques are requested
for the former class, integration techniques for the latter.

5.1.2 Computational challenges

In order to study the UQ problems introduced above, the underlying stochastic PDEs (38) have to
be solved. Several methods have attracted large attention in recent years. This includes the non-
intrusive Monte Carlo method and several variants, stochastic collocation method based on sparse grid
techniques, the intrusive stochastic Galerkin method with generalized polynomial chaos, surrogate
models by different model order reduction approaches, etc. [72, 80, 208, 149, 152, 25, 49, 50].

The Monte Carlo method is typically blamed for its slow convergence; on the other side, all the other
methods that are expected to feature fast convergence face some common computational challenges.
A critical one is high dimensionality, which requires an exponentially increasing number of collocation
(for interpolation) or quadrature (for integration) nodes with growing stochastic dimensions. Figure
5.1 depicts the total number of nodes in tensor product (left) and sparse grid (right) structures with
different probability dimensions. The left one reports the results in dimensions 1, 5, 10, 20, 50 and 100
with the number of nodes in each dimension increasing from 1 to 8, from which we can see that the
number of nodes easily overpasses the capacity of computational power in relatively high dimensions,
e.g., 2100 ≈ 1030 nodes are needed for 100 dimensional case with only 2 nodes in each dimension.
The results of sparse grid (Smolyak type with Clenshaw–Curtis nodes [207, 149], corresponding to
Chebyshev-Gauss-Lobatto nodes in the context of spectral methods [35]) for dimension going up to
200, 500 and 1000 are displayed on the right of Figure 5.1. Compared to tensor product structure, the
sparse grid structure considerably reduces the number of nodes, e.g., around 106 and 109 nodes are
needed with 9 nodes in each dimension at sparse grid level 3 for 100 and 1000 dimensional cases.
Nevertheless, only tens or hundreds of nodes are affordable in practical engineering problems when a
full solve of the underlying PDEs is very expansive. This requirement prevents a direct use of sparse
grid techniques for even moderate dimensional problems. This challenge is particularly relevant to UQ
problems 6 and 7, namely optimization and inverse problems, for which many full solves (in the order
of tens or hundreds) of the underlying PDEs, using some iteration method [161], have to be performed
at each of a large number of nodes [43, 45].

Another computational challenge, which we would like to emphasize again, for solving most of the
PDE-based UQ problems is that the numerical solution of the underlying PDE model might require a
large computational effort: this is e.g. the case of multiscale and/or multiphysics problems. In these
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Figure 5.1: Number of collocation (for interpolation) or quadrature (for integration) nodes of tensor
product structure (left) and sparse grid structure (right) for different probability dimensions.

circumstances, only a few tens or hundreds of the underlying PDEs can be fully solved, therefore pre-
venting direct application of any method mentioned above in solving high-dimensional UQ problems,
for which a large number (in the order of million and beyond) of PDEs have to be solved in order to
evaluate the quantity of interest. This computational challenge is critical for UQ analysis in many
practical engineering fields. Research in addressing this challenge in the context of high-dimensional
UQ problems is still in its infancy [153].

5.2 Verified dimension adaptive hierarchical approximation

In this section, we present the dimension-adaptive tensor-product algorithm for hierarchical approxi-
mation of high-dimensional UQ problems based on the work [33, 79, 110]. Our original contribution is
to identify the stagnation phenomenon in the hierarchical construction of a generalized sparse grid for
this algorithm and propose a verified version of this algorithm in order to cure this undesirable behavior.
Suitable error indicators (in particular, a new integration error indicator) are provided for interpolation
and integration problems. Some comparisons with several other techniques, e.g. anisotropic sparse
grid [148] and variance-based ANOVA (HDMR) [73, 128], are provided at the end of this section.

5.2.1 Hierarchical interpolation and integration in one dimension

For numerical interpolation of function s : Γ→R in a one dimensional probability domain Γ⊂R, we
first pick a series of collocation nodes y j ∈ Γ, j = 0, . . . ,m, ordered such that y1 < y2 < ·· · < ym and for
any given node y ∈ Γ, we approximate the function value s(y) by the following interpolation formula

s(y) ≈U s(y) =
m∑

j=1
s(y j )l j (y), (5.4)

where U is an interpolation operator; l j ,1 ≤ j ≤ m are basis functions that, depending on the regularity
of the function s with respect to y in Γ, are either piecewise polynomials or global polynomials [164]. For
instance, the piecewise linear polynomials most often used in approximating low regularity functions
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are defined as

l j (y) =


y − y j−1

y j − y j−1
, if y ∈ [y j−1, y j ], j = 2, . . . ,m;

y j+1 − y

y j+1 − y j
, if y ∈ [y j , y j+1], j = 1, . . . ,m −1.

(5.5)

Though converging very slowly (thus requiring a large number of nodes for accurate approximation),
these bases lead to uniform convergence when the nodes become dense in the domain Γ. As for the
approximation of smooth functions, more suitable are the globally supported polynomials, for instance
Lagrange polynomials defined as

l j (y) =
m∏

l=1,l 6= j

y − y l

y j − y l
, j = 1, . . . ,m, (5.6)

for a suitable set of nodes such as Gauss quadrature nodes, Chebyshev or Clenshaw–Curtis nodes [164,
199]. For instance, the Clenshaw–Curtis nodes in the interval [−1,1] are given by

y j = cos

(
j −1

m −1
π

)
, 1 ≤ j ≤ m. (5.7)

Let i ∈N+ denote the grid level, Θi denote the set of collocation nodes on the grid of level i , with m(i )
being the number of nodes on the grid of level i , for instance

m(1) = 1; m(i ) = 2i−1 +1, i ≥ 1. (5.8)

We consider nested set of nodes, i.e. Θi ⊂Θi+1, i = 1,2, . . . , q with q ∈N+. In this way, the hierarchical
interpolation formula can be written as [33, 110]

s(y) ≈U q s(y) =
q∑

i=1
4i s(y), (5.9)

where 4i is the difference of interpolation operators at two successive levels, defined as

4i =U i −U i−1, 1 ≤ i ≤ q, (5.10)

being U 0 = 0 and U i the interpolation operator supported on Θi . For notational convenience, let
us define Θi

4 = Θi \Θi−1,1 ≤ i ≤ q with Θi−1 := ;, and reorder the collocation nodes y1, . . . , ym(q)

in Θq = ∪q
i=1Θ

i
4 level by level in such a way that y i

j ∈ Θi
4,1 ≤ i ≤ q,1 ≤ j ≤ m(i ) − m(i − 1) with

m(0) = 0. Corresponding to the reordering of the collocation nodes, we denote the basis functions as
l i

j ,1 ≤ i ≤ q,1 ≤ j ≤ m(i )−m(i −1). Thanks to the hierarchical structureΘi−1 ⊂Θi , U i−1s =U i ◦U i−1s.

Moreover, s(y i
j ) =U i−1s(y i

j ) for y i
j ∈Θi−1. Therefore, the interpolation operator (5.9) can be rewritten

as

U q s(y) =
q∑

i=1

(
U i s(y)−U i ◦U i−1s(y)

)
=

q∑
i=1

∑
y i

j ∈Θi
4

(s(y i
j )−U i−1s(y i

j ))︸ ︷︷ ︸
si

j

l i
j (y). (5.11)

The real number si
j is called hierarchical surplus [33], which provides a measure of the interpolation

accuracy of the interpolant U i−1 on the successive grid of level i . When this surplus is small, a relatively
accurate interpolation is obtained at the corresponding node and grid level.

The construction of interpolation based on nodal basis (left) and hierarchical basis (right) in the form of
piecewise linear polynomials are illustrated in Figure 5.2, from which we can see that the interpolation
constructed by the two approaches are equivalent in evaluating function values at any y ∈ Γ. However
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Figure 5.2: Construction of interpolation based on nodal basis (left) and hierarchical basis (right).

the latter also provides an estimate of interpolation error via hierarchical surpluses. For instance, s2
1

and s2
2 are the errors of a constant approximation of the function at nodes y2

1 and y2
2 , which can provide

a rough estimate of the interpolation accuracy.

As for numerical integration in evaluating statistical moments, we can take advantage of the interpola-
tion formula (5.11) and assess the accuracy of integration by hierarchical surplus. For instance, the
expectation of the function s can be computed by

E[s] ≈ E[U q s] =
q∑

i=1

∑
y i

j ∈Θi
4

si
j w i

j , (5.12)

where the quadrature weights w i
j are computed by

w i
j =

∫
Γ

l i
j (y)ρ(y)d y, 1 ≤ i ≤ q,1 ≤ j ≤ m(i )−m(i −1) (5.13)

using suitable quadrature rules depending on the choice of different collocation nodes [164]. Similarly,
the kth (k ≥ 2) order statistical moments can be evaluated by setting the hierarchical surpluses as
si

j = sk (y i
j )−U i−1sk (y i

j ),1 ≤ i ≤ q,1 ≤ j ≤ m(i )−m(i −1).

Based on the hierarchical surplus si
j , we may define the interpolation error Ei and the integration error

Ee as
Ei := max

1≤ j≤m(q)−m(q−1)
|sq

j |, Ee := ∑
y

q
j ∈Θ

q
4

sq
j w q

j . (5.14)

There quantities can be used as error indicators in adaptively constructing the interpolation formula
(5.11) and integration formula (5.12), respectively. However, one drawback of using the hierarchical
surplus as error indicator is that the error may be underestimated where the refinement of the grid has
stagnated at an early stage. For instance, in the interpolation constructed from hierarchical basis, the
interpolated function values coincide with the true function values at the nodes y3

1 and y3
2 as shown

in Figure 5.3 in two cases – hierarchical interpolation based on locally supported piecewise linear
polynomials and globally supported Lagrange polynomials – so that the hierarchical surplus s3

1 and s3
2

become zero, leading to the termination of the adaptive construction of the grid to the next level even
the approximation is far from accurate in almost all the region.

In order to get rid of this stagnation phenomenon, we propose to check the interpolation accuracy
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Figure 5.3: Stagnation phenomenons for hierarchical interpolation. Left: piecewise linear polynomials
based on equidistant nodes; right: Lagrange polynomials based on Clenshaw–Curtis nodes.

(via hierarchical surplus) at the nodes of the next grid level. If the error indicator is larger than the
error tolerance, we continue the construction procedure to the next level. Otherwise, we stop. The
construction procedure of hierarchical interpolation stopped by satisfying certain error tolerance is
summarized in Algorithm 7, which can also be used for hierarchical integration with the interpolation
error indicator Ei replaced by the integration error indicator Ee .

Remark 5.2.1 There is the possibility that the error indicator in the next grid level might still be smaller
than the error tolerance when the approximation is not good enough somewhere, e.g. for continuous
functions displaying high oscillation at some very locally supported region that has not been explored by
interpolation nodes. In this case, which is also difficult to handle by other interpolation techniques, we
may randomly select a certain number of nodes to perform further verification besides using the nodes in
the next grid level, expecting that the region can be touched by these nodes with large possibility. This
empirical idea needs to be further investigated to balance computational efficiency and accuracy.

5.2.2 Hierarchical Smolyak sparse grid in multiple dimensions

In multiple dimensional numerical interpolation, when Γ⊂RK ,K = 2,3, . . . , the univariate interpolation
formula (5.9) can be straightforwardly extended as the tensor product interpolation [8]

Iq s(y) := (
U

q
1 ⊗·· ·⊗U

q
K

)
s(y) =

q∑
i1=1

· · ·
q∑

iK =1

(
4i1

1 ⊗·· ·⊗4iK
K

)
s(y), (5.15)

where U
qk
k and 4ik

k are the univariate interpolation and difference operators in dimension k = 1, . . . ,K .
Since, as shown in Figure 5.1, the tensor product interpolation needs too many collocation nodes, the
Smolyak sparse grid interpolation [191]

Sq s(y) = ∑
|i|≤q

(
4i1

1 ⊗·· ·⊗4iK
K

)
s(y) (5.16)

is employed to reduce the number of nodes, where the multivariate index i = (i1, . . . , iK ) ∈NK+ represents
the multi-dimensional grid level with interaction level |i| = i1 +·· ·+ iK ; q ≥ K denotes the total level of
the isotropic sparse grid. To obtain a hierarchical representation of the sparse grid interpolation (5.16),
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5.2. Verified dimension adaptive hierarchical approximation

Algorithm 7 Verified hierarchical interpolation in one dimension

1: procedure INITIALIZATION:
2: specify error tolerance εt , type of interpolation bases l (y) and nodes y , specify function m(i );
3: specify maximum level q , set i = 1, Θ1 = {y1

j ,1 ≤ j ≤ m(1)} and evaluate s1
1 = s(y1

j );
4: set Ei = 2εt ;
5: end procedure
6: procedure CONSTRUCTION:
7: while Ei > εt and i ≤ q do
8: provide the set of nodes Θi

4 = {y i
j ,1 ≤ j ≤ m(i )−m(i −1)};

9: for all y i
j ∈Θi

4, evaluate function values s(y i
j ) and the interpolation U i−1s(y i

j ) by (5.11);

10: compute the hierarchical surpluses si
j = s(y i

j )−U i−1s(y i
j ) and error indicator Ei by (5.14);

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11: procedure VERIFICATION:
12: if Ei ≤ εt then
13: go to the next level i = i +1 and repeat the steps in line 8 - line 10;
14: end if
15: end procedure

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16: if Ei ≤ εt then
17: return .
18: else
19: go to the next level i = i +1;
20: end if
21: end while
22: end procedure

we split it as follows

Sq s(y) =Sq−1s(y)+4Sq s(y), with 4Sq s(y) := ∑
|i|=q

(
4i1

1 ⊗·· ·⊗4iK
K

)
s(y). (5.17)

A more explicit expansion for 4Sq s(y) is

4Sq s(y) = ∑
|i|=q

∑
j

(
s(y i1

j1
, . . . , y iK

jK
)−Sq−1s(y i1

j1
, . . . , y iK

jK
)
)

︸ ︷︷ ︸
si

j

(
l i1

j1
(y1)⊗·· ·⊗ l iK

jK
(yK )

)
︸ ︷︷ ︸

l i
j

. (5.18)

Here, y ik
jk
∈Θik

4 is the jk th node of grid level ik in dimension k = 1, . . . ,K and l ik
jk

is the corresponding

basis function; si
j is the hierarchical surplus at node j of grid level i, which can be used as an error indi-

cator for the construction of adaptive sparse grid. The hierarchical construction of the two dimensional
full grid and sparse grid based on Clenshaw–Curtis nodes is illustrated in Figure 5.4 (the size of markers
indicates the level of grid), where 1, 4, 8 nodes are added in the 1st, 2nd and 3rd level of sparse grid
corresponding to |i| = 2,3,4 for the dimension K = 2. Note that the sparse grid contains less nodes than
the full grid and achieves the same approximation accuracy by taking advantage of the assumption
that the interaction level of different dimensions stays small, especially in high-dimensional case.
For instance the interpolation (5.15) based on the full grid and (5.16) on the sparse grid in Figure 5.4
can reconstruct exactly any polynomial in the form ym(i1)−1

1 ym(i2)−1
2 such that i1 + i2 ≤ 4. However

sparse grid interpolation will produce approximation error when i1 + i2 > 4, in which case the full grid
interpolation is exact as long as i1 ≤ 3 and i2 ≤ 3. Problems featuring dimensions independent to each
other or small interaction level are called separable dimensional problems; for them the sparse grid
approximation is more favorable. In order to detect the interaction level of different dimensions and
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enrich the nodes accordingly, the hierarchical surplus si
j can be employed directly, as we will see in the

next sections.

|i| = 2

(i1, i2) = (1, 1)

(i1, i2) = (1, 2)

|i| = 3

(i1, i2) = (2, 1) (i1, i2) = (3, 1)

(i1, i2) = (1, 3)

|i| = 4

(i1, i2) = (2, 2)

(i1, i2) = (2, 3)

(i1, i2) = (3, 2)

(i1, i2) = (3, 3)

Figure 5.4: Illustration of hierarchical construction of full grid and sparse grid in two dimensions. Left:
construction procedure with solid box indicating sparse grid and with the additional dashed box full
grid; right: sparse grid (nodes of the first three largest markers in size) and full grid (all nodes).

As for the multivariate numerical integration based on the hierarchical sparse grid interpolation formula
(5.16), we obtain the integration formula assembled in a hierarchical form as

E[s] ≈ E[Sq s] =
q∑

p=K

∑
|i|=p

∑
j

si
j w i

j , (5.19)

where the weight

w i
j =

∫
Γ

(
l i1

j1
(y1)⊗·· ·⊗ l iK

jK
(yK )

)
ρ(y)d y, (5.20)

is computed approximately by a suitable quadrature rule depending on the choice of nodes. Provided
that the probability density function is separable, i.e. ρ(y) =∏K

k=1ρk (yk ), we have

w i
j =

K∏
k=1

w ik
jk

, with w ik
jk
=

∫
Γk

l ik
jk

(yk )ρ(yk )d yk ,1 ≤ k ≤ K , (5.21)

which can be precomputed and stored for the sake of computational efficiency. We remark that,
when the function s is continuous in Γ, the hierarchical surpluses si

j → 0 with |i| = q as the total
approximation level q →∞ for both interpolation and integration. Therefore, we may estimate the
sparse grid interpolation error Ei and integration error Ee respectively as

Ei = max
|i|=q,j

|si
j | and Ee =

∑
|i|=q

∑
j

si
j w i

j . (5.22)

5.2.3 Dimension adaptation for high-dimensional problems

As we can observe from Figure 5.1, sparse grid introduced in the last section considerably reduces the
total number of collocation nodes, making it advantageous to solve moderate (several tens [207, 149])
dimensional approximation problems as well as high (several hundreds or beyond [110]) but separable
dimensional problems. However, when the dimensions become too high and the interaction level
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of different dimensions becomes big, sparse grid techniques are difficult to be directly applied due
to computational constraint, e.g. around 1012 nodes are needed to approximate 100 dimensional
problems with interaction level 7, see Figure 5.1. In this section, we take advantage of the hierar-
chical surplus and adopt the dimension-adaptive approach [33, 110] to cope with high-dimensional
approximation problems. In particular in Algorithm 8, we will propose a high-dimensional verification
procedure to deal with possible stagnation phenomena and a new adaptive criterion more suitable for
high-dimensional integration problems. Other techniques are also considered for comparison with our
proposed approach in a series of remarks.

The sparse grid interpolation based on the difference operator (5.16) is constructed in an isotropic
manner due to the restriction |i| ≤ q . For a more general construction of sparse grid interpolation, we
break the isotropic restriction and pose only an admissibility condition to satisfy the essential property
(5.9) of the hierarchical representation [33, 110]. The set of indices S ⊂NK+ is called admissible if for
each i ∈ S, the indices i−ek ∈ S for all k = 1, . . . ,K such that ik > 1. Note that ek ∈ {0,1}K with the kth
element as one and the other elements zero. The sparse grid constructed from an admissible set is
called generalized sparse grid [33], which includes both the isotropic sparse grid with the index set
Si := {i ∈NK+ : |i| ≤ q} and the full tensor product grid with the index set St := {i ∈NK+ : ik ≤ q,1 ≤ k ≤ N }.
In the admissible index set Sm , being m the cardinality of Sm , we can write the generalized sparse grid
interpolation formula (5.16) in a hierarchical way as

Sg s(y) = ∑
i∈Sm

∑
j

si
jl i

j . (5.23)

Correspondingly, the generalized sparse grid integration formula (5.19) can be written as

E[s] ≈ E[Sg s] = ∑
i∈Sm

∑
j

si
j w i

j . (5.24)

At the root level, we set S1 = {1}, in which case the hierarchical surplus si
j takes the value of the function

s at y i
j . At the next level, we enrich S1 with the indices of the forward neighborhood of the root index

1, i.e. Sm = {1,1+ek ,1 ≤ k ≤ K } with m = K +1 and compute the hierarchical surplus si
j for i ∈ Sm \ {1}.

Afterwards, the index i is picked corresponding to the largest error indicator defined via si
j and enrich

Sm with the indices from {i+ek ,1 ≤ k ≤ K } such that Sm remains admissible. Here, we follow [110] to
use the averaged hierarchical surplus as the error indicator to pick i

i = argmax
i∈A

Ei (i) with Ei (i) := 1

n(i)

∑
j
|si

j |, (5.25)

where n(i) is the number of nodes added due to the enrichment of the index i ∈ Sm ; A ⊂ Sm is the
active index set collecting all the indices in Sm whose forward neighbors has not been processed. The
complementary of A is called old index set with notation O = Sm \A . After the enrichment, we move
the index i from A to O and add the admissible forward neighbors of i into A and Sm . Subsequently,
we carry out the same procedure to enrich Sm in an adaptive way until satisfying certain stopping
criteria, e.g. error tolerance or maximum number of nodes. As for high-dimensional integration, we
propose to build the dimension-adaptive sparse grid based on a new error indicator

Ee (i) := 1

n(i)

∣∣∣∣∣∑j
si

j w i
j

∣∣∣∣∣ , (5.26)

which takes into account three factors: the hierarchical surpluses, the quadrature weights that cor-
respond to arbitrary probability density function and the work contribution by dividing n(i). We
remark that the error indicator (5.26) tends to underestimate the integral error since only one index is
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considered. We provide a more reasonable estimate for the integral error as

Ee (A ) =
∣∣∣∣∣ ∑

i∈A

∑
j

si
j w i

j

∣∣∣∣∣ . (5.27)

The construction of the generalized sparse grid in the above procedure not only automatically detects
the importance and interaction of different dimensions but also adaptively builds an anisotropic sparse
grid without any a priori knowledge or a posteriori processing. However, as in the one dimensional case,
stagnation of the adaptive construction might occur at some index i ∈A , thus preventing accurate
approximation at an early stage of the hierarchical construction. To overcome this drawback, several
algorithms have been proposed in [33, 110] to keep the balance between the purely greedy adaptive
construction and a conservative grid construction. For instance, given a weight parameter w ∈ [0,1],
we add the forward neighbors of the index i, regardless of Ei or Ee , to the active index set A as long as
[110]

mini∈A |i|
maxi∈A ∪O |i| ≤ (1−w), (5.28)

where w = 1 corresponds to the purely greedy adaptive construction and w = 0 the conservative grid
construction. Nevertheless, it is not easy to decide what value the weight parameter w should take,
leading to either deterioration of the efficiency of the adaptive construction or possible stagnation
persisting until a very fine grid has been built. We propose here, as in one dimensional case in
Algorithm 7, to perform the verification for each index in the active index set in order to get out of the
stagnation set as well as retain the efficiency of the adaptive construction. Our verified dimension-
adaptive hierarchical algorithm for interpolation is summarized in Algorithm 8 for high-dimensional
interpolation problems. The same algorithm can be adapted for integration by simply replacing the
interpolation error indicator Ei in (5.25) by the integration error indicator Ee in (5.26). We remark
that for function-based high-dimensional interpolation problems, the verified dimension-adaptive
hierarchical interpolation algorithm 8 is employed, while for PDE-based interpolation problems, we
propose to apply the certified reduced basis method developed in section 5.3, which produces more
accurate approximation results with certification in practice.

As pointed out in [73, 128], in addition to stagnation for the dimension-adaptive hierarchical construc-
tion, another drawback is that it involves evaluating the function s(y) at one higher grid level in each
dimension in order to assess the error indicator. This is rather costly, especially for high-dimensional
uncertainty quantification problems with verification procedure, where the evaluation at each of a large
number of nodes requires a full solve of the underlying PDE. Fortunately, this computational burden
can be considerably alleviated by using the adaptive reduced basis method that will be developed
in section 5.3, where full solve of the underlying PDE model is replaced by a very cheap solve of a
reduced model. The corresponding dimension-adaptive approach with verification becomes much
more appealing.

5.2.4 Comparison remarks

In order to take the importance of different dimensions into consideration, an anisotropic sparse grid
was proposed in [148] by choosing the index set for the construction of the grid as

Sα =
{

i ∈NK
+ :

K∑
k=1

(ik −1)αk ≤ q min
1≤k≤K

αk

}
. (5.29)

The multivariate weightα := (α1, . . . ,αK ) indicates the importance of different dimensions and q ∈N
represents the grid level; its choice is a challenging task. The authors suggested two ways to specifyα
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Algorithm 8 Verified dimension-adaptive hierarchical algorithm for interpolation

1: procedure INITIALIZATION:
2: specify error tolerance εt , types of interpolation bases l (y) and nodes y , specify function m(i );
3: specify maximum number of nodes M , set i = 1, compute Θ1 and evaluate s1

j = s(y1
j ), y1

j ∈Θ1;

4: set Ei = 2εt , m = #|Θ1|, A = {1}, O =;, Sm =O ∪A ;
5: end procedure
6: procedure CONSTRUCTION:
7: while Ei > εt and m ≤ M do
8: set O =O ∪ {i}, A =A \ {i} and enrich A by the admissible forward neighbors of i;
9: compute the set of nodes Θ4 different from old nodes at the newly added indices of A ;

10: for all y i
j ∈Θ4, evaluate function values s(y i

j ) and the interpolation Sg s(y i
j ) by (5.23);

11: compute the hierarchical surpluses si
j = s(y i

j )−Sg s(y i
j ) and error indicator Ei by (5.25);

12: increase the number of nodes m = m +#|Θ4|, set the total index set Sm =A ∪O ;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13: procedure VERIFICATION:
14: for iv ∈A do
15: if Ei (iv ) ≤ εt then
16: set the admissible forward neighbors of iv as Av ;
17: compute the set of added nodes Θ4 for all indices in Av ;
18: repeat lines 10 and 11 with Av in (5.25) to get Ei in Av ;
19: set O =O ∪ {iv }, A =A \ {iv }, E m

i = maxim∈Av
Ei (im);

20: if E m
i > εt then

21: enrich the active set A =A ∪Av and repeat line 12;
22: end if
23: end if
24: end for
25: end procedure

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26: pick the next index i such that i = argmaxi∈A Ei (i);
27: if Ei (i) ≤ εt then
28: return .
29: end if
30: end while
31: end procedure

in [148]. In those (simple) cases where a priori estimate for the Lagrange interpolation error exist, e.g.

sup
yk∈Γk

|s(yk )−Uk s(yk )| ≤Ck e−2mk g (k), 1 ≤ k ≤ K , (5.30)

being Uk the Lagrange interpolation operator and mk the number of interpolation nodes in dimension
k, the weights can be set as αk = g (k),1 ≤ k ≤ K . An alternative way to estimate this weight is to
perform a posteriori analysis by computing the outputs of interest at a series of collocation nodes and
fitting the convergence rate in each dimension. Nevertheless, a posteriori estimate based on error
fitting in each dimension can not identify the interaction effect among different dimensions and thus
may lead to either not efficient anisotropic sparse grid construction or not accurate approximation.
Moreover, the interpolation error may not decay exponentially with respect to the number of nodes
for non smooth problems, and no general rule has been proposed for estimating the weight in these
circumstances. In comparison, the dimension-adaptive construction of the sparse grid approximation
based on hierarchical surpluses does not need to estimate the weights. Instead, it can automatically
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detect the weight as well as the interaction level among different dimensions as a byproduct of the
construction procedure [110].

Another technique to deal with high-dimensional approximation problems is based on ANOVA or
HDMR, where the output of interest s can be decomposed into a series of additive functions (in total
2K ) incorporating all the 2K possible interactions of different dimensions [88], written as

s(y) = s0 +
∑

1≤k1≤K
sk1 (yk1 )+ ∑

1≤k1<k2≤K
sk1,k2 (yk1 , yk2 )+·· ·+ sk1,...,kK (yk1 , . . . , ykK ), (5.31)

with

s0 =
∫
Γ

s(y)dµ(y), sk1 =
∫
Γ∗k1

s(y)dµ(y∗
k1

)− s0, sk1,k2 =
∫
Γ∗k1,k2

s(y)dµ(y∗
k1,k2

)− s0 − sk , . . . , (5.32)

with y∗
k1

∈ Γ∗k1
in K −1 dimensional probability domain except Γk1 , y∗

k1,k2
∈ Γ∗k1,k2

in K −2 dimensional
probability domain except Γk1 ×Γk2 , and so on. Moreover, the variance of the function s admits
the same expansion as in (5.31). It is known that there are only a few functions involving a limited
number of dimensions play the majority role measured by variance when the function s displays
distinctive importance and interaction in different dimensions [88]. Therefore, the high-dimensional
approximation problem can be approximated by a series of low-dimensional approximation problems,
leading to the development of ANOVA (HDMR) based dimension-adaptive algorithms [98, 71, 73, 128].
However, when the measure µ is the Lebesgue measure, high-dimensional integration has to be carried
out in order to evaluate s0, sk1 , . . . . Alternatively, when µ is a Dirac measure at some anchor point
ȳ ∈ Γ, the expansion (5.31) takes the name of anchored-ANOVA [73] (or cut-HDMR [128]) expansion,
which can substantially reduce the computational effort. However, there is no general rule to pick the
anchor point, which is critical for accurate approximation and easily results in large error as pointed
out in [192]. A single point - centroid of the lowest dimensional tensorial Gaussian quadrature - was
suggested as the anchor point in [78]; improvement was also made in [90] by using a screening method,
basically selecting several anchor points and taking the average in order to enhance the robustness,
which might still not be satisfactory as our numerical examples in section 5.4 will reveal. Moreover,
these variance-based techniques are primarily developed for solving integration problems, which may
not be suitable when dealing with pointwise interpolation problems. In contrast, these drawbacks
are not faced by the verified dimension-adaptive hierarchical Algorithm 8 that can be used for both
high-dimensional interpolation and integration by choosing different error indicators. As a matter
of fact, the hierarchical grid construction Algorithm 8 governed by different error indicators plays an
equivalent role as automatically decomposing the targeted function into a series of additive functions
involving limited dimensions indicated by the interaction of grid level among different dimensions, as
demonstrated in the numerical experiments in section 5.4.

5.3 Adaptive and weighted reduced basis method

As mentioned in section 5.1.2, solving PDE-based UQ problems faces another critical computational
challenge when the underlying PDEs are very expensive to solve. In this circumstance, non of the com-
putational techniques presented in section 5.2 can be directly applied to deal with high-dimensional
UQ problems. In order to tackle this difficulty, we exploit the property that the outputs of interest of
the underlying PDEs may live in low-dimensional manifold even though the random inputs are from
high-dimensional space. This property, which is known as reducibility, is quite common in practice
and is essentially supported by central limit theorem and law of large numbers in the core of probability
theory [64]. In this section, we develop an adaptive and weighted reduced basis method in combination
with the hierarchical approximation to efficiently solve high-dimensional UQ problems.

The presentation of the reduced basis method follows the same lines as in chapter 1, section 1.3, for a
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simple model, which we recall as

−∇(a(x, y)∇u) = f (x, y) (x, y) ∈ D ×Γ, (5.33)

where we make the affine assumption that

a(x, y) =
Qa∑

q=1
Θa

q (y)aq (x) and f (x, y) =
Q f∑
q=1

Θ
f
q (y) fq (x). (5.34)

For the purpose of solving high-dimensional problems, we propose an adaptive greedy algorithm
based on the hierarchical approximation in Algorithm 9, where Er : Γ→R is an a posteriori error bound
depending on the quantities of interest. For pointwise quantities, we use the a posteriori error bound
developed in section 1.3.3 of chapter 1, while for integral quantities, we apply the weighted scheme
developed in section 2.1 of chapter 2: more explicitly, the a posteriori error bound and the weighted a
posteriori error bound are given by

4s
N (y) := ||ê(y)||2X /α(y), (5.35)

and
4ρ,s

N (y) = ρ(y)4s
N (y), (5.36)

respectively, where ê is the Riesz representation of the residual as given in (2.9) and α is the coercivity
constant and can be computed in the way introduced in section 1.3.3 of chapter 1; ρ is the probability
density function of the random vector y .

Algorithm 9 Adaptive greedy algorithm

1: procedure INITIALIZATION:
2: specify error tolerance εt , solve (46) at each y ∈Θ1 and construct XN = span{u(y), y ∈Θ1};
3: end procedure
4: procedure CONSTRUCTION:
5: at each step in line 9 of Algorithm 8, specify the set of nodes Θr b

4 =Θ4;

6: solve the reduced basis problem (1.22), compute Er (y) and s(y) at each y ∈Θr b
4 ;

7: update Θr b
4 such that Er (y) > εt ,∀y ∈Θr b

4 (remove well approximated nodes);
8: while maxy∈Θr b

4
Er (y) > εt do

9: pick y N+1 = argmaxy∈Θr b
4

Er (y);

10: solve (46) at y N+1 and update XN+1 = XN ⊕ span{u(y N+1)};
11: set N = N +1 and repeat steps in line 6 - line 7 with new XN ;
12: end while
13: end procedure

We remark that the adaptive greedy algorithm 9 for the construction of reduced basis space explores all
the nodes in the construction of the dimension-adaptive hierarchical approximation in Algorithm 8 and
the outputs of interest s are evaluated based on the surrogate (reduced basis) solution with inexpensive
solve of the reduced basis problem in contrast to the full (high-fidelity) solution with expensive solve
of the high-fidelity problem. Moreover, error estimates of the surrogate outputs of interest can be
obtained based on the reduced basis approximation error Er controlled by the error tolerance εt .

Note that when the number of terms Q f and Qa become large, the full online evaluation (2.9) will be
expensive. Let us make two observations in order to further reduce the online evaluation cost: the first
is that oftenΘa

q (y) = yq with Qa representing the dimension of a high-dimensional probability space
for UQ problems; the other is that the nodes inside one set Θ4 or from neighbor sets are only different
from each other in limited dimensions, e.g., the node (1,0.5,0.5, . . . ,0.5) is a neighbor of the node
(0,0.5,0.5, . . . ,0.5), which are only different in the first dimension. Based on these two observations,
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we may identify the different terms in (2.9) from one node to the next in the adaptively constructed
grid and only subtract these terms from ||ê(y)||2X at the previous node and add the corresponding new
terms to it at the current node, resulting in O(Q f +NQa) operations in average for each evaluation.
We remark that this computational reduction is still valid whenever there are only a few terms among
Θa

q (y),1 ≤ q ≤Qa different from one node to its neighbors.

Remarks on extension to more general PDE models

We presented the adaptive and weighted reduced basis method based on a coercive, steady and linear
elliptic equation with affine input and compliant output. However, the method is not constrained by
these elementary properties. In fact, it has been developed and extended to deal with many different
PDE models, [180, 177, 93, 163, 11, 86, 48, 63], and applied in a variety of physical and engineering
fields, [162, 51, 163, 117, 175, 41, 45]. Besides some specific extensions as introduced in section 4.3 of
chapter 4 in the context of failure probability evaluation, we provide here a series of remarks for more
general extensions with some associated references.

First of all, the coercivity property of the differential operator is used in computing a lower bound for
the evaluation of a posteriori error bound (5.35). When the problem fails to be coercive, for instance
in Stokes equations, where only an “inf-sup" compatibility condition is satisfied, we can replace the
coercivity constant by an inf-sup constant and arrive at the same reliable and accurate a posteriori
error bound [180, 177, 143]. Moreover, we may even introduce some “surrogates" error bounds based
on more rough estimation of the inf-sup stability constant.

Secondly, for unsteady problems, e.g., a parabolic equation, the reduced bases should be explored
not only at different samples but also at different time steps. In order to efficiently extract the most
representative bases, we may employ proper orthogonal decomposition (POD) to project the solutions
at different time steps into a small bases and use a greedy algorithm to choose the samples, leading to a
POD-greedy algorithm [93, 163, 146] as presented in Algorithm 6 in chapter 4.

Thirdly, in order to deal with nonlinear problems, different approaches can be adopted. Taking Navier-
Stokes equations for example, where the nonlinearity is quadratic on the state variable, we may employ
Newton iteration to solve the reduced basis system as done for solving the high fidelity system [162].
Another approach is to use the empirical interpolation for operators [86, 63] in decomposing the
nonlinear operators into linear combination of a series of linear operators.

Fourthly, when the random inputs are not given in affine structure, e.g., log-normal random field,
we may reconstruct the nonaffine random field as random field with finite affine terms by empirical
interpolation method [11, 86, 48]. This reconstruction is very efficient (resulting in a limited number of
affine terms) for smooth functions and functions that enjoy the compressibility property, i.e., a function
is compressible from a high-dimensional space to a low-dimensional space without losing too much
accuracy.

Finally, for noncompliant problems where the output of interest is different from the right hand side
of the equations, the error convergence for the approximation of the output depends only linearly on
the error convergence for the approximation of the solution. Moreover, the norm of the functional
for the output may not be easy to evaluation. In this case, we employ a primal-dual approach as in
section 4.3.1 of chapter 4, where a dual problem is formulated by setting the output as a right hand
side of the dual equations and the output is evaluated with contribution from both the primal and dual
problem [178, 163]. The advantages of the primal-dual approach are that it avoids the computation of
the functional norm and achieves quadratic error convergence. We will illustrate this approach by one
numerical example in section 5.4.6.
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5.4 Numerical experiments

This section is devoted to demonstrate the efficiency and accuracy of the adaptive and reduced compu-
tational framework and compare it to other methods (anisotropic sparse grid, ANOVA as introduced in
section 5.2.4) for high dimension uncertainty quantification problems. We illustrate the computational
performance of the proposed Algorithm 8 with verification in two dimensions, and compare it to the
algorithm without verification and anisotropic sparse grid scheme (5.29) in section 5.4.1. In section
5.4.2 we illustrate why the ANOVA approach does not work well for functions with strong interaction
and arbitrary probability measure, whereas this case can be efficiently dealt with by our proposed
approach. In section 5.4.4, we show how the sparsity in high dimensions (from O(10) to O(1000)), in-
cluding different interaction and importance of different dimensions, can be efficiently and accurately
captured by the proposed method. The last two sections 5.4.5 and 5.4.6 deal with heat diffusion and
groundwater flow problems and demonstrate how the adaptive and weighted reduced basis method
can be effectively applied to reduce the computational effort.

5.4.1 Hierarchical construction with verification

In this experiment, we compare the dimension-adaptive hierarchical interpolation Algorithm 8 with
the same algorithm without the procedure of verification. The two dimensional function s : [0,1]2 →R

is given by
s(y) = cos(2π(y1 −0.3))cos(2π(y2 −0.5)). (5.37)

We run the interpolation Algorithm 8 in six different cases. The first three cases include hierarchical
construction without verification based on piecewise linear polynomials with equidistant nodes and
the weight in (5.28) are set as w = 1,0.5,0, corresponding to the purely dimension-adaptive grid
construction, balanced construction and conservative sparse grid construction, respectively. The
fourth case is specified with the same configuration as the first three except that the verification
procedure is incorporated. The last two cases use Lagrange polynomials based on Clenshaw–Curtis
nodes with verification and the weight w = 1 and w = 0, respectively. We set the maximum number of
nodes adaptively as one larger than the number of nodes in the current grid, with the upper bound
M = 104, and specify the interpolation error tolerance as εt = 10−15. We compute the interpolation error
as maxy∈Ξtest |s(y)−Sg s(y)| with the set of testing nodes given byΞtest := {y1, y2 = n/28,n = 0, . . . ,28}, a
fine regular grid with step size 1/28. The final index sets Sm for the six different cases are plotted in
Figure 5.5, where the active indices are marked with boxes (blue and red) and the index to be processed
in the next step is marked with red box. Figure 5.6 reports the interpolation errors for all the six cases.

From the first figure (left-top of Figure 5.5), we can see that the enrichment of active indices has
stagnated along y2 by the purely dimension-adaptive scheme, resulting in large interpolation error
(see left of Figure 5.6) since the function is not sufficiently well approximated in the second dimension.
The balancing scheme with w = 0.5 (see middle-top of Figure 5.5) is able to construct fine grid in
the second dimension but fails to capture the interaction of the two dimensions (due to stagnation),
and thus still leads to large interpolation error as shown in Figure 5.6 (left). The Smolyak sparse
grid construction introduced in section 5.2.2 does not run into the stagnation problem and achieves
small interpolation error in this example (see right-top of Figure 5.5), but it can identify neither the
important dimension nor the interaction. This drawback can be observed more clearly by comparison
of the grid construction in the last two cases, where a full tensor grid is constructed by the adaptive
scheme (see middle-bottom of Figure 5.5) and the sparse scheme that produces many more useless
nodes in each single dimension (see right-bottom of Figure 5.5). Note that the last two cases result
in higher approximation accuracy (see Figure 5.6) than the others because the globally supported
Lagrange polynomial basis is more suitable to approximate smooth functions. By using the same
locally supported piecewise linear basis as in the first three cases but incorporating the verification
procedure, we can get rid of the stagnation problem and adaptively construct the grid with automatic
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Figure 5.5: Illustration of dimension-adaptive hierarchical construction of the generalized sparse grid
in different cases; top row: piecewise interpolation without verification with weight w = 1 (left), w = 0.5
(middle), and w = 0 (right); bottom row: piecewise interpolation with verification and weight w = 1
(left), Lagrange interpolation with verification and weight w = 1 (middle), and w = 0 (right).

identification of the importance and interaction of different dimensions, as shown in Figure 5.5 (left-
bottom). From this experiment (two dimensional case for the sake of the illustration), we can see that
the verification procedure works efficiently to get rid of the stagnation problem, which is to blame
as one drawback of the dimension-adaptive hierarchical construction approach. We remark that the
balancing scheme in (5.28) can not effectively avoid stagnation. Moreover, it is not computationally
convenient to use since the weight parameter w is not known a priori and it depends on different
problems under consideration.

In the second example, we test the efficiency of the verified dimension-adaptive algorithm for interpo-
lation of these anisotropic functions

s1(y) = exp(y1/5)+exp(5y2), s2(y) = exp(y1 y2), s3(y) = exp(y1/5)+exp(5y2)+exp(y1 y2). (5.38)

We run the interpolation Algorithm 8 with the interpolation error tolerance set as εt = 10−15. The
constructed indices are displayed in Figure 5.7, from which we can see that the verified dimension-
adaptive algorithm efficiently and accurately captured the interaction and importance of different
variables of the test functions. The first one has no interaction term and y2 plays a more important role
(in terms of function value) than y1. The second one features strong interaction and equal importance
of the two dimensions. The last one has strong interaction and more important dimension y2 than y1.
We remark that these properties can not be captured by the anisotropic sparse grid construction with
weighted index set (5.29) as introduced in [148]. As a matter of fact, such approach either deteriorates
efficiency because many useless indices are included or loses accuracy because the necessary indices
(for strong interaction term) can not be captured, especially in high dimensions.
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Figure 5.6: Interpolation error corresponding to the grid construction in Figure 5.5; left: picecwise
interpolation in the first four cases; right: Lagrange interpolation in the last two cases.
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Figure 5.7: Illustration of dimension-adaptive hierarchical construction of generalized sparse grid for
anisotropic interpolation; indices for s1 (left), s2 (middle), s3 (right) with tolerance εt = 10−15.

5.4.2 Sobol functions featuring strong interaction

In this numerical experiment, we study the functions with separated variables proposed by Sobol [192]
to test the accuracy and efficiency of the hierarchical approximation in the extreme case - building
minimal full tensor product grid, with comparison to the approximation based on anchored ANOVA
(cut-HDMR) [73, 128]. The functions are defined as

s1(y) =
K∏

k=1

|4yk −2|+pk

1+pk
and s2(y) =

K∏
k=1

1+3pk y2
k

1+pk
, (5.39)

where yk ∈ [0,1],1 ≤ k ≤ K and the parameter pk ,1 ≤ k ≤ K , is nonnegative for the first function
and positive for the second one. Both functions have separated variables, meaning that the total
integral (with value 1) can be computed by the product of individual integrals evaluated separately,
but all of them are strongly interacting for pointwise evaluation of the function value. Since the first
function has singularities (“peaks") at yk = 0.5,1 ≤ k ≤ K and the second function is smooth, we use
piecewise polynomial basis for the first function and global Lagrange polynomial basis for the second
one. First of all, let us take a simple low-dimensional function s2 with K = 3 and pk = 1,1 ≤ k ≤ K
and consider the anchored ANOVA approximation with several different anchor points ȳk ,1 ≤ k ≤ K
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and expansion orders. Let s̄i ,0 ≤ i ≤ K denote the approximated integral with expansion up to i
dimensions (see the expansion formula (5.31)). When i = 0, the approximated integral is taken as
the function value at the anchor point. The approximated integrals for different additive functions in
the expansion are computed by tensor product Clenshaw–Curtis quadrature formula with 3 abscissas
in each dimension. The results at different settings are reported in Table 5.1, from which we can
observe that the approximation results are far from each other at different anchor points before the full
expansion with i = K is used. Moreover, the averaged approximations in the last column do not lead to
a more accurate approximation as proposed in [90]. The approximations of the integral converge to
the exact value with growing expansion order and reach the exact value only when the full expansion
with 2K = 8 terms has been incorporated in all cases. These observations confirm the drawbacks of the
anchored ANOVA approximation as pointed out in section 5.2.4. Similar results can be shown also for
the first function s1 and for higher dimensional integration problems by this approach. In fact, there is
no gain in this case but more cost by the anchored ANOVA approximation since not only the last term
has to be evaluated in all the K dimensions but also the other 2K −1 terms of the expansion (5.31).

ȳk 0.0000 0.1667 0.3333 0.5000 0.6667 0.8333 1.0000 average
s̄0 0.1250 0.1589 0.2963 0.6699 1.5880 3.6641 8.0000 2.0717
s̄1 0.5000 0.5624 0.7407 0.9570 0.9074 -0.1981 -4.0000 -0.0758
s̄2 0.8750 0.9037 0.9630 0.9980 1.0046 1.1589 2.0000 1.1290
s̄3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 5.1: Approximated values of the integral of the function s2 by anchored ANOVA expansion (5.31)
with different anchor points (in row) and expansion orders (in column).

10
0

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

10
0

10
5

 # nodes

 i
n

te
rp

o
la

ti
o

n
 e

rr
o

r

 

 

 K = 3
 K = 7

10
0

10
1

10
2

10
3

10
4

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 # nodes

 i
n

te
g

ra
ti
o

n
 e

rr
o

r

 

 

 K = 3
 K = 7

Figure 5.8: Interpolation error (left) and integration error (right) of dimension-adaptive hierarchical
approximation of the smooth function s2 with the dimension K = 3 and K = 7.

The interpolation and integration errors for the dimension-adaptive hierarchical approximation
of the smooth function s2 are displayed in Figure 5.8, where the interpolation error is defined by
maxy∈Ξtest |s(y)−Sg s(y)| with the testing set Ξtest consisting of 100 randomly selected samples. The
decay of both interpolation and integration errors is very slow at the beginning, and fall to about the
machine precision when the minimal full tensor product grid with 3 nodes in each dimension has
been constructed, requiring in total 33 = 27 and 37 = 2187 nodes, respectively. This decay confirms
again the necessity to use all the expansion terms by the anchored ANOVA approximation in order to
have accurate integration. The dimension-adaptive hierarchical algorithm successfully detects the full
tensor product grid structure and construct it automatically with the ultimate number of nodes 33 and
2201, slightly bigger than those of the full tensor product grid due to the verification procedure. As

122



5.4. Numerical experiments

for the approximation of the singular function s1, we reduce the effect of the variation of yk by setting
a large parameter pk = 100,1 ≤ k ≤ K , which leads to the results in dimensions K = 4 and K = 8 in
Figure 5.9. Similar convergence behaviour can be observed for the singular function as that for the
smooth function, in particular 89 and 6577 nodes are constructed close to the minimal number of full
tensor product grid 34 = 81 and 38 = 6561. Note that in this case, the approximation errors decay more
uniformly due to the reduced variation.
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Figure 5.9: Interpolation error (left) and integration error (right) of dimension-adaptive hierarchical
approximation the singular function s1 with dimension K = 4 and K = 8.

5.4.3 Approximation with arbitrary probability measure

By this experiment, we study the dimension-adaptive hierarchical approximation with arbitrary proba-
bility measure in order to demonstrate the efficiency of using the interpolation and integration error
indicators (5.25) and (5.11) for interpolation and integration problems, respectively, and illustrate why
the variance-based ANOVA (or HDMR) expansion is not suitable for interpolation problems. We use
the following exponential function

s(y) = exp

(
−

K∑
k=1

ck (yk −0.5)

)
, (5.40)

and set ck = 1,1 ≤ k ≤ K with dimension K = 5. The random variables are set to obey beta distribution
as yk ∼ Bet a(βk,βk),1 ≤ k ≤ K , being β ∈ R+ a scaling parameter. The probability density function
(PDF) with different parameters is displayed in Figure 5.10, from which we can see that as the parameter
becomes bigger, the more concentrated the PDF becomes and the smaller the variance is. Therefore, the
importance of different dimensions becomes different as influenced by the given probability measure
instead of the parameter ck .

We run the dimension-adaptive hierarchical approximation Algorithm 8 to compute both the interpo-
lation and the integration of the given function with different error indicators. We employ the nested
Kronrod-Patterson quadrature nodes [159] associated with the beta measure at different parameter
β. The interpolation error is computed as the maximum at 100 randomly selected samples and the
integration error is computed by taking the approximation of the integral in the final step as the “exact"
value. The error convergence of the approximation for interpolation and integration with different
error indicators is shown for β= 1,5,10,20 in Figure 5.11. From the left of Figure 5.11, we can see that
the interpolation errors obtained with interpolation error indicator converge faster than those obtained
with integration error indicators at different values of β. On the other hand, the convergence of the
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Figure 5.10: Probability density function of beta distributed random variable with different parameters.

integration errors shown on the right of Figure 5.11 highlights that the integration error indicator leads
to evidently more accurate approximation of the integral than the interpolation error indicator for the
cases β= 5,10,20. These observations confirm that the integration error indicator, closely related by
the underlying probability measure to the variance-based ANOVA approximation, works efficiently for
integration but may give rise to large errors for interpolation.
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Figure 5.11: Interpolation error (left) and integration error (right) with different scaling parameter
β= 1,5,10,20 (with different markers) and error indicators, Ei in dashed line and Ee in solid line.

5.4.4 High-dimensional functions featuring sparsity

In this numerical experiment, we test the performance of the dimension-adaptive hierarchical approxi-
mation of high-dimensional functions featuring sparsity, i.e. low interaction or distinct importance of
different dimensions. The first function has low interaction property, given by

s(y) =
K∑

k=1
y2

k −
K−1∑
k=1

yk yk+1, (5.41)

which is a polynomial of total degree 2 and interaction level 2 (in the sense of ANOVA expansion (5.31)).
We set the dimension as K = 10 and 100, and run the dimension-adaptive hierarchical approximation
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algorithm with the interpolation error indicator (5.25) for both the interpolation and integration.
The interpolation error is computed at 100 randomly selected samples, and the integration error is
measured with respect to the value of the exact integral K /3− (K −1)/4. Since the function is smooth,
we use Lagrange basis with Clenshaw–Curtis nodes. The results of the error indicator, the interpolation
and integration errors, as well as the number of nodes are reported in Table 5.2, from which we can
see that the second level isotropic sparse grid is sufficient to evaluate the integral accurately up to
machine precision (with rounding error) in all the three cases, while for accurate interpolation the
third level of sparse grid is needed and sufficient due to the interaction in the second term of s. The
dimension-adaptive hierarchical construction algorithm is able to detect the isotropic structure of the
sparsity and build automatically the isotropic sparse grid as can be seen from the comparison of the
number of nodes in Table 5.2, where a small number of extra nodes are used for checking stopping
criterion. We remark that in order to detect the full interaction relation of s by ANOVA expansion, the
total number of terms to be explored is 1+K + (K −1)(K −2)/2, which results in the same number of
nodes by sparse grid or two dimensional tensor product grid (3 nodes in each dimension) for each term
of the second level.

K level # nodes error indicator Ei interpolation error integration error
10 1 1 (1) ∞ 1.9499 0.8333

2 21 (21) 0.5000 0.6306 6.661e-16
3 233 (221) 3.8858e-16 1.332e-15 6.661e-16

100 1 1 (1) ∞ 11.5087 8.3333
2 201 (201) 0.5000 1.9956 1.243e-14
3 20213 (20201) 3.5527e-15 4.796e-15 1.066e-14

Table 5.2: Interpolation and Integration errors for dimension-adaptive hierarchical approximation of
the low interacting function s1; the number of nodes in (·) corresponds to an isotropic sparse grid.

We use (5.40) as the second test function, which features the sparsity due to distinct importance even
with strong interaction of different dimensions. Here the parameter ck ∈R+ determines the importance
of the dimension k = 1, . . . ,K ; yk ∈ [0,1],1 ≤ k ≤ K are independent and uniformly distributed random
variables. In the first example, we set ck = α−k+1,1 ≤ k ≤ K , with the scaling parameter α = 1.1
and consider the dimension K = 2n ,3 ≤ n ≤ 6. Clenshaw–Curtis quadrature is employed for the
computation of the integral, where the “exact" value is taken as the approximation at the last step.
We set the maximal number of nodes as M = 10m ,1 ≤ m ≤ 5. The interpolation and integration error
convergence is depicted in Figure 5.12 and the level of interpolation (note that we plot ik −1 in y axis
due to implementation convenience) in the 64 dimensional case is reported in Figure 5.13. From these
two figures we can conclude that only the first few dimensions dominate all the other dimensions
and the dimension-adaptive hierarchical approximation Algorithm 8 successfully constructed the grid
according to the importance of different dimensions. The convergence rate of the integration error
for the 64 dimensional problem is around 1, which is faster than that of the Monte Carlo method (rate
= 1/2) or quasi Monte Carlo method (rate ∈ (1/2,1)) [62].

In the second example, we test the dimension K = 100,400,900,1600 and set the parameter ck ,1 ≤
k ≤ K as follows: we randomly select

p
K dimensions and set ck in these dimensions as 10−y0

k , where
y0

k ∈ [0,1] is a sample drawn from uniform distribution, and in the other dimensions we set ck =
10−y0

k−6. Therefore, the dimensions are divided into two scales. In each scale the importance of

different dimensions is determined by a random variable 10−y0
k . In another word, the important

dimensions randomly distributes from 1 to K with total effective number of dimensions around
p

K .
The convergence results for the interpolation and integration error is shown in Figure 5.14, from
which we can see that the dimension-adaptive hierarchical approximation works efficiently for high-
dimensional problems, with the integration error converging faster than Monte Carlo method with the
total dimension as high as 1600. The right of Figure 5.13 demonstrates that both the scales (between
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Figure 5.12: Convergence of interpolation error and integration error with dimension K = 8,16,32,64.
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Figure 5.13: Grid level constructed by the dimension-adaptive hierarchical aproximation algorithm 8.

level ik = 1+1 and levels ik = 1+3,1+4) and the importance in each scale (between level ik = 1+3
and ik = 1+4) of different dimensions are captured effectively by the dimension-adaptive algorithm
8. We remark that the examples in high-dimensional space feature distinct importance of different
dimensions. In the case of equal importance of different dimensions in high-dimensional problems,
the classical Monte Carlo method would achieve better computational performance.

5.4.5 Heat diffusion in thermal blocks

In this example, we study a heat diffusion problem (5.33) in thermal blocks with the thermal con-
ductivity modeled by random variables. The problem is defined in the physical domain D = (0,1)2

discretized with 1012 nodes, which can be equally divided into K (K = n2,n ∈N+) blocks Dk ,1 ≤ k ≤ K .
The thermal conductivity of each block is a random variable. In the first test, we demonstrate the
efficiency of the weighted a posteriori error bound (5.36) in the case of arbitrary probability measure
for integration problem. We consider the random coefficient a in (5.33) as

a(x, y) =
K∑

k=1
χDk (x)10(yk−0.5), (5.42)
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Figure 5.14: Convergence of interpolation error and integration error with dimension K =
100,400,900,1600.

where χDk is a characteristic function supported on the block Dk and yk ∈ [0,1],1 ≤ k ≤ K with K = 9,
are independent random variables obeying beta distribution Bet a(β,β) with β = 5, which feature
almost equal importance in each of the 9 dimensions. A deterministic force term is considered as
f = 1. We run the adaptive greedy Algorithm 9 with tolerance εt = 10−11 to construct the reduced basis
space based on the hierarchical construction of the generalized sparse grid by Algorithm 8. For the
construction of the generalized sparse grid, the integration error indicator (5.26) is used with the total
number of nodes specified as 10n ,0 ≤ n ≤ 4 and the nested Kronrod-Patterson quadrature nodes are
employed corresponding to the beta measure with different parameter β. The quantity of interest is
the average temperature over the whole domain

∫
D ud x, which is a compliant quantity. We apply both

the a posteriori error bound (5.35) and the weighted a posteriori error bound (5.36) to construct the
reduced basis space, resulting in 211 and 118 bases, respectively.
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Figure 5.15: Left: true error and error bound of reduced basis approximation constructed by a posteriori
error bound without (5.35) and with weight (5.36); right: (weighted) integration error.

The reduced basis approximation error (in the worse scenario case) tested with 100 randomly samples
and the integration error (computed with the integral at 104 nodes as the reference value) of the two
different cases are depicted in Figure 5.15. From the right of this figure we can see that the reduced basis
approximation with the weighted a posteriori error bound (5.36) achieves almost the same accuracy for
integration as that without the weight (5.35), even using much less bases (118 compared to 211). As
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for the pointwise approximation, the weighted scheme results in faster convergence of the reduced
basis approximation error than that without the weighted scheme, though does not guarantee the
same small error at the end because it makes use of much less reduced bases, see in the left of Figure
5.15. Moreover, from the comparison of the true error and error bound plotted in the left figure, we
confirm that the error bound is rather sharp, almost indistinguishable from the true error even if we
use a constant α= 1 for the lower bound in (5.35) and (5.36).
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Figure 5.16: Left: the a posteriori error bound (5.35); right: the weighted a posteriori error bound (5.36)
during the hierarchical construction of the generalized sparse grid by Algorithm 8.

Figure 5.16 reports the reduced basis error bound during the hierarchical construction process for
both the weighted scheme and non weighted scheme. Large oscillation of the worst error bound
evaluated at the nodes corresponding to the current active index can be observed for both cases. Both
of them decrease to the prescribed tolerance εt = 10−11 but with different number of bases. In fact, the
probability density ρ in (5.36) becomes very small when the node is far away from the center, thus gives
rise to very small weighted a posteriori error bound and early stop of the algorithm with less bases.
Moreover, this test also demonstrates that the total number of reduced bases is much smaller than the
total number of constructed nodes, thus efficiently alleviate the entire computational cost.

In the second test, we consider a high-dimensional heat diffusion problem with 100 thermal blocks.
The conductivity coefficient is

a(x, y) =
K∑

k=1
χDk (x)10ck (yk−0.5) (5.43)

where yk ∈ [0,1],1 ≤ k ≤ K with K = 100, are independent and uniformly distributed random variables;
ck ,1 ≤ k ≤ K , are taken similarly to the second test of section 5.4.4 in separating the dimensions into two
scales: we randomly select 2

p
K dimensions and set ck = 4y0

k in these dimensions and ck = 10−4 ×4y0
k

in the other dimensions, being y0
k ∈ [0,1],1 ≤ k ≤ K , samples drawn from uniform distributed random

variable. We set the error tolerance for the reduced basis space construction as εt = 10−8 in the greedy
Algorithm 9 and the maximum number of nodes as M = 10n ,0 ≤ n ≤ 5 for the hierarchical construction
of the generalized sparse grid in Algorithm 8, which result in 161 bases in the reduced basis space. On
the right, the integration error computed with different number of nodes are shown, which decays with
a rate larger than 1, demonstrating that the dimension-adaptive hierarchical approximation converges
much faster than Monte Carlo method for this high-dimensional uncertainty quantification problem.

Figure 5.17 displays both the reduced basis approximation error and the integration error. On the
left, the true error and the error bound (in maximum norm) evaluated at 100 randomly selected
samples at different number of reduced bases confirm the effectivity of the a posteriori error bound.
The a posteriori error bounds at the selected reduced basis samples, most of which are chosen at
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Figure 5.17: Left: true error and error bound of reduced basis approximation; right: integration error.

the beginning of the hierarchical construction process, decrease in an oscillating way to the error
tolerance and remain smaller than the maximum error bounds at the 100 samples. Figure 5.18 depicts
the effective dimensions and varied importance of different dimensions indicated by the prescribed
parameters (on the left) and the level of the generalized sparse grid in different dimensions (on the
right). From this figure, we can observe that all the dimensions in the effective scale represented by the
characteristic function χd (k),1 ≤ k ≤ K , (on the left) are correctly identified with the grid level ik equal
or larger than 4 (on the right), and the dimensions in the ineffective scale are approximated mostly by
the grid level ik = 1+1. Moreover, the varied importance of different dimensions in each scale is also
successfully identified as shown in Figure 5.18, where a larger value of y0

k leads to a relatively deeper
grid level.
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Figure 5.18: Left: true error and error bound of reduced basis approximation; right: integration error.
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5.4.6 Groundwater flow through porous medium

This example is devoted to the study of groundwater flow through porous medium described by Darcy’s
law: find the pressure field p ∈ D ×Γ such that the following equations hold

−∇(a∇p) = 0 in D,
p = 1 on ∂D4,
p = 0 on ∂D2,

a∇p ·n = 0 on ∂D1 ∪∂D3,

(5.44)

where the physical domain is the two dimensional square D = (0,1)2, as shown in Figure 5.19, with
left and right boundaries (∂D2 ∪∂D4) prescribed of Dirichlet boundary conditions, and the upper and
lower boundaries (∂D1 ∪∂D3) homogeneous Neuman boundary conditions. The permeability of the
porous medium is given by the random field (with x = (x1, x2))

a(x, y) = E[a]+
(p

πL

2

)1/2

y1 +
K∑

k=1

√
λk

(
sin(kπx1)y2k +cos(kπx1)y2k+1

)
, (5.45)

which is a truncated Karhunen-Loève expansion of a Gauss covariance kernel exp(−(x1 −x ′
1)2/L2) with

correlation length L [149]. The eigenvalues λk ,1 ≤ k ≤ K , of this kernel decay exponentially as

λk =p
πL exp

(
− (kπL)2

4

)
, (5.46)

and the random variables yk ,1 ≤ k ≤ 2K + 1, are assumed to be independent and obey uniform
distribution taking values in [−p3,

p
3] in order to guarantee that a is positive. The quantity of interest

is

s(y) := L(p; y) =
∫

Dd

a(x, y)∂x1 p(x, y)d x, (5.47)

where the disk region Dd has center (0.75,0.5) and radius 0.2, see Figure 5.19. This quantity is not
compliant with the right hand side of equation (5.44)1. Therefore, we adopt the primal-dual approach
introduced in section 5.3. We first write the weak formulation of the Darcy equation (5.44) as: find
p ∈ H 1(D) such that

A(p, q ; y) = 0 ∀q ∈ H 1
di r (D), (5.48)

where H 1
di r (D) := {q ∈ H 1(D) : q = 0 on ∂D2 ∪∂D4} and the bilinear form A is given by

A =
2K+1∑
k=0

Ak (p, q)yk , (5.49)

being Ak defined corresponding to the terms in the expansion of the permeability coefficient a in (5.45)
and y0 = 1 for notational convenience. The dual problem associated with the primal problem (5.48) for
the quantity of interest s is formulated as: find ϕ ∈ H 1

di r such that

A(q,ϕ; y) =−L(q ; y) ∀q ∈ H 1
di r (D). (5.50)

We construct reduced basis space X pr
Npr

with Npr bases and X du
Ndu

with Ndu bases to approximate the

primal and dual weak problems (5.48) and (5.50) and define the residual of each problem as

Rpr (q ; y) =−A(pNpr , q ; y) and Rdu(q ; y) =−L(q ; y)− A(q,ϕNdu ; y), (5.51)

where pNpr and ϕNdu are the reduced basis approximations of the primal and dual solutions, respec-
tively. We apply piecewise finite element basis to approximate these solutions in the physical space
and denote the approximation space as X ⊂ H 1

di r (D) and its dual as X ′. After solving the primal and
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dual reduced basis problems, we can approximate the quantity of interest s defined in (5.47) by

sN (y) = L(pNpr (y); y)−Rpr (ϕNdu (y); y), (5.52)

whose error can be bounded as (see details in [178])

|s(y)− sN (y)| ≤4s
N (y) := ||Rpr (·; y)||X ′ ||Rdu(·; y)||X ′

α(y)
. (5.53)

For the approximation in physical space, we use piecewise linear finite element basis on a regular
triangular mesh with 17361 vertices, leading to a relatively large-scale algebraic system. We run
Algorithm 8 for the dimension-adaptive hierarchical construction of the generalized space grid with
integration error indicator (5.26) at a series of maximum number of nodes 10n ,0 ≤ n ≤ 5. The error
tolerance for the reduced basis construction for approximating the non-compliant quantity of interest
s is set as εt = 10−8. The a posteriori error bound (5.53) can be efficiently evaluated by an offline-online
decomposition procedure for both the primal and dual problems with error tolerance εt = 10−4 for
both problems. We set the correlation length L = 1/16 in (5.46) and K as 8,16,32,64, which lead to
17,33,65,129 dimensions taking 59%,89%,99% and 100% percent of the total randomness measured by
the L∞-norm of the coefficient in (5.45). A set of typical solutions of the primal problem (5.48) and dual
problem (5.50) at a randomly selected sample are depicted in Figure 5.19 (middle and right), where the
dual solution, with evident bigger values near the disk Dd plays the role to correct the reduced basis
approximation of the quantity of interest sN by formula (5.52).

D∂D4

∂D1

∂D2

∂D3

Dd

0 1

1

Figure 5.19: Left: physical domain and boundaries; middle and right: primal and dual solutions.

In the 17 dimensional case (K = 8), 37 primal bases and 39 dual bases are constructed. We test the
convergence of the worst reduced basis approximation error with respect to the number of primal
bases and dual bases computed with 100 randomly selected samples, which is displayed in Figure 5.20.
From the left figure, we can observe that both the approximation error and the error bound decrease
with growing number of primal and dual bases, leading to quadratically fast decrease with Npr and
Ndu increasing simultaneously as shown in the right figure on the path Npr = Ndu . Moreover, the error
bound shown in this figure is rather sharp (close to the real approximation error), demonstrating the
efficiency of the primal-dual approach using the a posteriori error bound (5.53). The interpolation
errors by the hierarchical interpolation formula (5.23) with 105 interpolation nodes are evaluated at
the same test samples, where the worst approximation error is 4.0603×10−5, much larger than that
of the reduced basis approximation error 1.3333×10−10. This large difference is due to fact that the
interpolation approach adopts Lagrange basis to approximate the pointwise quantities blind to the
underlying PDE model, while the reduced basis approach performs the pointwise evaluation by solving
the underlying PDE model with cheap cost in the reduced framework. Therefore, we always use the
reduced basis approximation to evaluate pointwise value of quantity of interest s.
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Figure 5.20: Left: reduced basis approximation error and error bound w.r.t. the number of primal bases
Npr and the number of dual bases Ndu ; right: three different settings of Npr and Ndu .K = 8.
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Figure 5.21: Left: reduced basis approximation error and error bound with Npr = Ndu ; right: integration
error. K = 8,16,32,64, corresponding to 17, 33, 65, 129 dimensional problems.

The worst approximation error and integration error for the cases K = 8,16,32,64, corresponding to
17,33,65,129 dimensional problems, are reported in Figure 5.21. The number of primal and dual bases
increases with the dimension in order to achieve the same accuracy of approximation for pointwise
evaluation and integration. However, the increase is rather small when the dimension becomes high
because the important dimensions have been captured by the reduced basis approximation and
dimension-adaptive hierarchical integration in the first few dimensions, and all the other dimensions
play negligible role in contributing to the approximation error. It is worth to point out the remarkable
fact that only a few tens (about 50) of reduced bases have been constructed to approximate the high
dimension uncertainty quantification problems as shown in this example, thus requiring only a few tens
of full solves of the underlying PDE model compared to a really large number (105 in this example) of
full solves that would be needed without using the reduced basis method. Furthermore, as shown in the
right of Figure 5.21 that the integration error converges with rate larger than 1, which demonstrates that
the adaptive and reduced computational strategy for integration in high dimensions is very promising.
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5.5 Summary

In this chapter we have developed an adaptive reduced computational framework for solving high-
dimensional UQ problems. Two critical computational challenges were identified and illustrated
for various UQ problems: curse of dimensionality and heavy computational burden. In order to
tackle the first challenge, we adopted the approach for dimension adaptive tensor product integration
and developed a verified algorithm based on generalized sparse grid construction to deal with one
drawback of this approach – the stagnation phenomenon, and designed different error indicators
suitable for integration and interpolation problems based on the hierarchical surpluses. To overcome
the second challenge, we developed an adaptive and weighted reduced basis method, using an adaptive
greedy algorithm in combination with the dimension adaptive hierarchical grid construction and a
weighted a posteriori error bound to alleviate the computational cost in building the reduced basis
space. The numerical experiments demonstrated that the verified dimension adaptive algorithm
worked effectively in getting rid of the stagnation phenomenon and in automatically detecting the
importance and interaction of different dimensions, which converged faster than the Monte Carlo and
quasi Monte Carlo methods for high-dimensional integration problems with dimension as high as 1600.
Moreover, the integration error indicator incorporating hierarchical surpluses, work contributions as
well as quadrature weights was proved to be very efficient for UQ problems with arbitrary probability
measures. As for pointwise evaluation of output of interest depending on PDE solution, the reduced
basis approximation certified by the a posteriori error bound was demonstrated to be more accurate
than the interpolation scheme based on Lagrange polynomials, one kind of dictionary bases without
taking into account the underlying PDE models. Furthermore, only a few bases, a few hundreds (about
100 - 200) for heat diffusion in thermal blocks and a few tens (about 40 - 50) for groundwater flow
through porous medium compared to 105 full solves, were constructed by the reduced basis method in
order to achieve high accuracy for the high-dimensional approximation problems. This reduction will
dramatically alleviate the prohibitive computational effort to the affordable level in solving large-scale
PDE models (with large degrees of freedom) that consume considerable computational power.

Several further topics are worth to be investigated in applying the adaptive and reduced computational
framework to solve high-dimensional UQ problems. The first is that low regularity points may exist in
the high-dimensional space, for instance, the points featuring discontinuity or singularity. Therefore,
efficient low regularity detection algorithms need to be incorporated in this framework, e.g., by checking
the pointwise hierarchical surpluses instead of an averaged or maximum value at one index [128]. In
addition to the detection algorithm, we remark that the reduced basis approximation may essentially get
rid of the low regularity problems since it does not apply any family of dictionary bases but project the
new solution into the reduced basis space spanned by solutions at some selected samples [41]. Another
research topic is to develop more specific and goal-oriented model order reduction techniques in order
to circumvent the “irreducible" PDE models, such as locally supported traveling waves, compressible
flows that feature shocks, and so on. Moreover, when the effective dimensions become so high that no
quadrature rule is feasible due to computational constraint, we have to turn to other approaches for
computing the integration, such as Monte Carlo method, and detect when it is more suitable to apply
these approaches than the proposed dimension adaptive quadrature rule. Since the reduced basis
method is still applicable for Monte Carlo method, the adaptation may be carried out for sampling set
with successive enrichment of new samples and elimination of well approximated samples, as shown
in the previous chapter for risk analysis.
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Part IIAnalyses and Fast Solvers for
Stochastic Optimal Control Problems
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6 Stochastic elliptic optimal boundary
control with random advection field

Design and optimization of physical and engineering systems can be formulated as optimal control
problems. The latter usually aim at the determination of the forces or boundary conditions in a system
of partial differential equations, through the minimization of suitable objective or cost functionals.
Deterministic optimal control problems constrained by partial differential equations have been well
developed and investigated for several decades (see, e.g., [123, 84, 200]), while the development of
stochastic optimal control problem constrained by stochastic partial differential equations can still
be considered to be in its infancy; see some very recent work, e.g. [99, 91, 172]. In [99], a stochastic
optimal control problem constrained by a stochastic steady diffusion problem with deterministic
distributed control function is introduced, and an error estimate for the Galerkin approximation of the
optimality system in both physical space and stochastic space is provided. The work [91] deals with
deterministic Neumann boundary control with error estimate for the same numerical approximation
based on stochastic steady diffusion problem. The existence of a local optimal solution has also been
demonstrated. However, the global existence as well as uniqueness of the optimal solution remain to
be investigated. In [172], numerical experiments are conducted with ‘pure’ stochastic control function
as well as ‘semi’ stochastic control function for an optimal control problem constrained by a stochastic
steady diffusion problem.

Robin boundary conditions are a weighted combination of Dirichlet and Neumann boundary con-
ditions, which are very versatile and useful in mathematical modelling [165, 161]. In this chapter, a
stochastic Robin optimal control problem constrained by an advection-diffusion-reaction equation
with advection-dominated term is studied. In order to analyze the existence and uniqueness of the
optimal solution as well as the convergence of numerical approximation, saddle point formulation for
linear-quadratic type of optimal control problem in the deterministic case has been developed and
fully analyzed in [23, 28] and more recently in a deterministic reduced order modelling setting [144].
We take advantage of this formulation in the stochastic Robin optimal control problem to study the
theoretical properties of the optimal solution and the numerical properties of approximation in both
physical and stochastic spaces. We first derive a stochastic saddle point system [28, 23] and prove that
it is equivalent to the first order optimality system for the stochastic Robin boundary control problem.
The global existence and uniqueness of the optimal solution is obtained by Brezzi’s theorem [27] for
the saddle point formulation. Moreover, the optimal solution of the stochastic saddle point system
is proved to depend regularly on the random variables. Thanks to this regularity, we are able to use
stochastic collocation approximation [8] for the discretization of random variables and obtain an a

Reference for this chapter:

P. Chen, A. Quarteroni and Gianluigi Rozza. Stochastic optimal Robin boundary control problems of advection-dominated elliptic
equations. SIAM Journal on Numerical Analysis, 51(5):2700–2722, 2013
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priori error estimate of the numerical approximation. As for the discretization of the physical domain,
we apply stabilized finite element approximation [165, 97, 94] and provide a priori error estimate. Based
on these two approximations, a global error estimate for their combination is derived. Finally, we verify
the correctness of our theoretical error estimates by numerical experiments in both low (of order O(1))
and high (of order O(100)) stochastic dimensions.

This chapter is organized as follows. In section 6.1, the stochastic Robin boundary control problem
constrained by a stochastic advection dominated elliptic equation is introduced. We derive the stochas-
tic saddle point system and prove it to be equivalent to the optimality system. In the following section
6.2, the stochastic regularity of the solution is obtained by recursively applying Brezzi’s theorem for the
saddle point system. Section 6.3 is attributed to the stabilized finite element approximation in physical
space and stochastic collocation approximation in stochastic space as well as the error estimates of
these approximations, followed by section 6.4 with numerical experiments of the approximation. Some
summary remarks are given in the last section 6.5.

6.1 Stochastic Robin boundary control problem

6.1.1 Problem definition

Our stochastic Robin boundary control consists in finding a stochastic Robin boundary condition
g ∈L 2(∂D) (the control function) in order to minimize the quadratic cost functional

J (u, g ) := 1

2
||u −ud ||2L 2(D) +

α

2
||g ||2

L 2(∂D) (6.1)

constrained by the stochastic elliptic problem featuring a stochastic advection-dominated term{ −∇· (a(x)∇u(x,ω))+b(x,ω) ·∇u(x,ω)+ c(x)u(x,ω) = f (x) in D ×Ω,

a(x)∇u(x,ω) ·n +k(x)u(x,ω) = g (x,ω) on ∂D ×Ω,
(6.2)

where ud ∈ L 2(D) is the observation, α > 0 is a regularization coefficient, a,b,c are the diffusion,
advection, and reaction coefficients, respectively, f is a force term, k is Robin coefficient, and n is the
unit outward normal direction along the boundary. We make the following assumptions for a,b,c,k.

Assumption 6.1 The uncertainty is presented on the advection-dominated term through the random

coefficient b : D ×Ω→ Rd , which satisfies b ∈ (
L∞(D̄)

)d
, ∇·b(x,ω) ∈L∞(D) and can be written as a

linear function of finite random variables by, e.g., truncation of the Karhunen-Loève expansion [189] as
given by (34) in the preliminary chapter

b(x,ω) = b0(x)+
N∑

n=1
bn(x)yn(ω), (6.3)

where yn :Ω→ Γn ,n = 1, . . . , N are uncorrelated bounded real-valued random variables with zero mean
and unit variance.

Assumption 6.2 There exist positive constants 0 < r < R <∞ such that the diffusion coefficient satisfies

r < a(x) < R a.e. in D̄ . (6.4)

As is customary, a.e. stands for almost everywhere, meaning everywhere except for a possible set with
zero measure, and D̄ = D ∪∂D. Moreover, we assume that c ∈ L∞(D̄), f ∈ L2(D), and k ∈ L2(∂D) as well
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as the relations

− 1

2
∇·b(x,ω)+ c(x) ≥ r ′ > 0 a.e. in D ×Ω with r ′ < r (6.5)

and

k(x)+ 1

2
b(x,ω) ·n(x) ≥ 0 a.e. on ∂D ×Ω. (6.6)

Let us introduce the bilinear form B(·, ·) : H 1(D)×H 1(D) →R, defined as

B(u, v) := (a∇u,∇v)+ (b ·∇u, v)+ (cu, v)+ (ku, v)∂D

≡
∫
Ω

∫
D

a∇u ·∇vd xdP +
∫
Ω

∫
D

(b ·∇u)vd xdP

+
∫
Ω

∫
D

cuvd xdP +
∫
Ω

∫
∂D

kuvdγdP,

(6.7)

and the linear functional F (·) : H 1(D) →R, defined as

F (v) := ( f , v)+ (g , v)∂D ≡
∫
Ω

∫
D

f vd xdP +
∫
Ω

∫
∂D

g vdγdP, (6.8)

and then the weak formulation of problem (6.2) can be written as: find u ∈H 1(D) such that

B(u, v) =F (v) ∀v ∈H 1(D). (6.9)

Theorem 6.1.1 Provided that all the data satisfy Assumptions 1 and 2, we have that there exists a unique
solution u ∈H 1(D) to problem (6.2), and for a suitable constant C , it holds that

||u||H 1(D) ≤C
(
|| f ||L2(D) +||g ||L 2(∂D)

)
. (6.10)

The proof follows the same lines as in the deterministic case [165] and is omitted here for simplicity.

6.1.2 Stochastic saddle point formulation

We apply Lagrangian approach for the derivation of an optimality system to solve optimal control
problem (6.1) subject to the constraint (6.9). The Lagrangian functional is defined as [200]

L (u, g , p) =J (u, g )+B(u, p)−F (p), (6.11)

where p is the Lagrangian multiplier or adjoint variable in H 1(D).

Lemma 6.1.2 The first order necessary optimality conditions of the Robin boundary control problem are
equivalent to the following stochastic optimality system: to find u ∈H 1(D), p ∈H 1(D), g ∈L 2(∂D),
such that (s.t.) 

B(u, ũ) =F (ũ) ∀ũ ∈H 1(D),

B′(p, p̃) = (ud −u, p̃) ∀p̃ ∈H 1(D),

α(g , g̃ )∂D = (p, g̃ )∂D ∀g̃ ∈L 2(∂D),

(6.12)

where B′(p, p̃) =B(p̃, p) is the adjoint bilinear form.

The stochastic optimality system (6.12) is obtained by taking the Gâteaux or directional derivative of
the Lagrangian functional with respect to the variables p, u, and g , respectively, and setting them to be
zero, which employs the same procedure as in the deterministic case; see [114], for instance.
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This optimality system has also been studied in [99, 91, 172], with only local existence of the optimal
solution obtained. In the following, we derive a stochastic saddle point formulation of the optimal
control problem (6.1) and demonstrate the global existence and uniqueness of the optimal solution.

First of all, let us introduce new variables u = (u, g ) ∈U and v = (v,h) ∈U , where the stochastic tensor
product space U =H 1(D)×L 2(∂D) is equipped with the graph norm ||u||U = ||u||H 1(D) +||g ||L 2(∂D).
Define a bilinear form A (·, ·) : U ×U →R

A (u, v) := (u, v)+α(g ,h)∂D ∀u, v ∈U , (6.13)

which is related to the cost functional (6.1) as follows,

J (u, g ) = 1

2
A (u,u)− (ud ,u)+ 1

2
(ud ,ud ). (6.14)

Write ud = (ud ,0) ∈U as the new observation variable, and we have the equivalence (ud ,u) = (ud ,u), so
that minimizing the cost functional (6.1) is not different, up to a constant (ud ,ud )/2, than minimizing
the following cost functional (still denoted by J )

J (u) := 1

2
A (u,u)− (ud ,u). (6.15)

Furthermore, introduce the affine form by slight abuse of notation B(·, ·) : U ×H 1(D) →R

B(u, q) :=B(u, q)− (g , q)∂D , ∀u ∈U∀q ∈H 1(D). (6.16)

By this new definition, we have the following minimization problem equivalent to the original one of
minimizing the cost functional (6.1) subject to the stochastic constraint (6.9), which is min

u∈Uad

J (u) = 1

2
A (u,u)− (ud ,u),

s.t. B(u, q) = ( f , q) ∀q ∈H 1(D).
(6.17)

Moreover, the equivalence between minimization problem (6.17) and the saddle point problem: to find
(u, p) ∈U ×H 1(D) such that{

A (u, v)+B(v , p) = (ud , v) ∀v ∈U ,
B(u, q) = ( f , q) ∀q ∈H 1(D),

(6.18)

is established by the following proposition extended from deterministic case to the stochastic case

Proposition 6.1.3 (see [23, 28]) Assume that the bilinear form A is symmetric, continuous, nonnegative,
and strongly coercive on the kernel space U0 := {∃u ∈U : B(u, q) = 0 ∀q ∈H 1(D)}. Assume also that
the bilinear form B is continuous and satisfies the compatibility condition (inf-sup condition) (6.22).
Then the minimization problem (6.17) and the saddle point formulation (6.18) are equivalent.

From the above proposition, we immediately obtain the following lemma.

Lemma 6.1.4 The minimization problem (6.1) subject to the stochastic problem (6.9) is equivalent to
the saddle point problem (6.18).

Proof We only need to verify the assumptions in Proposition 6.1.3. By definition (6.13), we have
A (u, v) =A (v ,u) and A (u,u) ≥ 0 so that A is symmetric and nonnegative. The continuity of A on
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U ×U is evident with the following estimate:

A (u, v) ≤ ||u||H 1(D)||v ||H 1(D) +α||g ||L 2(∂D)||h||L 2(∂D) ≤Cα||u||U ||v ||U , (6.19)

where Cα is a constant depending on α. On U0, we have B(u, q) = 0 so that B(u, q) = (g , q)∂D ∀q ∈
H 1(D). Hence, it holds by the Lax–Milgram theorem and trace theorem [165] that ||u||H 1(D) ≤
R ′/r ′||g ||L 2(∂D), where R ′ is a positive constant. With this estimate, the coercivity of A follows:

A (u,u) = ||u||2
L 2(D) +α||g ||2L 2(∂D)

≥ αr ′2

2R ′2 ||u||2H 1(D) +
α

2
||g ||2

L 2(∂D) ≥
αr ′2

2R ′2 ||u||2U .
(6.20)

As for the continuity of the bilinear form B on U ×H 1(D), we have by definition (6.16) that

B(u, q) ≤ R ′||u||H 1(D)||q ||H 1(D) +||g ||L 2(∂D)||q ||L 2(∂D)

≤ max(R ′,1)||u||U ||q ||H 1(D).
(6.21)

The compatibility (inf-sup) condition of B on U ×H 1(D) is shown by the following estimate

sup
0 6=v∈U

B(v , q)

||v ||U
= sup

0 6=(v,h)∈U

B(v, q)− (h, q)∂D

||v ||H 1(D) +||h||L 2(∂D)

≥ sup
(v,0)∈U

B(v, q)

||v ||H 1(D)
≥ r ′||q ||H 1(D).

(6.22)

ä

Thanks to the equivalence between the original minimization problem and the saddle point formula-
tion established in Lemma 6.1.4, we can also obtain the global existence of a unique solution to the
minimization problem, according to the following Brezzi’s theorem for saddle point problem (6.18).
(For the proof, see e.g., [27] or [165].)

Theorem 6.1.5 (Brezzi) Provided that the assumptions in Lemma 6.1.4 are satisfied, the saddle point
problem (6.18) admits a unique solution (u, p) ∈U ×H 1(D) or (u, g , p) ∈H 1(D)×L 2(∂D)×H 1(D).
Furthermore, we have the following estimate:

||u||U ≤α1||ud ||L 2(D) +β1|| f ||L2(D),

||p||H 1(D) ≤α2||ud ||L 2(D) +β2|| f ||L2(D),

(6.23)

where

α1 = 2R ′2

αr ′2 , β1 = αr ′2 +2R ′2

αr ′3 , α2 = 2R ′2 +αr ′2

αr ′3 , β2 = αr ′2 +2R ′2

αr ′4 . (6.24)

Lemma 6.1.6 The saddle point problem (6.18) is equivalent to the optimality system (6.12).

Proof Equation (6.18) amounts to finding (u, g , p) ∈H 1(D)×L 2(∂D)×H 1(D), such that{
(u, v)+α(g ,h)∂D +B(v, p)− (h, p)∂D = (ud , v) ∀v ∈H 1(D),∀h ∈L 2(∂D),

B(u, q)− (g , q)∂D = ( f , q) ∀q ∈H 1(D).
(6.25)

As we can observe, (6.25)2 coincides with the state equation (6.12)1. Moreover, we can recover the
adjoint equation (6.12)2 by setting h = 0 in (6.25)1 (notice B(v, p) = B′(p, v)) and the optimality
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condition (6.12)3 by setting v = 0 in (6.25)1. Conversely, (6.25)1 is retrieved by adding (6.12)2 and (6.12)3.
ä

Remark 6.1.1 Lemmas 6.1.4 and 6.1.6 establish the equivalence between the minimization problem
(6.1) subject to the stochastic problem (6.9), the saddle point problem (6.18), and the optimality system
(6.12). In particular, the optimality system also admits a unique global optimal solution (6.1) according to
Theorem 6.1.5. Moreover, other properties for the saddle point problem are also shared by the optimality
system, in particular, the regularity properties of the optimal solution.

6.2 Stochastic regularity

The convergence properties of the numerical approximation to the stochastic optimality system (6.12)
(or to the stochastic saddle point problem (6.18)) in the stochastic space are determined by the regularity
of the stochastic solution (u, g , p) or (u, p) and the choice of the approximation scheme. Since (6.12)
is equivalent to (6.18) by Lemma 6.1.6, we only need to study the regularity of the stochastic solution
to the latter with respect to the random variables y = (y1, y2, . . . , yN ) ∈ Γ := ∏N

n=1Γn . Our results are
provided in Theorem 6.2.1, whose proof is based on recursively applying Brezzi’s theorem 6.1.5 in
high-dimensional stochastic space, adopting a similar approach as in [54]. An analytical extension of
the solution to a certain complex domain is obtained as a consequence to this theorem in Corollary
6.2.2, whose proof follows using Taylor expansion and a Newton binomial formula together with several
elementary inequalities extended in high-dimensional stochastic space.

Theorem 6.2.1 Holding the assumptions in Theorem 6.1.1 and Theorem 6.1.5, we can estimate the
partial derivatives of the solution to the stochastic saddle point problem (6.18) with respect to the
variables y = (y1, . . . , yN ) as follows: ∀ν= (ν1, . . . ,νN ) ∈NN ,

||∂νy u(y)||U ≤ ∑
0¹µ¹ν

C
u,ud
ν−µ |ν−µ|!||b||ν−µ

(L∞(D))d ||∂µy ud (y)||L2(D)

+C
u, f
ν |ν|!||b||ν

(L∞(D))d || f ||L2(D),
(6.26)

while for the adjoint variable we obtain the estimate

||∂νy p(y)||H 1(D) ≤
∑

0¹µ¹ν
C p,ud
ν−µ |ν−µ|!||b||ν−µ

(L∞(D))d ||∂µy ud (y)||L2(D)

+C p, f
ν |ν|!||b||ν

(L∞(D))d || f ||L2(D).
(6.27)

Here, µ¹ ν means that µn ≤ νn∀n = 1,2, . . . , N , and the constant C
u,ud
ν−µ =C

u,ud
ν−µ (α1,α2,β1,β2) is the sum

of 2|ν−µ| basic elements in the form of αn1
1 α

n2
2 β

m1
1 β

m2
2 such that n1 +n2 +m1 +m2 = |ν−µ| +1. The

meaning holds the same for the other constants C p,ud
ν−µ ,C

u, f
ν ,C p, f

ν as coefficients for different terms.

Proof First of all, let us introduce the following pointwise saddle point formulation corresponding to
(6.18) as follows: to find (u(y), p(y)) ∈U ×H 1(D) with U = H 1(D)×L2(∂D) , such that

{
A (u(y), v)+B(v , p(y)) = (ud (y), v) ∀v ∈U ,

B(u(y), q) = ( f , q) ∀q ∈ H 1(D),
(6.28)

where we still denote A and B as the pointwise bilinear forms by slight abuse of notation. The
properties of continuity for A and B, coercivity for A and compatibility condition for B hold the
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same as in Lemma 6.1.4. Moreover, Brezzi’s theorem verifies with the same parameters for the stability
results (6.23). Explicitly, we have the pointwise stability for y ∈ Γ

||u(y)||U ≤α1||ud (y)||L2(D) +β1|| f ||L2(D) (6.29)

and

||p(y)||H 1(D) ≤α2||ud (y)||L2(D) +β2|| f ||L2(D). (6.30)

For |ν| = ν1 +ν2 +·· ·+νN = 0, we obtain the estimate in the above stability results (6.29) and (6.30).
For |ν| ≥ 1, by taking partial derivative of the pointwise saddle point problem (6.28) with respect to the
random vector y up to order ν, we claim that the general recursive equation is given by



A (∂νy u(y), v)+B(v ,∂νy p(y)) = (∂νy ud (y), v)

− ∑
j :ν j 6=0

ν j (b j ·∇v,∂
ν−e j
y p(y)) ∀v ∈U ,

B(∂νy u(y), q) =− ∑
j :ν j 6=0

ν j (b j ·∇∂ν−e j
y u(y), q) ∀q ∈ H 1(D),

(6.31)

where b j , j = 1,2, . . . , N is the j -th basis in the linear expansion (6.3) and e j = (0, · · · ,1, · · · ,0) is an unit
vector with the j -th element set to 1 and all the others 0.

Indeed, if we suppose that |ν̃| = |ν|−1 and |ν̃| takes the form ν− ek for some k, by hypothesis, (6.31)
holds for ν̃, and then we verify that it also holds for ν. Taking the derivative of (6.31) with respect to yk

and replacing ν by ν−ek , we have



A (∂νy u(y), v)+B(v ,∂νy p(y))+ (bk ·∇v,∂ν−ek
y p(y)) = (∂νy ud (y), v)

− ∑
j 6=k:ν j 6=0

ν j (b j ·∇v,∂
ν−e j
y p(y))− (νk −1)(bk ·∇v,∂ν−ek

y p(y)) ∀v ∈U ,

B(∂νy u(y), q)+ (bk ·∇∂ν−ek
y u(y), q) =− ∑

j 6=k:ν j 6=0
ν j (b j ·∇∂ν−e j

y u(y), q)

−(νk −1)(bk ·∇∂ν−ek
y u(y), q) ∀q ∈ H 1(D).

(6.32)

By cancelling the same terms in both sides, we retrieve the recursive equation (6.31). Applying Brezzi’s
theorem to the recursive equation (6.31), we have that there exist unique partial derivatives of the
stochastic functions ∂νy u and ∂νy p such that

||∂νy u(y)||U ≤α1

(
||∂νy ud (y)||L2(D) +

∑
j :ν j 6=0

ν j ||b j ||(L∞(D))d ||∂ν−e j
y p(y)||L2(D)

)

+β1
∑

j :ν j 6=0
ν j ||b j ||(L∞(D))d ||∂ν−e j

y u(y)||L2(D),
(6.33)

and

||∂νy p(y)||H 1(D) ≤α2

(
||∂νy ud (y)||L2(D) +

∑
j :ν j 6=0

ν j ||b j ||(L∞(D))d ||∂ν−e j
y p(y)||L2(D)

)

+β2
∑

j :ν j 6=0
ν j ||b j ||(L∞(D))d ||∂ν−e j

y u(y)||L2(D).
(6.34)
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When |ν| = 1, i.e., for some j ∈N,ν= e j , using (6.29) and (6.30), the above recursive estimates (6.33)
and (6.34) become

||∂νy u(y)||U ≤α1||∂νy ud (y)||L2(D) + (α1α2 +α1β1)|ν|!||b||ν
(L∞(D))d ||ud (y)||L2(D)

+ (α1β2 +β1β1)|ν|!||b||ν
(L∞(D))d || f ||L2(D),

(6.35)

and

||∂νy p(y)||H 1(D) ≤α2||∂νy ud (y)||L2(D) + (α2α2 +α1β2)|ν|!||b||ν
(L∞(D))d ||ud (y)||L2(D)

+ (α2β2 +β1β2)|ν|!||b||ν
(L∞(D))d || f ||L2(D),

(6.36)

where ||b||ν
(L∞(D))d =ΠN

n=1||bn ||νn

(L∞(D))d . For a general ν such that |ν| ≥ 2, we claim that the estimates

(6.26) and (6.27) hold. Note that ||∂νy u(y)||L2(D) ≤ ||∂νy u(y)||U , ||∂νy p(y)||L2(D) ≤ ||∂νy p(y)||H 1(D), and by
substituting (6.26) and (6.27) into the recursive formulae (6.33) with ν replaced by ν−e j , we have

||∂νy u(y)||U ≤α1||∂νy ud (y)||L2(D)

+α1
∑

j :ν j 6=0
ν j ||b j ||(L∞(D))d

( ∑
0¹µ¹ν−e j

C p,ud
ν−e j −µ(|ν−µ|−1)!||b||ν−e j −µ

(L∞(D))d ||∂µy ud (y)||L2(D)

)

+α1
∑

j :ν j 6=0
ν j ||b j ||(L∞(D))d

(
C p, f
ν−e j

(|ν|−1)!||b||ν−e j

(L∞(D))d || f ||L2(D)

)

+β1
∑

j :ν j 6=0
ν j ||b j ||(L∞(D))d

( ∑
0¹µ¹ν−e j

C
u,ud
ν−e j −µ(|ν−µ|−1)!||b||ν−e j −µ

(L∞(D))d ||∂µy ud (y)||L2(D)

)

+β1
∑

j :ν j 6=0
ν j ||b j ||(L∞(D))d

(
C

u, f
ν−e j

(|ν|−1)!||b||ν−e j

(L∞(D))d || f ||L2(D)

)
=α1||∂νy ud (y)||L2(D) +

∑
0¹µ¹ν−e j

(
α1C p,ud

ν−e j −µ+β1C
u,ud
ν−e j −µ

)
×

( ∑
j :ν j 6=0

ν j

)
(|ν−µ|−1)!||b||ν−µ

(L∞(D))d ||∂µy ud (y)||L2(D)

+
(
α1C

u, f
ν−e j

+β1C p, f
ν−e j

)( ∑
j :ν j 6=0

ν j

)
(|ν|−1)!||b||ν

(L∞(D))d || f ||L2(D)

= ∑
0¹µ¹ν

C
u,ud
ν−µ |ν−µ|!||b||ν−µ

(L∞(D))d ||∂µy ud (y)||L2(D) +C
u, f
ν |ν|!||b||ν

(L∞(D))d || f ||L2(D), (6.37)

where the new coefficients read

C
u,ud
0 =α1, C

u,ud
ν−µ =

(
α1C p,ud

ν−e j −µ+β1C
u,ud
ν−e j −µ

) |ν|
|ν−µ| ∀0 ¹µ¹ ν−e j (6.38)

and
C

u, f
0 =β1, C

u, f
ν =

(
α1C p, f

ν−e j
+β1C

u, f
ν−e j

)
. (6.39)

Carrying out the same procedure for ||∂νy p(y)||H 1(D), we obtain the estimate

||∂νy p(y)||H 1(D) ≤
∑

0¹µ¹ν
C p,ud
ν−µ |ν−µ|!||b||ν−µ

(L∞(D))d ||∂µy ud (y)||L2(D)

+C p, f
ν |ν|!||b||ν

(L∞(D))d || f ||L2(D),
(6.40)
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where the coefficients are

C p,ud
0 =α2, C p,ud

ν−µ =
(
α2C p,ud

ν−e j −µ+β2C
u,ud
ν−e j −µ

) |ν|
|ν−µ| ∀0 ¹µ¹ ν−e j (6.41)

and
C p, f

0 =β2, C p, f
ν =

(
α2C p, f

ν−e j
+β2C

u, f
ν−e j

)
. (6.42)

By the above recursive formulae, we have that the constant C
u,ud
ν−µ =C

u,ud
ν−µ (α1,α2,β1,β2) is the sum of

2|ν−µ| basic elements in the form of αn1
1 α

n2
2 β

m1
1 β

m2
2 such that n1 +n2 +m1 +m2 = |ν−µ|+1. The same

structure holds for the constants C p,ud
ν−µ , C

u, f
ν , and C p, f

ν . Notice the difference that C
u,ud
ν−µ and C p,ud

ν−µ are
modified by some constant related to |ν|/|ν−µ|→ 1 as |ν|→∞ for fixed µ. ä

A direct consequence of the regularity given in Theorem 6.2.1 is the analyticity property of (u, p) with
respect to y ∈ Γ, provided the following conditions are satisfied.

Corollary 6.2.2 Holding all the assumptions for Theorem 6.2.1 the conditions

2M
N∑
n
||bn ||(L∞(D))d |yn − ȳn | < 1, (6.43)

where M = max(α1,α2,β1,β2), and

∑
µ

|µ||y − ȳ |µ
µ!

||∂µy ud (ȳ)||L2(D) <∞, (6.44)

we have the existence of an analytic expansion of the stochastic solution (u, p) to the saddle point problem
(6.28) around ȳ ∈ Γ. Therefore, (u, p) can be analytically extended to the set

Σ= {
y ∈RN : ∃ ȳ ∈ Γ such that (6.43) and (6.44) hold

}
, (6.45)

and we define Σ(Γ;τ) := {z ∈C : di st (z,Γ) ≤ τ} ⊂Σ for the largest possible vector τ= (τ1, . . . ,τN ).

Proof The Taylor expansion of u(y), y ∈ Γ around ȳ ∈ Γ is given by

u(y) =∑
ν

∂νy u(ȳ)

ν!
(y − ȳ)ν, (6.46)

where ν! = ν1! · · ·νN !. By the bound of Theorem 6.2.1, we have the estimate∣∣∣∣∣
∣∣∣∣∣∑ν

∂νy u(ȳ)

ν!
(y − ȳ)ν

∣∣∣∣∣
∣∣∣∣∣
U

≤∑
ν

|y − ȳ |ν
ν!

( ∑
0¹µ¹ν

C
u,ud
ν−µ |ν−µ|!||b||ν−µ

(L∞(D))d ||∂µy ud (ȳ)||L2(D)

)

+∑
ν

|y − ȳ |ν
ν!

C
u, f
ν |ν|!||b||ν

(L∞(D))d || f ||L2(D),

(6.47)

where |y − ȳ | = (|y1 − ȳ1|, . . . , |yN − ȳN |). Let us consider the second term at first, for which we introduce
the generalized Newton binomial formula: for any η= (η1, . . . ,ηN ) ∈RN and k = 0,1,2, . . . , we have

∑
|ν|=k

k !

ν!
ην =

(
N∑

n=1
ηn

)k

. (6.48)

By applying (6.48), the second term of (6.47) becomes
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∑
ν

|y − ȳ |ν
ν!

C
u, f
ν |ν|!||b||ν

(L∞(D))d || f ||L2(D)

= || f ||L2(D)

∞∑
k=0

∑
|ν|=k

C
u, f
ν

|ν|!
ν!

(||b||(L∞(D))d |y − ȳ |)ν
≤ M || f ||L2(D)

∞∑
k=0

∑
|ν|=k

|ν|!
ν!

(
2M ||b||(L∞(D))d |y − ȳ |)ν

= M || f ||L2(D)

∞∑
k=0

(
2M

N∑
n
||bn ||(L∞(D))d |yn − ȳn |

)k

,

(6.49)

where M = max(α1,α2,β1,β2) and the inequality comes from the estimate for the coefficient C
u, f
ν

C
u, f
ν ≤ 2|ν|M |ν|+1 = M(2M)ν, (6.50)

which is valid by definition. Therefore, the convergence condition for (6.49) is

2M
N∑
n
||bn ||(L∞(D))d |yn − ȳn | < 1. (6.51)

As for the first term of the estimate (6.47), we have

∑
ν

|y − ȳ |ν
ν!

( ∑
0¹µ¹ν

C
u,ud
ν−µ |ν−µ|!||b||ν−µ

(L∞(D))d ||∂µy ud (ȳ)||L2(D)

)

≤∑
µ

|y − ȳ |µ
µ!

||∂µy ud (ȳ)||L2(D)

( ∑
νºµ

C
u,ud
ν−µ

|ν−µ|!
(ν−µ)!

(||b||(L∞(D))d |y − ȳ |)ν−µ)

≤ M
∑
µ

|µ||y − ȳ |µ
µ!

||∂µy ud (ȳ)||L2(D)

∞∑
k=0

(
2M

N∑
n
||bn ||(L∞(D))d |yn − ȳn |

)k

,

(6.52)

where for the first inequality we employ the equality∑
ν

∑
0¹µ¹ν

· =∑
µ

∑
νºµ

· (6.53)

and the bound
1

ν!
≤ 1

µ!

1

(ν−µ)!
. (6.54)

For the second inequality, we replace all ν−µ by ν, bound the coefficient C
u,ud
ν−µ by

C
u,ud
ν−µ ≤ |ν|

|ν−µ|2|ν−µ|M |ν−µ|+1 ≤ M |µ|(2M)|ν−µ|, (6.55)

and use the result obtained for the second term (6.49). Hence, the convergence of the first term (6.52)
is guaranteed by the condition (6.51) as well as the condition (6.44), which implies that ud is analytic
around ȳ . The same procedure holds for the Taylor expansion of

p(y) =∑
ν

∂νy p(ȳ)

ν!
(y − ȳ)ν (6.56)

with estimate in the space of H 1(D). ä
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6.3 Approximation and error estimates

Numerical approximation in both the physical space and the stochastic space will be studied in this
section. More specifically, we apply stabilized finite element approximation in physical space in order
to address the advection dominated problem [56, 15, 97, 126, 6, 77] and employ sparse grid stochastic
collocation approximation in stochastic space [207, 8, 148, 149, 12] to deal with the computational
reduction for the high-dimensional stochastic problem; see chapters 1 for the development of the
sparse grid stochastic collocation method. Convergence properties of the approximations in both
physical and stochastic space will be provided separately. Finally, we derive a global error estimate for
a combined stabilized finite element–adaptive stochastic collocation approximation.

6.3.1 Finite element approximation in physical space

Let us introduce a regular triangulation Th of the physical domain D ⊂ Rd ,d = 2,3, such that D̄ =
∪K∈Th K and di am(K ) ≤ h. Based on this triangulation, we define a finite element space X k

h

X k
h := {

vh ∈C 0(D̄)
∣∣vh|K ∈Pk ∀K ∈Th

}
, k ≥ 0, (6.57)

where Pk ,k ≥ 0 is the space of polynomials of total degree less than or equal to k in the variables
x1, . . . , xd . Therefore, the element vh in X k

h is simply a piece-wise polynomial, and we have that

X k
h ⊂ H 1(D) [165]. Since both the state equation and the adjoint equation are advection dominated, a

proper stabilization method is needed. Let us introduce the operator for the pointwise state equation
as follows: ∀ y ∈ Γ, define

Lu(y) :=−∇· (a∇u(y))+b(y) ·∇u(y)+ cu(y), (6.58)

which can be separated into a symmetric part and a skew-symmetric part L = Ls +Lss , defined as

Ls u(y) =−∇· (a∇u(y))+ (c −∇·b(y)/2)u(y); Lss u(y) = (b(y) ·∇u(y)+∇· (b(y)u(y)))/2. (6.59)

Corresponding to the adjoint equation, we define the adjoint operator: ∀ y ∈ Γ, define

L′p(y) :=−∇· (a∇p(y))−b(y) ·∇p(y)+ (c −∇·b(y))p(y), (6.60)

and we split it into a symmetric part and a skew-symmetric part, L′ = L′
s +L′

ss , and we have

L′
s p(y) =−∇· (a∇p(y))+ (c −∇·b(y)/2)p(y); L′

ss p(y) =−(b(y) ·∇p(y)+∇· (b(y)p(y)))/2. (6.61)

Substituting the optimality condition (6.12) into the state equation (6.2) and taking the following
stabilized weak formulation for both the state equation and adjoint equation, we obtain the stabilized
and reduced optimality system in finite element space X k

h as follows [165]:



B(uh(y), vh)+ ∑
K∈Th

δK

(
Luh(y),

hK

|b(y)| (Lss +θLs )vh

)
= 1

α
(ph(y), vh)

+( f , vh)+ ∑
K∈Th

δK

(
f ,

hK

|b(y)| (Lss +θLs )vh

)
∀vh ∈ X k

h ,

B′(ph(y), vh)+ ∑
K∈Th

δK

(
L′ph(y),

hK

|b(y)| (L′
ss +θL′

s )vh

)
= (ud (y)−uh(y), vh)

+ ∑
K∈Th

δK

(
ud (y)−uh(y),

hK

|b(y)| (L′
ss +θL′

s )vh

)
∀vh ∈ X k

h ,

(6.62)
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where |b(y)| is the modulus of b(y) and the parameter δK is left to be chosen, for instance,

δK ≡ δ(PeK ) := coth(PeK )− 1

PeK
, where PeK := |b(y)|hK

2minK a(x)
∀K ∈Th . (6.63)

Different stabilization methods result from the choice of θ. If θ = 0, it corresponds to streamline
upwind/Petrov–Galerkin (SUPG) stabilization; if θ = 1, Galerkin/least-squares stabilization is obtained.
For these different stabilization methods, it has been proved that if the parameter δ is small enough
and the solution of the state equation (6.2) is regular enough, e.g., u(y) ∈ H k+1(D), the priori error of
the approximation is bounded by the estimate ||u −uh ||V ≤ hk+1/2||u||H k+1(D), where the norm || · ||V is
defined according to different methods. More details about the strong consistency and accuracy of
these stabilization methods are provided in [165]. As for the convergence property of the optimality
system, we have the following pointwise results by optimize-then-discretize procedure for SUPG
stabilization; see similar proof in [56] for distributed optimal control problem.

Lemma 6.3.1 Let k, l ,m ≥ 1, and suppose that ∀ y ∈ Γ the solution (u(y), g (y), p(y)) satisfies u(y) ∈
H k+1(D), g (y) ∈ H m+1/2(∂D), and p(y) ∈ H l+1(D). If the stabilization parameter satisfies

δK ≤ min

(
h2

K

εC 2
K

,
r ′

||c||L∞(K )
,

r ′

||c −∇·b(y)||L∞(K )

)
∀K ∈Th , (6.64)

where ε= amax ≤ R, r ′ is the coefficient defined in (6.5) and CK is the constant for the inverse inequality
||∇vh ||L2(K ) ≤CK h−1

K ||vh ||L2(K )∀K ∈Th , and we take for positive constant ζ1,ζ2 > 0

δK = ζ1
h2

K

ε
for PeK ≤ 1, or δK = ζ2hK for PeK > 1, (6.65)

then the error estimate for the discretized optimal solution (uh(y), gh(y), ph(y))∀ y ∈ Γ is obtained as

||u(y)−uh(y)||V +||g (y)− gh(y)||L2(∂D) +||p(y)−ph(y)||V
≤C

(
(ε1/2 +h1/2)(hk |u(y)|k+1 +hl |p(y)|l+1)+hm+1|g (y)|m+1/2,∂D

)
,

(6.66)

where the norm || · ||V is defined for SUPG stabilization as

||v ||2V = ε|v |21 + r ′||v ||2L2(K ) +
∑

K∈Th

δK ||b(y) ·∇v ||2L2(K ), (6.67)

and |v |k ,k ≥ 1 is the seminorm in the Hilbert space H k (D),k ≥ 1.

Remark 6.3.1 Lemma 6.3.1 provides a convergence result for the error between the solution of the
original and that of the discretized optimal control problem over the entire domain D. The constants in
the estimates of the global error depend on regularity of the optimal solution (u, g , p). Similar results
have also been obtained recently in [15, 26, 97].

6.3.2 Collocation approximation in stochastic space

In this section, we apply the stochastic collocation method (introduced in chapter 1, section 1.2)
for the approximation of the optimal solution (u, g , p) in the stochastic space. The tensor-product
approximation error and the sparse grid approximation error are summarized in the next two lemmas.

Lemma 6.3.2 The following convergence estimate holds for the multidimensional full tensor product
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interpolation operator Iq

||u −Iq u||V (D) +||g −Iq g ||L 2(∂D) +||p −Iq p||V (D) ≤C
N∑

n=1
e− ln(rn )qn , (6.68)

where the norm V (D) := L2
ρ(Γ;V ); C is a positive constant independent of N ; qn ,n = 1, . . . , N are the

polynomial orders of the univariate Lagrange interpolation formula; the constants rn ,n = 1, . . . , N , are
defined via τn and Γn as

rn = 2τn

|Γn |
+

√
1+ 4τ2

n

|Γn |2
> 1, n = 1, . . . , N . (6.69)

Proof The proof is obtained immediately by combining the analytical regularity result of the stochas-
tic optimal solution in Corollary 6.2.2 and the convergence result of the tensor-product stochastic
collocation method in Proposition 1.4.3 (up to a difference from L∞ norm to L2

ρ norm). ä

Lemma 6.3.3 The approximation error of the stochastic optimal solution by the isotropic sparse grid
stochastic collocation method with Clenshaw–Curtis collocation nodes is bounded by

||u −Iq u||V (D) +||g −Iq g ||L 2(∂D) +||p −Iq p||V (D) ≤C N−r
q , (6.70)

where C is a constant independent of Nq and r , Nq = #H(q, N ) is the number of collocation nodes, r is
defined as r = min(log(

p
r1), . . . , log(

p
rN ))/(1+ log(2N )) with r1, . . . ,rN defined in (6.69). Then using the

anisotropic Smolyak sparse grid, still with Clenshaw–Curtis collocation nodes, we have

||u −Iq u||V (D) +||g −Iq g ||L 2(∂D) +||p −Iq p||V (D) ≤C N−r (α)
q , (6.71)

where r (α) = min(α)(log(2)e −1/2)/
(
log(2)+∑N

n=1 min(α)/αn
)

and αn = log(
p

rn), n = 1, . . . , N .

Proof The results are a direct consequence of the analytic regularity of the stochastic optimal solution
in Corollary 6.2.2 and the convergence results in Proposition 1.4.4 (up to a difference from L∞ norm to
L2
ρ norm). ä

6.3.3 Convergence for approximating stochastic optimal control problem

In this section, we provide some convergence results for the stabilized finite element approximation in
the physical space and stochastic collocation approximation in the stochastic space for the optimality
system (6.12), or equivalently, the saddle point system (6.18). Let us denote the fully approximated
solution in both the physical space and the stochastic space as (uh,q , gh,q , ph,q ). We summarize in
Theorems 6.3.4 and 6.3.5 the error estimates for tensor product grid collocation approximation and
sparse grid collocation approximation for stochastic Robin boundary control problem, respectively.

Theorem 6.3.4 Provided that the assumptions made in Corollary 6.2.2 and Lemma 6.3.1 are satisfied,
the following global error estimate for stabilized finite element approximation in the physical space and
full tensor product grid collocation approximation in the stochastic space for the stochastic optimality
system (6.12) (or equivalently the saddle point system (6.18)) holds:

||u −uh,q ||V (D) +||g − gh,q ||L 2(∂D)) +||p −ph,q ||V (D)

≤C
N∑

n=1
e− ln(rn )qn +Cp (ε1/2 +h1/2)hk (|u|H k+1(D) +|p|H k+1(D) +h|g |H k+1/2(∂D)

)
.

(6.72)
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Here, C , (rn , qn),n = 1, . . . , N are the constants for approximation in the stochastic space inherited from
Lemma 6.3.2 and Cp is the constant for approximation in the physical space inherited from Lemma 6.3.1.
The quantity |u|H k+1(D), |p|H k+1(D) and |g |H k+1/2(∂D) are the semi-norm of u, p, g in the stochastic Hilbert
spaces.

Proof Recall the interpolation operator Iq : (u, g , p) →Iq (u, g , p) ≡ (uq , gq , pq ) in the stochastic space.
Denoting by P s

h : (uq , gq , pq ) → P s
h(uq , gq , pq ) ≡ (uh,q , gh,q , ph,q ) the pointwise projection operator for

the stabilized finite element approximation in the physical space, which projects the pointwise solution
(uq (y), gq (y), pq (y)) for any y ∈ Γ from the Hilbert space H k+1(D)×H k+1/2(∂D)×H k+1(D) to the finite
element space X k

h ×X k
h |∂D ×X k

h , we conclude the convergence result for the combined approximation

||u −uh,q ||V (D) +||g − gh,q ||L 2(∂D)) +||p −ph,q ||V (D)

≡ ||u −uh,q ||L2
ρ (Γ;V ) +||g − gh,q ||L2

ρ (Γ;L2(∂D)) +||p −ph,q ||L2
ρ (Γ;V )

= ||u −P s
h Iq u||L2

ρ (Γ;V ) +||g −P s
h Iq g ||L2

ρ (Γ;L2(∂D)) +||p −P s
h Iq p||L2

ρ (Γ;V )

≤ ||u − Iq u||L2
ρ (Γ;V ) +||Iq u −P s

h Iq u||L2
ρ (Γ;V )

+||g − Iq g ||L2
ρ (Γ;L2(∂D)) +||Iq g −P s

h Iq g ||L2
ρ (Γ;L2(∂D))

+||p − Iq p||L2
ρ (Γ;V ) +||Iq p −P s

h Iq p||L2
ρ (Γ;V )

= ||u − Iq u||L2
ρ (Γ;V ) +||g − Iq g ||L2

ρ (Γ;L2(∂D)) +||p − Iq p||L2
ρ (Γ;V )

+||Iq u −P s
h Iq u||L2

ρ (Γ;V ) +||Iq g −P s
h Iq g ||L2

ρ (Γ;L2(∂D)) +||Iq p −P s
h Iq p||L2

ρ (Γ;V )

≤C
N∑

n=1
e− ln(rn )qn +Cp (ε1/2 +h1/2)hk (|u|H k+1(D) +|p|H k+1(D) +h|g |H k+1/2(∂D)

)
.

(6.73)

The first inequality is due to the triangular inequality, and the second one follows from using the
converge results of the stabilized finite element approximation and the stochastic collocation approxi-
mation. ä

Using similar arguments, we have the following convergence result for the isotropic or anisotropic
sparse grid stochastic collocation approximation.

Theorem 6.3.5 If the assumptions in Corollary 6.2.2 and Lemma 6.3.1 are satisfied, we have the follow-
ing global error estimate for stabilized finite element approximation in the physical space and isotropic
or anisotropic sparse grid collocation approximation in the stochastic space:

||u −uh,q ||V (D) +||g − gh,q ||L 2(∂D)) +||p −ph,q ||V (D)

≤C N−r (α)
q +Cp (ε1/2 +h1/2)hk (|u|H k+1(D) +|p|H k+1(D) +h|g |H k+1/2(∂D)

)
,

(6.74)

where Cp is the constant for approximation in physical space inherited from Lemma 6.3.1, and C , Nq

and r (α) are the constants for approximation in stochastic space inherited from Lemma 6.3.3.

6.4 Numerical results

In this section, we demonstrate by numerical experiments our error estimates for the approximation of
the stochastic optimal Robin boundary control problem obtained in the last section. Specifically, we
test the error estimates for stabilized finite element approximation in physical space and sparse grid
collocation approximation in stochastic space, respectively.
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6.4. Numerical results

The computational domain is a two-dimensional unit square x = (x1, x2) ∈ D = (0,1)2; the coefficients
a = 0.01, c = 1, k = 1 and the force term f = 0.1, all constants, are fixed; the advection field b =
(bx1 ,bx2 )T is a stochastic vector function, with the second component bx2 = 0 and the first component
bx1 as a random field with finite second moment, with expectation and correlation

E[bx1 ](x) = x2(1−x2); Cov[bx1 ](x, x ′) = x2
2(1−x2)2

102 exp

(
− (x1 −x ′

1)2

L2

)
, x, x ′ ∈ D (6.75)

where L is the correlation length. By Karhunen-Loève expansion as introduced in (27) of the preliminary
chapter, bx1 can be written as

bx1 (x,ω) = x2(1−x2)+ x2(1−x2)

10

(p
πL

2

)1/2

y1(ω)

+ x2(1−x2)

10

∞∑
n=1

√
λn

(
sin(nπx1)y2n(ω)+cos(nπx1)y2n+1(ω)

)
,

(6.76)

where the uncorrelated random variables yn ,n ≥ 1 have zero mean and unit variance, and the eigenval-
ues λn ,n ≥ 1 decay as follows:

√
λn = (p

πL
)1/2

exp

(
− (nπL)2

8

)
∀n ≥ 1. (6.77)

As for Robin boundary condition g , we assume that its expectation and correlation function are given
on the same segment of the boundary,

E[g ](x) = 1; Cov[g ](x, x ′) = 1

22 exp

(
− (x1 −x ′

1)2 + (x2 −x ′
2)2

L2

)
, x, x ′ ∈ ∂D. (6.78)

The Karhunen-Loève expansion of the stochastic Robin boundary condition is written, e.g., on 0× [0,1]

g (x,ω) = 1+ 1

2

(p
πL

2

)1/2

y1(ω)+ 1

2

∞∑
n=1

√
λn

(
sin(nπx2)y2n(ω)+cos(nπx2)y2n+1(ω)

)
, (6.79)

where λn ,n ≥ 1 are the same as in (6.77). In the numerical examples, we truncate the expansion up to N
terms and assume that the random variables are independent and obey the same uniform distribution
yn ∼U (−p3,

p
3),n = 1, . . . , N with zero mean and unit variance. For the sake of simplicity, we do not

consider the contribution of the truncation error and focus on the stochastic collocation approximation
error.

As the first test example, let us choose the correlation length L = 1/4 for both velocity b and Robin
boundary condition g , for which we only need 7 terms in both of the truncations and therefore 15
independent random variables. Using piecewise linear function space X 1

h ,h = 0.025 for stabilized finite
element approximation and isotropic sparse grid collocation approximation with Clenshaw–Curtis
collocation nodes as Sq , q = 19 in (1.15), we can compute the solution for the stochastic advection
dominated elliptic problem (6.2) on each of 2792 unstructured finite element nodes in D and each
of 40001 collocation nodes in Γ. The expectation and standard deviation of the solution, which may
represents the temperature distribution of a heat transfer problem, can also be evaluated by quadrature
formula introduced in chapter 1; see the results in Figure 6.1.

Taking the solution as our objective function ud = u, and solving the stabilized optimality system (6.62),
we obtain the optimal solution (u, g , p). The expectation and standard deviation of the stochastic Robin
boundary control function g is displayed on the left of Figure 6.2, which is very close to the theoretical
value E[g ] ≡µ= 1 and Var [g ] ≡σ= 0.4876 computed directly from (6.79).
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Figure 6.1: Expectation (left) and standard deviation (right) of the solution of problem (6.2)
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Figure 6.2: Expectation µ and standard deviation σ of the Robin boundary condition g (left), and
convergence rate of the error of the solution in stabilized finite element space X 1

h and X 2
h (right)

In order to verify the theoretical convergence rate in different finite element spaces, we choose X 1
h and

X 2
h , where for the second one we replace hK by h2

K in the specification of Péclet number PeK in (6.63) in
order to have an approximately quadratic decay of the parameter δK with respect to hK in (6.65) when
PeK ≤ 1 for small h. In fact, from (6.63) we have δK = coth(PeK )−1/PeK = coth(O(h2

K ))−1/O(h2
K ) ≈

O(h2
K ). The series of h are h = 1,1/2,1/22,1/23,1/24,1/25. The error is defined as

er r or = ||u −uh,q ||V (D) +||g − gh,q ||L 2(∂D)) +||p −ph,q ||V (D), (6.80)

where u is computed by setting h = 1/26 and q = 19, g is given by formula (6.79), the adjoint variable p
is set as 0, and (uh,q , gh,q , ph,q ) is computed by solving the optimality system (6.62). The convergence
results is shown on the right of Figure 6.2, which implies that the error decays approximately with order
h1.5 for X 1

h and order h2.5 forX 2
h , consistently with our theoretical result in Theorem 6.3.5.

For simplicity, we use the same set of random variables for the expansion of bx1 and g in order to test the
convergence rate of the collocation approximation. The same error defined in (6.80) is used. For the test
of isotropic sparse grid collocation approximation, we use the series of different levels of interpolation
1,2,3,4,5,6,7 and set the approximated value in the deepest level as the true solution. The correlation
length is set as L = 1/4 and the number of random variables #r v = 3,5,7. The step size for the stabilized
finite element approximation h is set to be a relatively large value 0.25 to accelerate the computation.
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6.5. Summary

The error against the number of collocation nodes is displayed on the left of Figure 6.3, from which
we can see that the convergence rate decreases as the number of random variables increases, and the
comparison of the convergence rate with O(1/N 2) and O(1/N ) shows that the isotropic sparse grid
collocation approximation is faster than Monte Carlo method whose convergence rate is O(1/N 1/2).
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Figure 6.3: Comparison of convergence rate by isotropic sparse grid collocation approximation (left)
and anisotropic sparse grid collocation approximation (right) for different dimensions N

However, when the number of random variables becomes very large, this potential advantage will
fade down. In this case, we need to approximate with high interpolation level in those dimensions
that are more important than the others, using the anisotropic sparse grid with dimension-adaptive
tensor-product quadrature [79]. On the right of Figure 6.3, we show the convergence rate with even
smaller correlation length L = 1/16 for high-dimensional approximation #r v = 11,21,41,81,161. We
set a series of collocation nodes with the cardinality as 102,102.5,103,103.5,104,104.5,105 and use the
solution u computed with 105 collocation nodes as the true solution. The same stepsize h = 0.25 is
used. From the figure we can see that the anisotropic sparse grid breaks the curse of dimensionality
in the sense of being able to taking care of very high-dimensional stochastic anisotropic problems.
Moreover, the convergence rate can be compared to O(1/N 2) for 11 dimensions and O(1/N ) for over 41
dimensions, which are both higher than O(1/N 1/2). The convergence rate becomes almost the same for
dimensions over 41 since the randomness is captured over 99% by n = 26 terms truncation for L = 1/16,
so that the left random variables play a very little role.

From the above numerical results, we can conclude that the theoretical results obtained in the last
section are very well verified. Meanwhile, the isotropic sparse grid stochastic collocation approximation
is very efficient for stochastic optimal control problems with moderate dimensions, and the application
of the anisotropic sparse grid is able to deal with high-dimensional stochastic problems with different
weights in different dimensions (up to the order O(102)).

6.5 Summary

In this chapter, we presented a stochastic optimal Robin boundary control problem constrained by
an advection dominated elliptic equation. The particular uncertainties we considered arise from the
background velocity of the advection term, the objective function, as well as the stochastic optimal
control function. We introduced the stochastic saddle point formulation and proved its equivalence to
the first order necessary optimality system for the stochastic optimal control problem. The stochastic
regularity with respect to the random variables was obtained thanks to Brezzi’s theorem for the saddle
point system. We applied stabilized finite element approximation in physical space and stochastic
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Chapter 6. Stochastic elliptic optimal boundary control with random advection field

collocation approximation in stochastic space to discretize the optimality system. A global error
estimate was obtained for the approximation. In the last part, the error estimate is verified by numerical
experiments, with anisotropic sparse grid collocation approximation being highlighted for treating
very high-dimensional stochastic problems. Further analysis of other approximations, e.g., adaptive
hierarchical stochastic collocation approximation and weighted reduced basis approximation [49,
48], and applications of them to more general distributed and boundary stochastic optimal control
problems are promising, e.g., stochastic optimal control constrained by evolution equations. As we will
see in the next two chapters, the reduced basis method can be efficiently applied to solve stochastic
optimal control problems constrained by, e.g. elliptic equations (chapter 7) and Stokes equations
(chapter 8).
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7 Reduced basis method for stochastic
elliptic optimal control problems

As shown in the last chapter and on some recent works [172, 197, 112, 47], the sparse grid stochastic
collocation method can be effectively applied to solve stochastic optimal control problems. However,
when the solution of the optimality system becomes computationally very expensive, only a few tens or
hundreds of high-fidelity solutions are affordable, which prohibits direct application of the stochastic
collocation method since a much larger number (hundreds of thousands as shown in the last chapter)
of the full optimality system should be solved. More efficient techniques are therefore needed in order
to alleviate the whole computational effort in the many-query optimization context. Model order
reduction techniques such as proper orthogonal decomposition [167] or reduced basis method are
promising in this perspective; see [104, 58, 59, 85, 132, 144] for the application of the latter method in
solving parametrized optimal control problems.

In this chapter, we consider the stochastic optimal control problem constrained by a linear elliptic
equation with distributed stochastic control function. After providing an analysis of well-posedness
(existence, uniqueness and stability of the stochastic optimal solution), we use finite element method
with (optimal) preconditioning techniques for deterministic approximation of the optimal solution
in physical space, and stochastic collocation method for stochastic approximation in the probability
space. We tailor the weighted reduced basis method (Chapter 2) to reduce the computational cost
when solving a considerable number of optimality systems, leading to a reduced optimality system
that enables many-query solutions with a posteriori error estimate. Convergence results and remarks
on computational efficiency are illustrated by numerical tests in multidimensional probability space.

This chapter is organized as follows. In section 7.1 we state the stochastic optimal control problems with
elliptic PDE constraints and random inputs. Section 7.2 is devoted to the study of the mathematical
properties of the stochastic optimal control problems. In section 7.3, we present numerical approxi-
mation to solve the stochastic optimality system, consisting of finite element method, tensor-product
and sparse-grid stochastic collocation method and weighted reduced basis method. Numerical tests
for verification and illustration of our method are reported in section 7.4. We close this chapter by a
summary of the computational methodology and indicating possible future developments in the last
section 7.5.

Reference for this chapter:

P. Chen and A. Quarteroni. Weighted reduced basis method for stochastic optimal control problems with elliptic PDE constraints.
To appear in SIAM/ASA Journal on Uncertainty Quantification, 2014.
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Chapter 7. Reduced basis method for stochastic elliptic optimal control problems

7.1 Problem statement

Recall the definitions of the random vector, stochastic Hilbert space and PDE in the preliminary chapter,
and we consider the following elliptic homogeneous Dirichlet boundary value problem with distributed
control function { −∇· (a(x, y)∇u(x, y)) = f (x, y)+ g (x, y) ∀(x, y) ∈ D ×Γ,

u(x, y) = 0 ∀(x, y) ∈ ∂D ×Γ,
(7.1)

where a is a random coefficient field, f is a random force field and g is a random field representing a
distributed control. Recall the Assumptions 0.2 and 0.3 for the random data. We make the following
assumptions with slight modifications.

Assumption 7.1 The random coefficient a is uniformly bounded from above and below, i.e., there exist
positive constants 0 < r < R <∞ such that

P
(
ω ∈Ω : r ||v ||2H 1(D) ≤ (a(·, y(ω))∇v,∇v) ≤ R||v ||2H 1(D)

)
= 1, ∀v ∈ H 1(D). (7.2)

The random force term f and random control function g have bounded second moment∫
Γ

∫
D

f 2(x, y)ρ(y)d xd y <∞ and
∫
Γ

∫
D

g 2(x, y)ρ(y)d xd y <∞. (7.3)

Moreover, recall that the random fields a and f admit the linear expansion as given by (31)

a(x, y(ω)) = a0(x)+
K∑

k=1
ak (x)yk (ω) and f (x, y(ω)) = f0(x)+

K∑
k=1

fk (x)yk (ω). (7.4)

Let us denote y0 = 1 for ease of notation. Under Assumption 7.1, we have the following weak formula-
tion for problem (7.1): find u ∈H 1

0 (D) such that

B(u, v) =F (v)+G (v) ∀v ∈H 1
0 (D), (7.5)

where H 1
0 (D) := {v ∈H 1(D), v = 0 on ∂D}, G (v) = (g , v) and the bilinear form B and the linear func-

tional F are defined as

B(u, v) =
K∑

k=0

∫
Γ

(
Bk (u, v)yk

)
ρ(y)d y and F (v) =

K∑
k=0

∫
Γ

(
Fk (v)yk

)
ρ(y)d y, (7.6)

with Bk (u, v) = (ak∇u,∇v);Fk (v) = ( fk , v),k = 0, . . . ,K .

Theorem 7.1.1 Provided that the data satisfy Assumption 7.1, there exists a unique solution u ∈H 1
0 (D)

of problem (7.5) such that

||u||H 1
0 (D) ≤ (CR /r )

(|| f ||L 2(D) +||g ||L 2(D)

)
, (7.7)

where CR is the constant of Pointcaré inequality.

Proof The proof follows directly from that of the deterministic case [165, 161]. ä
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7.2. Saddle point formulation

7.1.1 Constrained optimal control problems

The distributed optimal control problems constrained by stochastic elliptic PDEs consist in finding a
stochastic optimal distributed control function g∗ ∈L 2(D) that minimizes a cost functional J (u, g )
under an elliptic PDE constraint: find (u∗, g∗) ∈U such that

J (u∗, g∗) = min
(u,g )∈U

J (u, g ) subject to problem (7.5), (7.8)

where U is an admissible solution space defined without loss of generality as U =H 1
0 (D)⊗L 2(D),

and the quadratic cost functional is defined as [91, 47]

J (u, g ) = E
[

1

2

∫
D
|u −ud |2d x + α

2

∫
D
|g |2d x

]
, (7.9)

in which ud ∈ L2(D) is provided as an observation function, e.g., the mean of a sequence of experimental
measures, α is a positive regularization parameter.

Theorem 7.1.2 There exists an optimal solution (u∗, g∗) ∈U to problem (7.8).

Proof The proof is straightforward by following Lions’ argument for deterministic optimal control
problems [123]; see also similar proof in [91] for stochastic cases. ä

Remark 7.1.1 When higher moments, e.g., variance, of the observational data ud or the control function
g , or the probability distribution of ud are incorporated into the cost functional in more general settings
as considered in [197], we face essentially nonlinear and fully coupled stochastic problems, which will be
addressed in [44].

7.2 Saddle point formulation

We introduce now the stochastic optimality system in order to derive a saddle point formulation of the
optimal control problem (7.8) following the same procedure as in the previous chapter. For the sake of
simplicity, we provide the

7.2.1 Stochastic optimality system

Let us first derive the stochastic optimality system to the optimal control problem (7.8) by Lagrangian
approach [200]. Define the following stochastic Lagrangian functional associated to problem (7.8) as

L (u, g , p; y) =J (u, g )+B(u, p)−F (p)−G (p), (7.10)

where p ∈ H 1
0 (D) is named the adjoint variable or Lagrangian parameter [200]. By taking Gâteaux

derivative (see [200]) of the Lagrangian functional (7.10) with respect to the variables p, g ,u evaluated
at q,h, v , we obtain the first order necessary optimality conditions of the stochastic optimal control
problem (7.8) - the stochastic optimality system:

B(u, q)−G (q) =F (q) ∀q ∈H 1
0 (D),

(αg −p,h) = 0 ∀h ∈L 2(D),
B′(p, v)+ (u, v) = (ud , v) ∀v ∈H 1

0 (D),
(7.11)
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Chapter 7. Reduced basis method for stochastic elliptic optimal control problems

where B′ is the adjoint bilinear form of B, B′(p, v) =B(v, p). As a consequence of Theorem 7.1.2, it
has been proven in [99, 91] that there exists an adjoint variable p∗ ∈H 1

0 (D) associated to the optimal
solution (u∗, g∗) such that (u∗, g∗, p∗) is a solution of the stochastic optimal system (7.11). In the
following, we will show that (u∗, g∗, p∗) is the unique solution to system (7.11); moreover, (u∗, g∗) is
also the unique solution of the stochastic optimal control problem (7.8).

7.2.2 Saddle point formulation

We adopt the same approach of the saddle point formulation as that used in chapter 6 and obtain the
following saddle point problem: find (u, p) ∈U ⊗H 1

0 (D) such that{
A (u, v)+B(v , p) = (ud , v) ∀v ∈U ,

B(u, q) =F (q) ∀q ∈H 1
0 (D),

(7.12)

where the bilinear forms A and B are defined as

A (u, v) := (u, v)+α(g ,h) ∀u, v ∈U , (7.13)

being u, v given by u = (u, g ) ∈U and v = (v,h) ∈U ; and

B(u, q) :=B(u, q)−G (q) ∀u ∈U , q ∈H 1
0 (D). (7.14)

We can show that this problem is equivalent to the optimal control problem (7.8) and the optimality
system (7.11), and admit a unique stochastic optimal solution.

The semi-weak formulation of the saddle point problem is given by: ∀y ∈ Γ, find (u(y), p(y)) ∈U ⊗V
(where U := H 1

0 (D)⊗L2(D) and V := H 1
0 (D)) such that

{
A(u(y), v)+B(v , p(y); y) = (ud , v) ∀v ∈U ,

B(u(y), q ; y) = F (q ; y) ∀q ∈V ,
(7.15)

where the semi-weak bilinear forms A and B and linear functional F are the deterministic counterparts
(without taking stochastic integral

∫
Γ ·ρ(y)d y) of A , B and F defined in (7.13), (7.14) and (7.6), respec-

tively. Note that B depends on y also through the random coefficient a(y) and F through the random
force f (y). From the semi-weak formulation, we can derive the analytic regularity of the solution under
certain smoothness assumption of the random input data. For the sake of simplicity, we omit the proof
of the above results that is similar to the previous chapter. Details are reported in [43].

7.3 Numerical approximation

Thanks to the equivalence of the stochastic optimal control problem (7.8) and its saddle point formula-
tion (7.12), it is sufficient to consider numerical approximation of (7.12) to solve (7.8), which involves
both deterministic approximation of the optimal solution in the physical domain D and stochastic
approximation in the probability domain Γ. In this section, we present a finite element method with
suitable preconditioning techniques [185, 161] for deterministic approximation and use a stochastic
collocation method introduced in chapter 1 and chapter 5 for stochastic approximation. In order to
alleviate the global computational cost, we propose the model-order reduction strategy empowered by
a weighted reduced basis method [49].
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7.3. Numerical approximation

7.3.1 Finite element method

Recall the definition of the finite element space X k
h defined in (6.57) of the previous chapter. Given

any y ∈ Γ, by applying Galerkin projection of the solution (u(y), p(y)) in the finite element space
U k

h ⊗X k
h ⊂U ⊗H 1

0 (D), where U k
h := X k

h ⊗X k
h , we obtain the semi-weak saddle point problem (7.15) in

finite element formulation as: find (uh(y), ph(y)) ∈U k
h ⊗X k

h

{
A(uh(y), vh)+B(vh , ph(y); y) = (ud , vh) ∀vh ∈U k

h ,
B(uh(y), qh ; y) = F (qh ; y) ∀qh ∈ X k

h .
(7.16)

The finite element solution of (7.16) is written as

uh(x, y) =
Nh∑
i=1

ui (y)φi (x), gh(x, y) =
Nh∑
i=1

gi (y)φi (x), ph(x, y) =
Nh∑
i=1

pi (y)φi (x), (7.17)

where φi ,1 ≤ i ≤ Nh are the finite element bases in X k
h , Nh is the number of degrees-of-freedom (d.o.f).

The algebraic formulation of (7.16) reads(
Ah B T

h (y)
Bh(y) 0

)(
uh(y)
ph(y)

)
=

(
udh

fh(y)

)
, (7.18)

which can be written in a more explicit formulation corresponding to the optimality system (7.11) in
the deterministic setting as Mh 0 C T

h (y)
0 αMh −M T

h
Ch(y) −Mh 0

 uh(y)
gh(y)
ph(y)

=
 udh

0
fh(y)

 . (7.19)

Notations have the following meanings: Ah = (Mh ,0Nh×Nh ;0Nh×Nh ,αMh) with

(Mh)i , j = (φ j ,φi ), (0Nh×Nh )i , j = 0, 1 ≤ i , j ≤ Nh , (7.20)

Bh(y) = (Ch(y);−Mh) with

(Ch(y))i , j = (a(y)∇φ j ,∇φi ), 1 ≤ i , j ≤ Nh , (7.21)

the finite element optimal solution is uh(y) = (uh(y);gh(y)), with

uh(y) = (u1(y), . . . ,uNh (y))T , gh(y) = (g1(y), . . . , gNh (y))T , (7.22)

the adjoint variable ph(y) is defined as

ph(y) = (p1(y), . . . , pNh (y))T , (7.23)

the right hand side udh = (udh ;0Nh ),udh , fh(y) as

(udh)i = (ud ,φi ), (0Nh )i = 0, fh(y) = ( f (y),φi ), 1 ≤ i ≤ Nh . (7.24)

When α ¿ 1 and Nh À 1, the matrix of the linear system (7.19) is ill-conditioned with very large
condition number, leading to computational challenge for direct solve of (7.19). We prefer using
GMRES iterations with the following (optimal) preconditioner [185, 164]

P =
 M̂h 0 0

0 αM̂h 0
0 0 Ĉh(ȳ)M−1

h Ĉ T
h (ȳ)

 , (7.25)
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where M̂h is approximated by symmetric Gauss-Seidel method and Ĉh represents an algebraic multigrid
V-cycles approximation for Ch at a reference value ȳ ∈ Γ [168].

7.3.2 Weighted reduced basis method

Solving the optimization problem (7.19) is rather expensive when Nh becomes very large and only a
few tens or hundreds of complete solves of the system (7.19) may become affordable in practice. Then
the stochastic collocation method (even with (anisotropic) sparse-grid structure [149, 148]) can hardly
be employed because the number of collocation nodes easily overpasses this computational constraint,
especially for high-dimensional problems. The approach that we propose relies on a weighted reduced
basis method that has been developed in chapter 2. We tailor this method for the stochastic optimal
control problems with the following ingredients corresponding to those in chapter 2. Similar settings
for deterministic optimal control problems can be found in [142] and [179] for related applications.

Reduced basis method

For any given choice of y ∈ Γ, e.g., the collocation points used by stochastic collocation method, we
seek a reduced basis solution (ur (y), pr (y)) ∈UNr ⊗X p

Nr
such that

{
A(ur (y), v r )+B(v r , pr (y); y) = (ud , v r ) ∀v r ∈UNr ,

B(ur (y), qr ; y) = F (qr ; y) ∀qr ∈ X p
Nr

,
(7.26)

where the reduced basis space UNr = X e
Nr

⊗X g
Nr

and X p
Nr

are constructed from “snapshots" - solutions
of (7.19) at some selected samples yn ,1 ≤ n ≤ Nr , i.e.,

X u
Nr

= span{uh(yn),1 ≤ n ≤ Nr },

X g
Nr

= span{gh(yn),1 ≤ n ≤ Nr },

X p
Nr

= span{ph(yn),1 ≤ n ≤ Nr }.

(7.27)

Note that in order to guarantee the inf-sup condition for system (7.26), we use an enriched reduced
basis space X e

Nr
as union of X u

Nr
and X p

Nr
[144], i.e.,

X e
Nr

= X u
Nr

∪X p
Nr

= span{uh(yn), ph(yn),1 ≤ n ≤ Nr }. (7.28)

For the sake of algebraic stability in assembling the reduced basis matrices and performing Galerking
projection [178], we orthonormalize the snapshots in the reduced basis space X e

Nr
and X g

Nr
by Gram-

Schmidt process with respect to the inner-products (a(ȳ)∇·,∇·) (ȳ being a reference value, e.g., the
center of Γ) and (·, ·), yielding

X e
Nr

= {ζe
n ,1 ≤ n ≤ 2Nr } and X g

Nr
= {ζg

n ,1 ≤ n ≤ Nr }. (7.29)

Let the reduced basis solution at y ∈ Γ be written as

ur (y) =
2Nr∑
n=1

un(y)ζe
n , gr (y) =

Nr∑
n=1

gn(y)ζg
n , pr (y) =

2Nr∑
n=1

pn(y)ζe
n , (7.30)

and the solution coefficient vector at y ∈ Γ as ur (y) = (u1(y), . . . ,u2Nr (y))T , gr (y) = (g1(y), . . . , gNr (y))T ,
pr (y) = (p1(y), . . . , p2Nr (y))T , we obtain the reduced algebraic optimality system corresponding to the
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7.3. Numerical approximation

full algebraic optimality system (7.19) as Mr 0 C T
r (y)

0 αDr −E T
r

Cr (y) −Er 0

 ur (y)
gr (y)
pr (y)

=
 udr

0
fr (y)

 , (7.31)

being a 5Nr ×5Nr dense system, where the reduced optimality matrix is defined as Mr 0 C T
r (y)

0 αDr −E T
r

Cr (y) −Er 0

=
 Z T

e MhZe 0 Z T
e C T

h (y)Ze

0 αZ T
g MhZg −Z T

g M T
h Ze

Z T
e Ch(y)Ze −Z T

e MhZg 0

 , (7.32)

and the reduced optimal solution and the right hand side are given by ur (y)
gr (y)
pr (y)

=
 Z T

e uh(y)
Z T

g gh(y)
Z T

e ph(y)

 and

 udr

0
fr (y)

=
 Z T

e udh

0
Z T

e fh(y)

 , (7.33)

where Ze = (ζe
1, . . . ,ζe

2Nr
) and Zg = (ζg

1 , . . . ,ζg
Nr

) are column vector matrices.

A weighted greedy algorithm

The efficiency of reduced basis method depends critically on the choice of the samples yn ,1 ≤ n ≤ Nr ,
for which we turn to a weighted greedy algorithm [49]. To start, we randomly choose a realization
y1 ∈ Γ (or use the reference value ȳ), and solve the full optimality system (7.19) to get the solution
(uh(y1), gh(y1), ph(y1)). By Gram-Schmidt process, we construct the first reduced basis space X e

1 and
X g

1 . For Nr = 2, . . . , Nmax (where Nmax is a prescribed maximum number of reduced bases), we solve
the following weighted L∞(Γ; Xρ) optimization problem

y Nr = argsup
y∈Γ

||(uh(y), gh(y), ph(y))− (ur (y), gr (y), pr (y))||Xρ , (7.34)

where Xρ is a weighted Hilbert space (with weight ρ) equipped with the norm

||(v(y),h(y), q(y))||Xρ =
{(
||v(y)||2

X̄
+α||h(y)||2L2(D) +||q(y)||2

X̄

)
ρ(y)

}1/2
, (7.35)

where α is the regularization parameter given in the cost functional (7.9), ρ(y) is taken as the joint
probability density function evaluated at y ∈ Γ and ||v(y)||2

X̄
= (a(ȳ)∇v(y),∇v(y)) at a reference value

ȳ ∈ Γ. However, solving accurately the infinite-dimensional optimization problem (7.34) is computa-
tionally impossible. Instead, we replace Γ by a training set Ξtr ai n , e.g., the collocation nodes used in
the stochastic collocation method. Moreover, instead of using the “truth" error defined in (7.34), we
consider a cheap, sharp and reliable error bound 4ρ

Nr
such that

||(uh(y), gh(y), ph(y))− (ur (y), gr (y), pr (y))||Xρ ≤4ρ

Nr
(ur (y), gr (y), pr (y)). (7.36)

Upon replacement of Γ and the truth error, we have the weighted greedy algorithm

y Nr = arg sup
y∈Ξtr ai n

4ρ

Nr
(ur (y), gr (y), pr (y)), Nr = 2, . . . , Nmax , (7.37)

based on which, we can hierarchically build the reduced basis spaces X e
Nr

and X g
Nr

.

Remark 7.3.1 The weighted norm || · ||Xρ is defined with the joint probability density function ρ in order
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to assign associated weight or importance in choosing the samples for construction of the reduced basis
space. In this way the a posteriori error bound and the truth error are kept small, resulting in a more
accurate solution, when the probability at the sample is large. This numerical scheme aims to balance
the accuracy and importance of the stochastic solution, achieving higher accuracy of statistical moments
of interest [49]; see illustration in Section 7.4.1.

A weighted a posteriori error bound

For the purpose of computing a weighted a posteriori error bound 4ρ

Nr
, we reformulate the saddle

point problem (7.15) as a weakly coercive problem at first [23, 209].

For every y ∈ Γ, let u(y) := (u(y), g (y), p(y)) ∈ U := X̄ ⊗L2(D)⊗ X̄ ' Xρ and v := (v,h, q) ∈ U, we define
the bilinear form B : U⊗U →R as

B(u(y),v; y) := A(u(y), v)+B(v , p(y); y)+B(u(y), q ; y), (7.38)

and the linear functional F : U →R as

F(v; y) := (ud , v)+F (q ; y). (7.39)

Then the saddle point problem (7.15) is equivalent to the following problem: given y ∈ Γ, find u ∈ U
such that

B(u(y),v; y) = F(v; y) v ∈ U. (7.40)

It can be shown [209] that the bilinear form B is continuous and weakly coercive, i.e.,

γ(y) := sup
v∈U

sup
u(y)∈U

B(u(y),v; y)

||u(y)||U||v||U
<∞ and β(y) := inf

v∈U
sup

u(y)∈U

B(u(y),v; y)

||u(y)||U||v||U
> 0, (7.41)

where ||v||U := ||v ||X̄ +p
α||h||L2(D) + ||q||X̄ corresponding to (7.35). Moreover, there exists a unique

solution u(y) ∈ U of problem (7.40) satisfying the stability estimate

||u(y)||U ≤ 1

β(y)
||F(y)||U′ . (7.42)

Consequently, we have similar results (7.41) and (7.42) for the finite element solution uh(y) of problem
(7.19) with constants γh(y),βh(y). Let the residual be defined as

R(vh ; y) = F(vh ; y)−B(ur (y),vh ; y) ∀vh ∈ Uh := X k
h ⊗X k

h ⊗X k
h , (7.43)

then we have that the error between the finite element solution and the reduced basis solution e(y) =
(uh(y), gh(y), ph(y))− (ur (y), gr (y), pr (y)) satisfies

B(e(y),vh ; y) = R(vh ; y) vh ∈ Uh . (7.44)

which yields, by the stability estimate (7.42), that

||e(y)||Uh ≤ 1

βh(y)
||R(vh ; y)||U′

h
. (7.45)

Therefore, we can define the a weighted posteriori error bound as: for ∀y ∈Ξtr ai n

4ρ

Nr
(ur (y)) :=

√
ρ(y)

βLB (y)
||R(y)||U′ ≥√

ρ(y)||e(y)||U = ||e(y)||Xρ , (7.46)
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where a lower bound βLB (y) ≤ βh(y),∀y ∈Ξtr ai n can be evaluated by a cheap successive constraint
method properly extended to a Babuška inf-sup condition [178, 177]. As for evaluation of the weighted
residual norm ||R(y)||Xρ , we turn to an efficient offline-online decomposition procedure.

Remark 7.3.2 In the definition of the compound Hilbert space U, we use the Hilbert space X̄ equipped
with norm || · ||X̄ = (a(ȳ)∇·,∇·) for both the state variable u(y) and the adjoint variable p(y) in order to
obtain good stability of the inf-sup constant βh(y),∀y ∈ Γ. In fact, when a(y) is not far from the reference
value a(ȳ), the inf-sup constant βh(y) is also close to βh(ȳ), which enables us to use a uniformly lower
bound βLB ≤βh(y),∀y ∈ Γ, for the sake of computational efficiency [49].

Offline-online decomposition

The offline-online decomposition procedure decomposes the reduced basis method into the expensive
offline construction stage and cheap online evaluation stage. More explicitly, we build the reduced
basis space X e

Nr
and X g

Nr
, assemble and store all matrices in (7.32) and the right hand side vector (7.33)

in an offline stage. In particular, the quantities in (7.32) and (7.33) that depend on the random variable
y ∈ Γ are assembled as

Z T
e Ch(y)Ze =

K∑
k=0

ykZ T
e C k

h Ze and Z T
e fh(y) =

K∑
k=0

ykZ T
e fk

h , (7.47)

where Z T
e C k

h Ze and Z T
e fk

h ,0 ≤ k ≤ K are assembled offline with the matrices (C k
h )i , j = (ak∇φ j ,∇φi ),0 ≤

k ≤ K ,1 ≤ i , j ≤ Nh and the vectors fk
h = ( fk ,φi ),0 ≤ k ≤ K ,1 ≤ i ≤ Nh . Recall that y0 = 1 and ak , fk ,0 ≤

k ≤ K are defined in (7.4). For a more compact notation, we define

B0
r =

 Z T
e MhZe 0 Z T

e (C 0
h)T Ze

0 αZ T
g MhZg −Z T

g M T
h Ze

Z T
e C 0

hZe −Z T
e MhZg 0

 , F0
r =

 Z T
e udh

0
Z T

e f0
h

 , (7.48)

and

Bk
r =

 0 0 Z T
e (C k

h )T Ze

0 0 0
Z T

e C k
h Ze 0 0

 , Fk
r =

 0
0

Z T
e fk

h

 , 1 ≤ k ≤ K . (7.49)

Then the reduced algebraic optimality system (7.31) can be written as

K∑
k=0

yk Bk
r uc

r (y) =
K∑

k=0
yk Fk

r , (7.50)

where uc
r (y) = (ur (y);gr (y);pr (y)) is the coefficient of reduced basis solution at y ∈ Γ. A direct solver,

e.g., by Gauss elimination, can be applied to solve the reduced basis optimality system (7.50) with
complexity O((5Nr )3), since Nr ¿ Nh in practice.

From the definition of the residual (7.43), we have by Riesz representation theorem [165] that there
exists a unique element ê(y) ∈ Uh such that

(ê(y),vh)Uh = R(vh ; y) ∀vh ∈ Uh . (7.51)

Therefore, we have ||R(y)||U′
h
= ||ê(y)||Uh , to evaluate which we make the following definition of bilinear

form and linear function corresponding to (7.38) and (7.39):

B0(u(y),v) = A(u(y), v)+B 0(v , p(y))+B 0(u(y), q),F0(v) = (ud , v)+F 0(q), (7.52)
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and
Bk (u(y),v) = B k (v , p(y))+B k (u(y), q), Fk (v) = F k (q), 1 ≤ k ≤ K , (7.53)

where∀(v , q) ∈ U, we have B 0(v , q) = (a0∇v,∇q)−(h, q), F 0(q) = ( f0, q), and B k (v , q) = (ak∇v,∇q),F k (q) =
( fk , q),1 ≤ k ≤ K . By the above definition, we obtain by Riesz representation theorem that there ex-
ist fn ,bn

k such that (fk ,v) = Fk (v) and (bn
k ,v) = −Bk (ζc

n ,v) for ∀v ∈ U,0 ≤ k ≤ K ,1 ≤ n ≤ 5Nr , where

ζc
n = (ζe

n ,0,0),1 ≤ n ≤ 2Nr , ζc
n = (0,ζg

n−2Nr
,0),2Nr +1 ≤ n ≤ 3Nr , ζc

n = (0,0,ζe
n−3Nr

),3Nr +1 ≤ n ≤ 5Nr

and the compound reduced basis space Ur = X e
Nr

⊗X g
Nr

⊗X e
Nr

. To this end, we have by the definition of
the residual (7.43)

||ê(y)||2Uh
=

K∑
k=0

K∑
k ′=0

yk (fk , fk ′ )yk ′ +2
K∑

k=0

N∑
k ′=0

5Nr∑
n=1

yk (fk ,bn
k ′ )(ur )k yk ′

+
K∑

k=0

K∑
k ′=0

5Nr∑
n=1

5Nr∑
n′=1

yk (ur )n(bn
k ,bn′

k ′ )(ur )n′ yk ′ ,

(7.54)

where all the quantities of inner-product are computed and stored in the offline stage, and only
O((K +1)2 × (5Nr )2) operations, being K and Nr ¿ Nh very small, are needed for online evaluation of
the a posterior error bound 4ρ

Nr
defined in (7.46).

7.4 Numerical tests

In this section, we carry out several numerical tests to illustrate the computational efficiency and
numerical accuracy of the weighted reduced basis method compared to the non-weighted reduced
basis method and stochastic collocation method with tensor product grid, isotropic and anisotropic
sparse grid. Theoretical error estimates obtained in the last section are verified by three examples
with different dimensions, ranging from one dimension to moderate dimension (1−10) and to high
dimension (10−100), and with different probability distributions.

7.4.1 One-dimensional problems

The first example focuses on the demonstration of the convergence property of the weighted reduced
basis method compared to other methods with probability density functions of distinct shape. The
physical domain is specified as D = (0,1)2 with a uniform mesh of 712 vertices, over which we construct
finite element space for spatial discretization by continuous piecewise linear polynomials. We set f = 1
and the coefficient a of problem (7.1) as

a(x, y) = 1

10
(1.1+ sin(2πx1)y), (7.55)

where x = (x1, x2) ∈ D and the random variable y ∼ Beta(µ1,µ2) obeys beta distribution supported on
Γ= [−1,1] with two shape parameters µ1,µ2 ∈N+. The probability density function of y is displayed in
Fig. 7.1 when (µ1,µ2) take values of (1,1), (10,10) and (100,100), featuring very different shapes with
distinct weight. The observation data ud is set as the solution of (7.1) at the reference value ȳ = 0 and
control g (x1, x2) = si n(πx1)si n(πx2). We define the worst case scenario error as

max
1≤m≤Mtest

(||u(ym)−uN (ym)||U +||p(ym)−pN (ym)||X̄ ), (7.56)

where ym ,1 ≤ m ≤ Mtest are testing samples randomly drawn according to its probability density
function, (u, p) is the finite element solution and (uN , pN ) is the solution by (weighted) reduced basis
method or stochastic collocation method with N bases or collocation nodes. The expectation error is
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defined in a posteriori way as∣∣||El [u]||2U −||EL[u]||2U
∣∣+ ∣∣||El [p]||2

X̄
−EL[p]||2

X̄

∣∣ (7.57)

for ease of computation, where l ,1 ≤ l ≤ L −1 represents the level of approximation by quadrature
formula. We apply the weighted reduced basis method and reduced basis method with Mtr ai n training
samples drawn according to the probability distribution, and also stochastic collocation method
based on Gauss-Jacobi quadrature nodes to solve the stochastic optimal control problem (7.8) with
regularization parameter α= 1. The convergence results are shown in the following few figures Fig. 7.1
- 7.4, for which we have used Mtr ai n = 100 training samples and Mtest = 100 test samples.
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Figure 7.1: Left: Probability density function of Beta(µ1,µ2) distribution with different (µ1,µ2) and
samples selected by weighted reduced basis approximation in order, the bigger the size the earlier it
has been selected; Right: convergence result of the true error and error bound by wRBM.

On the left of Figure 7.1, the samples selected by weighted reduced basis method are plotted in
sequential order, where the larger the markers are, the earlier the samples have been selected. The right
of Figure 7.1 shows the convergence of the true error (error between approximation and true value) and
the error bound 4N defined in (7.46) in three different settings. From Figure 7.1 we can see that the
most important samples (or samples with large probability) can be efficiently selected by the weighted
reduced basis method, leading to less samples (thus less bases in the reduced basis space) for the more
concentrated probability distribution.
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Figure 7.2: Comparison of worst case scenario error (left) and expectation error (right) by (weighted)
reduced basis method and stochastic collocation method with (µ1,µ2) = (1,1).

When (µ1,µ2) = (1,1), the beta distribution becomes a uniform distribution with probability density
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function ρ = 1/2, in which case the weighted reduced basis method is the same as reduced basis
method, as we can see from their convergence results in Figure 7.3, from which we can also observe
that the reduced basis method converges faster than stochastic collocation method for worst case
scenario error, while for the expectation error they display quite close convergence rates.
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Figure 7.3: Comparison of worst case scenario error (left) and expectation error (right) by (weighted)
reduced basis method and stochastic collocation method with (µ1,µ2) = (10,10).

For (µ1,µ2) = (10,10), the weighted reduced basis method performs evidently better than the reduced
basis method measured in both errors, and converges faster than stochastic collocation method as
for worst case scenario error and comparable in expectation error (note that here the Gauss-Jacobi
quadrature formula is optimal for evaluation of expectation), which demonstrates that the weighted
reduced basis method works efficiently for evaluation of statistical moments of the solution. This con-
clusion has been further illustrated by the convergence results displayed in Figure 7.4 for the test with
(µ1,µ2) = (100,100). However, we remark that the computation for both offline construction and online
evaluation by the (weighted) reduced basis method is more expensive than that by stochastic colloca-
tion method in one-dimensional problems; see [50] for more detailed comparison of computational
cost between reduced basis method and stochastic collocation method.
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Figure 7.4: Comparison of worst case scenario error (left) and expectation error (right) by (weighted)
reduced basis method and stochastic collocation method with (µ1,µ2) = (100,100).

166



7.4. Numerical tests

7.4.2 Moderate-dimensional problems

The example presented in this section is devoted to demonstrate the computational efficiency and
numerical accuracy of the weighted reduced basis method. We define a general random field g as a
truncation of Karhunen–Loève expansion (see (27) of the preliminary chapter) of a Gaussian random
field with correction length L [149]

g (xi , y) = E[g ]+
(p

πL

2

)1/2

y1 +
K∑

k=1

√
λk

(
sin(kπxi )y2k +cos(kπxi )y2k+1

)
, (7.58)

where the random variables yk ,1 ≤ k ≤ 2K +1 follow standard normal distribution, the eigenvalues
λ1 = 0.4782,λ2 = 0.0752,λ3 = 0.0034, accounting for around 99.5% uncertainties of the random field
truncated with 7 random variables. In order to guarantee assumption (7.2), we cut off the random
variables |yk | ≤ 3,1 ≤ k ≤ K (with tail probability less than 0.5%) and set E[g ] = 8. For simplicity, we do
not consider the cut-off error and the truncation error. We set a = g (x1, y)/10, f = g (x2, y), α= 1 and
the observation data ud as the solution of (7.1) at the reference value ȳk = 0,1 ≤ k ≤ 2K +1 and control
function g (x, y) = si n(πx1)si n(πx2).

To test the finite element error, we set y = ȳ , h = 1/4,1/8,1/16,1/32,1/64 and use the optimal solution
at h = 1/64 as the “true" value. Figure 7.5 (left) displays the linear and quadratic decay of finite element
error Eh(ȳ) with P1 and P2 elements. The right of Figure 7.5 depicts the reduced basis error Er and
the error bound 4Nr of the optimal solution (in fact, we take the worst case scenario error at 100 test
samples), from which we can see that the cheap error bound is rather sharp and accurate, decaying
exponentially fast with respect to the number of reduced bases. We remark that the error bound
depends on the lower bound of the inf-sup constant βLB (y), y ∈ Γ in (7.46), which falls inside [0.5,1] in
the training set y ∈Ξtr ai n with 1000 samples. For the sake of computational efficiency, we can take a
uniform lower bound βLB = 0.5 for any new y ∈ Γ.
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Figure 7.5: Left: finite element error of P1 and P2; right: reduced basis error and error bound.

Figure 7.6 reports the comparison of stochastic approximation errors between the weighted reduced ba-
sis method (RBM) and the stochastic collocation method (SCM) with Gauss-Hermite collocation nodes
in both tensor-product and sparse-grid settings. The convergence comparison measured by worst case
scenario error is depicted on the left of Figure 7.6, which shows that the reduced basis approximation
converges much faster than the stochastic collocation approximation, with error reaching 10−7 with
only 50 bases (thus 50 solve of the full optimality system (7.19)), while it requires 78079 ≈ 1562×50 col-
location nodes (thus 78079 solve) for sparse-grid setting to attain the same error although it converges
faster than the tensor-product setting.

Alternative to the necessity of cut-off, we may assume log-normal structure [149] of the random field and apply weighted
empirical interpolation method [48] to obtain an affine decomposition (31).
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Figure 7.6: Comparison between weighted reduced basis method and stochastic collocation method
(tensor-product and sparse-grid) for worst case scenario error (left) and error of expectation (right).

For evaluation of the expectation error, we use the expectation of the optimal solution by the sparse-
grid stochastic collocation method at the deepest level (q −K = 6) as a “true" value. The weighted
reduced basis expectation is evaluated via quadrature formula at the deepest level of sparse-grid with
the optimal solution computed by online reduced basis procedure at all the collocation nodes. We
can see from the right of Figure 7.6 that only 28 bases or solve are needed for weighted reduced basis
method to obtain a more accurate expectation than the stochastic collocation method (with 18943 solve
in sparse-grid setting and 16384 by tensor-product setting). Thanks to the cheap online evaluation,
the weighted reduced basis method is much more efficient than the stochastic collocation method
to evaluate the statistics of the solution, especially when a solve of the full optimality system is very
expensive.

7.4.3 High-dimensional problems

In this section, we show that the weighted reduced basis method (wRBM) can be effectively applied
to solve high-dimensional problems and its combination with the adaptive sparse grid stochastic
collocation method (aSCM) developed in chapter 5 provides an efficient way to evaluate statistical
moments of the solution.

We assume that the random coefficient a = g (x1, y)/10 with g defined in (7.58) where L = 1/128,
which features a slow decay of the eigenvalues (λ1 = 0.0138,λ50 = 0.0095). Moreover, we assume
that the random variables yk ,1 ≤ k ≤ 2K + 1 follow uniform distribution with zero mean and unit
variance, supported on [−p3,

p
3]. We set f = 10 and E[a] = 20 that satisfy Assumption 7.1 and ud

as for moderate-dimensional problems in the last section with g (x1, x2) = si n(πx1)si n(πx2). We
apply a dimensional-adaptive algorithm (see [79] for details) with maximum number of collocation
nodes specified as 101,102,103,104,105 to construct the adaptive sparse-grid stochastic collocation
approximation. The weighted reduced basis approximation is constructed with 1000 training samples
and tested with 100 test samples. The convergence results are depicted in Figure 7.7 for 11, 31 and 101
dimensional problems. In the reduced basis construction, only 30 bases have been used to achieve
more accurate approximation (measured in worst case scenario approximation error) than the adaptive
sparse grid stochastic collocation method with 105 collocation nodes, requiring 105 full solve of the
optimality systems.

As for evaluation of the expectation by weighted reduced basis method, we first compute the reduced

Instead of using a fixed number of training samples, we can choose adaptively the collocation nodes on the sparse grid as the
training samples or use an adaptive greedy algorithm [212].
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Figure 7.7: Worst case scenario approximation error (left) and expectation error (right) for different
stochastic dimensions N = 11,31,101 of adaptive SCM and weighted RBM.

basis solution at the collocation nodes in the adaptive sparse-grid in the deepest level (with 105

collocation nodes) and then compute the expectation by Clenshaw–Curtis quadrature formula [149]
on the sparse grid. From the right of Figure 7.7, we can see that 30 reduced bases are sufficient for the
weighted reduced basis method to achieve comparable accuracy as the stochastic collocation method.

7.5 Summary

In this chapter, we studied stochastic optimal control problems with elliptic PDE constraint and
developed and analyzed an efficient computational method to solve them. An analysis of existence,
uniqueness and stochastic regularity of the optimal solution was carried out by virtue of a saddle point
formulation of the optimal control problems. In numerical approximation of stochastic optimality
system, we applied finite element method with proper preconditioning techniques in the deterministic
space and stochastic collocation method in the stochastic space. In order to alleviate the computational
effort, we proposed a model order reduction approach based on a weighted reduced basis method. A
global error analysis of our computation method was conducted thanks to the stochastic regularity
result of the optimal solution. Numerical tests have illustrated the efficiency and accuracy of the
computational method proposed in this chapter.

Promising research opportunities arise from several computational challenges: firstly, when the dimen-
sion of the stochastic space becomes very high (in the order of 1000 or even more) with many effective
dimensions, efficient (quasi, multilevel, etc.) Monte-Carlo methods should be adopted together with
the model order reduction approach in order to harness the computational burden; secondly, when
the cost functional is more general, e.g., accounting for high moments or probability distribution
of measurements, the optimality system becomes nonlinear and coupled in stochastic space, for
which appropriate extension of our computation method is needed; at third, generalization and ap-
plication of the method in stochastic optimal control problems with more complex constraints, e.g.,
time-dependent and nonlinear problems, are ongoing.
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8 Stochastic optimal control problem
constrained by Stokes equations

In this chapter, we study a stochastic optimal control problem constrained by Stokes equations with
random inputs and distributed control function, which shares all the computational challenges of the
stochastic elliptic optimal control problem in the last chapter, but features the additional difficulty
arising from the saddle point structure of the underlying Stokes model [161, 22]. To tackle these
challenges, we develop a multilevel and weighted reduced basis method, using multilevel greedy
algorithm and weighted a posteriori error estimate. More in detail, (anisotropic) sparse grid stochastic
collocation method is applied for stochastic approximation of the optimal solution in the probability
space and finite element method with (optimal) preconditioning techniques is used for deterministic
approximation in physical space, leading to a large number of finite element optimality systems to
solve. Then we project the finite element optimality system into an adaptively constructed reduced
basis space, leading to a reduced optimality system that can be solved with very cheap computational
cost. For the construction of the reduced basis space, we design a multilevel greedy algorithm and
propose a weighted a posteriori error bound, which produces quasi-optimal “snapshots" space that
well approximate the low-dimensional manifold of the quantities of interest. A global error analysis is
carried out for the complete numerical approximation based on the regularity of the optimal solution,
in particular the stochastic regularity obtained for the specific Stokes control problem. Numerical
experiments with stochastic dimensions ranging from 10 to 100 are performed to verify the error
convergence results and demonstrate the efficiency and accuracy of our computational method for
large scale and high-dimensional PDEs-constrained optimization problems. The main contribution of
this work is the development of efficient model order reduction techniques to solve stochastic optimal
control problems with PDEs (Stokes equations) constraints. For a deterministic setting of Stokes
optimal control problems in a “double" inner-outer saddle point formulation, see [143] and [142].
Another contribution of this chapter is the detailed analysis of the stochastic regularity of the optimal
solution with respect to input random variables and the associated error convergence analysis for fluid
control problems with Stokes constraint. Our numerical experiments demonstrate that the proposed
method achieves considerable computational saving: for large-scale and “reducible" problems, it is
definitely cheaper than both the stochastic collocation method [172] and Galerkin projection method
[99] that have been recently developed for solving stochastic optimal control problems.

This chapter is organized as follows. The stochastic optimal control problem with Stokes constraint is
presented in section 8.1 with certainty assumptions on the random input data; section 8.2 is devoted
to prove the well-posedness of the stochastic optimal solution, followed by section 8.3 for the study

Reference for this chapter:

P. Chen, A. Quarteroni and G. Rozza. Multilevel and weighted reduced basis method for stochastic optimal control problems
constrained by Stokes equations. Submitted, 2013.
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Chapter 8. Stochastic optimal control problem constrained by Stokes equations

of stochastic regularity; detailed numerical approximation of the problem is presented in section 8.4,
which provides the basis for the development of the multilevel and weighted reduced basis method in
section 8.5; in section 8.6, global error estimates are carried out and verified by numerical experiments
in section 8.7; summary is provided in the last section 8.8.

8.1 Problem statement

8.1.1 Stochastic Stokes equations

Recall the definitions in the preliminary chapter. We consider the following stochastic Stokes equations:
given a random variable ν :Ω→R+, two random vector fields f : D×Ω→Rd and h : ∂DN ×Ω→Rd , find
a solution {u, p} : D ×Ω→Rd ×R such that the following equations hold almost surely (for almost every
ω ∈Ω) 

−ν(ω)4u(·,ω)+∇p(·,ω) = f(·,ω) in D,

∇·u(·,ω) = 0 in D,

u(·,ω) = 0 on ∂DD ,

ν(ω)∇u(·,ω) ·n−p(·,ω)n = h(·,ω) on ∂DN ,

(8.1)

where ∂DD and ∂DN represent the Dirichlet and Neumann boundaries such that ∂DD ∪∂DN = ∂D
and ∂DD ∩∂DN =;. In particular, we consider a homogeneous Dirichlet boundary condition and a
nonhomogeneous Neumann boundary condition.

At any realization ω ∈ Ω, the Stokes equations (8.1) are commonly used to quantify the velocity u
and pressure p of fluid flow where advective inertial forces are negligible compared to viscous forces
measured via the kinematic viscosity parameter ν. This occurs, e.g., for low speed channel flows, the
flow of viscous polymers or micro-organisms [5]. In practice, the viscosity ν may vary in a large extent
rather than stay as a fixed constant for many fluids depending on the temperature, the multicomponent
property of the fluid and some other factors [75]. Quantification of the body force f and boundary
condition h, for instance by experimental measurements, may also be faced with various noises or
uncertainties. Incorporation of these different uncertainties leads to the study of stochastic Stokes
equations.

In order to solve (8.1) in the distribution sense, we write its weak formulation as: find {u, p} ∈ V ×Q

such that {
a(u,v)+b(v, p) = (f,v)+ (h,v)∂DN ∀v ∈ V ,

b(u, q) = 0 ∀q ∈Q,
(8.2)

where V := {
v ∈H 1,d (D) : v = 0 on ∂DD

}
, Q := L2(Ω)⊗Q(D), with Q(D) defined as

Q(D) :=
{

q ∈ L2(D) :
∫

D
qd x = 0

}
. (8.3)

The bilinear form a(·, ·) : V ×V →R is defined as

a(w,v) :=
∫
Ω

∫
D
ν∇w⊗∇vd xdP (ω) =

d∑
i , j=1

∫
Ω

∫
D
ν
∂wi

∂x j

∂vi

∂x j
d xdP (Ω) (8.4)

and the bilinear form b(·, ·) : V ×Q →R reads

b(v, q) =−
∫
Ω

∫
D
∇·vqd xdP (ω) =−

d∑
i=1

∫
Ω

∫
D

∂vi

∂xi
qd xdP (ω). (8.5)

The stochastic inner product (f,v) and (h,v)∂DN are defined on the domain D and Neumann boundary
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8.1. Problem statement

∂DN , respectively. Similar to the elliptic case in Assumption 7.1, we make the following assumption for
the random input data in order to guarantee the well-posedness of saddle problem (8.2).

Assumption 8.1 The random viscosity ν is positive and uniformly bounded from below and from above,
i.e., there exist two constants 0 < νmin ≤ νmax <∞ such that

P (ω : νmi n ≤ ν(ω) ≤ νmax ) = 1. (8.6)

The random force field f and Neumann boundary field h satisfy

||f||L <∞ and ||h||H <∞, (8.7)

where we denote L =L 2,d (D) and H =L 2,d (∂DN ) for simplicity.

The well-posedness of the stochastic Stokes problem (8.2) can be obtained by the following theorem,
whose proof follows the same lines of the Brezzi theorem (see Theorem 6.1.5) for the deterministic
setting and will thus be omitted here; see [27, 161, 165] for details.

Theorem 8.1.1 Under Assumption 8.1, there exists a unique solution to the stochastic Stokes problem
(8.2). Moreover, the following stability estimate holds

||u||V ≤ 1

αa

(
CP ||f||L + αa +γa

βb
CT ||h||H

)
, (8.8)

and

||p||Q ≤ 1

βb

((
1+ γa

αa

)
CP ||f||L + γa(αa +γa)

αaβb
CT ||h||H

)
, (8.9)

where the positive constants αa ,γa ,βb ,γb are defined such that

a(w,v) ≤ γa ||w||V ||v||V ∀w,v ∈ V (8.10)

and
a(v,v) ≥αa ||v||2V ∀v ∈ V0, (8.11)

being V0 := {v ∈ V : b(v, q) = 0,∀q ∈Q} the kernel of b, and

inf
q∈Q

sup
v∈V

b(v, q)

||v||V ||q ||Q
≥βb , (8.12)

where βb is called an inf-sup constant or compatibility constant, and the continuity

b(v, q) ≤ γb ||v||V ||q ||Q ∀v ∈ V ,∀q ∈Q. (8.13)

The constants CP and CT are those of the Poincaré inequality and trace theorem [161],

||v||L ≤CP ||v||V and ||v||H ≤CT ||v||V ∀v ∈ V . (8.14)

8.1.2 Finite dimensional assumption

We employ the finite dimensional noise assumption 0.1 made in the preliminary chapter for the random
input data. More explicitly, we provide the following examples for ν and h.

Example 1. For a multicomponent fluid flow, the viscosity is propositional to the contribution of each
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component [106], which can be described by

ν(Y (ω)) =
N∑

n=1
νnYn(ω)+ν0

(
1−

N∑
n=1

Yn(ω)

)
= ν0 +

N∑
n=1

(νn −ν0)Yn(ω), (8.15)

where Yn ,1 ≤ n ≤ N are uniformly distributed in [0,1/N ] and νn > 0,0 ≤ n ≤ N .

Example 2. The random vector field h is given by the truncated Karhunen–Loève expansion (recall the
KL expansion in (34)):

h(x,Y (ω)) = E[h](x)+
N∑

n=1

√
λn hn(x)Yn(ω) x ∈ ∂DN , (8.16)

where (λn ,hn) are the eigenpairs of a continuous and bounded covariance function.

Under this assumption, the stochastic Stokes equations (8.1) can be viewed as a set of parameterized
equations defined in a tensor product of the spatial domain and the parameter space D ×Γ. We remark
that the Hilbert space L2(Ω) is equivalent to L2

ρ(Γ) and we use the same notation L ,H ,V ,Q for the
stochastic Hilbert spaces. Moreover, Theorem 8.1.1 holds under this assumption.

8.1.3 Constrained optimal control problem

We study a distributed optimal control problem constrained by the stochastic Stokes equations. Let us
define the cost functional

J (u, p, f) = 1

2
||u−ud ||2L + 1

2
||p −pd ||2L 2(D) +

α

2
||f||2G

= E
[

1

2

∫
D

(u−ud )2d x + 1

2

∫
D

(p −pd )2d x + α

2

∫
D

f2d x

]
,

(8.17)

where the first two terms measure the discrepancy between the solution {u, p} ∈ V ×Q of the stochastic
Stokes problem (8.2) and the observational data {ud , pd } ∈ L2,d (D)×Q(D) that represent the mean of
measurements. The admissible control space G in the last term is a non-empty, closed, bounded and
convex subset of L 2,d (D). This term is used to regularize in mathematical sense the control function f
with a regularization parameter α> 0, which can also be viewed as a penalization of the control energy.
The optimal control problem constrained by the stochastic Stokes problem (8.2) can be formulated as:
find an optimal solution {u∗, p∗, f∗} such that

J (u∗, p∗, f∗) = min
{
J (u, p, f) : {u, p, f} ∈ V ×Q×G and solve (8.2)

}
. (8.18)

It is easy to see that the cost functional J is weakly lower semicontinuous in G , i.e.

lim inf
n→∞J (u, p, fn) ≥J (u, p, f) ∀{u, p} ∈ V ×Q (8.19)

for any sequence {fn}∞n=1 ∈G such that fn * f as n →∞. Then, we have the following result by Lions’
argument [123]:

Theorem 8.1.2 Under Assumption 8.1 and the finite dimensional noise assumption, there exists an
optimal solution {u∗, p∗, f∗} ∈ V ×Q×G to the stochastic optimal control problem (8.18).

Remark 8.1.1 In the cost functional, we have used the L 2,d (D) norm for measuring the discrepancy
between the velocity field and its mean value of measurements. Extension to the case with V norm
is straightforward by requiring that the data {ud , pd } possess higher regularity in the spatial domain.
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8.2. Saddle point formulation

Another extension to stochastic data {ud , pd } can be handled in the same way as in this work, provided
they depend explicitly on a finite dimensional random vector, i.e., {ud , pd }(·,ω) = {ud , pd }(·,Y (ω)).

Remark 8.1.2 When the higher moments of the observational data {ud , pd } or the control function f,
e.g., variance, skewness, etc., or the probability distribution of {ud , pd } are incorporated into the cost
functional in more general settings [197], we face essentially nonlinear and fully coupled problems,
which will be addressed in [44].

8.2 Saddle point formulation

In order to prove the uniqueness of the optimal solution of the constrained optimal control problem
(8.18), we turn to a saddle point formulation and establish its equivalence to the optimality system
obtained by Lagrangian variational approach in solving (8.18).

8.2.1 Optimality system

We first employ the variational approach [200] to derive an optimality system (known as Karush–
Kuhn–Tucker (KKT) conditions) in solving the constrained optimal control problem (8.18). Define
a compound bilinear form B : (V ×Q×G )× (V ×Q) → R to represent the weak formulation of the
stochastic Stokes equations (8.2) as

B({u, p, f}, {v, q}) = a(u,v)+b(v, p)+b(u, q)− (f,v). (8.20)

Associated with this bilinear form, we define the Lagrangian functional

L ({u, p, f}, {ua , pa}) =J (u, p, f)+B({u, p, f}, {ua , pa})− (h,ua)∂DN , (8.21)

where {ua , pa} ∈ V ×Q are the adjoint (or dual) variables of the Stokes equations (8.2) corresponding to
the state (or primal) variables {u, p}. The Lagrangian functional (8.21) is Gâteaux differentiable with
respect to {u, p, f,ua , pa} [200], so that we can take Gâteaux derivative of (8.21) with respect to the state
variable {u, p} in test directions {va , q a}, control variable f in g, and adjoint variable {ua , pa} in {v, q},
respectively, obtaining the first order optimality system as

({u, p}, {va , q a}) + B({va , q a ,0}, {ua , pa})
= (ud ,va)+ (pd , pa) ∀{va , q a} ∈ V ×Q,

α(f,g)− (ua ,g) = 0 ∀g ∈G ,
B({u, p, f}, {v, q}) = (h,v)∂DN ∀{v, q} ∈ V ×Q,

(8.22)

where we can identify the third equation with the state equation (8.2), the first one with the adjoint
equation and the second one with the optimality equation. More explicitly, the optimality system can
be rewritten as

(u,va) +a(ua ,va) +b(va , pa) = (ud ,va) ∀va ∈ V ,
(p, q a) +b(ua ,qa) = (pd , q a) ∀q a ∈Q,

α(f,g) −(ua ,g) = 0 ∀g ∈G ,
a(u,v) +b(v, p) −(f,v) = (h,v)∂DN ∀v ∈ V ,
b(u, q) = 0 ∀q ∈Q,

(8.23)
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whose saddle point structure can be more easily appreciated. For the sake of numerical approximation,
let us introduce the following operators corresponding to system (8.23):

Mv : V → V such that (Mv u,v) = (u,v) ∀u,v ∈ V ,
Mq : Q →Q such that (Mq p, q) = (p, q) ∀p, q ∈Q,
Mg : G →G such that (Mg f,g) = (v,g) ∀f ∈G ,g ∈G ,
Mc : G → V such that (Mc g,v) = (g,v) ∀g ∈G ,v ∈ V ,
Mn : H → V such that (Mn h,v) = (h,v)∂DN ∀h ∈H ,v ∈ V ,
A : V → V such that a(u,v) = (ν∇u,v) ∀u,v ∈ V ,
B : V →Q such that b(v, q) = −(∇·v, q) ∀v ∈ V , q ∈Q,

(8.24)

from which we obtain the following saddle point linear optimality system as


Mv 0 0 A B T

0 Mp 0 B 0
0 0 αMg −M T

c 0
A B T −Mc 0 0
B 0 0 0 0




u
p
f

ua

pa

=


Mv ud

Mp pd

0
Mn h

0

 . (8.25)

Remark 8.2.1 The optimality system (8.25) can be regarded as the first order necessary condition to
guarantee existence of a solution to the optimal control problem (8.18). However, the uniqueness of the
optimal solution is not an immediate result.

8.2.2 Saddle point formulation

In order to obtain the uniqueness and study the stochastic regularity (Sec. 8.3) of the optimal solution,
we introduce a compound saddle point formulation of the constrained optimal control problem (8.18).

Let A : (V ×Q×G )× (V ×Q×G ) →R be a compound bilinear form defined as

A ({u, p, f}, {v, q,g}) = (u,v)+ (p, q)+α(f,g), (8.26)

then we have that the cost functional (8.17) can be expressed as

J (u, p, f) = 1

2
A ({u, p, f}, {u, p, f})−A ({u, p, f}, {ud , pd ,0})+C , (8.27)

where C is the constant A ({ud , pd ,0}, {ud , pd ,0})/2. Then the following proposition establishes the
equivalence between the constrained optimal control problem (8.18) and the saddle point problem
(8.33), whose proof follows the one in the deterministic setting; see [27, 23] for details.

Proposition 8.2.1 Suppose that the bilinear form A is symmetric, non-negative and continuous, i.e.,
there exists a constant γ> 0 such that ∀{u, p, f}, {v, q,g} ∈ V ×Q×G , we have

|A ({u, p, f}, {v, q,g})| ≤ γ||{u, p, f}||V ×Q×G ||{v, q,g}||V ×Q×G . (8.28)

Moreover, suppose that A is strongly coercive in the kernel space of B, defined as

K := {
{u, p, f} ∈ V ×Q×G : B({u, p, f}, {v, q}) = 0 ∀{v, q} ∈ V ×Q

}
, (8.29)

i.e., there exists a constant ε> 0 such that ∀{v, q,g} ∈ V ×Q×G , we have

A ({v, q,g}, {v, q,g}) ≥ ε||{v, q,g}||2V ×Q×G . (8.30)
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Suppose that B is continuous, i.e., there exists a constant δ> 0 such that ∀{u, p, f} ∈ V ×Q×G , {v, q} ∈
V ×Q, we have

|B({u, p, f}, {v, q})| ≤ δ||{u, p, f}||V ×Q×G ||{v, q}||V ×Q . (8.31)

Furthermore, suppose that B satisfies the inf-sup condition, i.e., there exists a constant β> 0 such that

inf
{v,q}∈V ×Q

sup
{u,p,f}∈V ×Q×G

B({u, p, f}, {v, q})

||{u, p, f}||V ×Q×G ||{v, q}||V ×Q
≥β. (8.32)

Then the constrained optimal control problem (8.18) is equivalent to the following saddle point problem:
find {u, p, f} ∈ V ×Q×G and {ua , pa} ∈ V ×Q such that

A ({u, p, f}, {va , q a ,g})+B({va , q a ,g}, {ua , pa})
= ({ud , pd ,0}, {va , q a ,g}) ∀{va , q a ,g} ∈ V ×Q×G ,
B({u, p, f}, {v, q}) = (h,v)∂DN ∀{v, q} ∈ V ×Q.

(8.33)

Remark 8.2.2 By establishing the equivalence between the optimality system (8.22) and the saddle
point system (8.33), it can be shown that the variables {ua , pa} (and {va , q a ,g}) used in the saddle
point formulation (8.33) are coincident with the adjoint variables {ua , pa} (and test variables {va , q a ,g})
as introduced in the Lagrangian functional (8.21). Moreover, we highlight that some mathematical
properties such as stochastic regularity (Sec. 8.3) of the two systems hold the same.

8.2.3 Equivalence, uniqueness and stability estimates

Lemma 8.2.2 The constrained optimal control problem (8.18), the saddle point problem (8.33) and the
first order optimality system (8.22) are equivalent problems.

Proof To prove the equivalence between the first two problems, we only need to verify the assumptions
in Proposition 8.2.1. By the definition (8.26), it is easy to check that A is symmetric and non-negative;
A is also continuous

|A ({u, p, f},{v, q,g})| ≤ ||u||V ||v||V +||p||Q ||q ||Q +α||f||G ||g||G
≤ γ||{u, p, f}||V ×Q×G ||{v, q,g}||V ×Q×G ,∀{v, q,g} ∈ V ×Q×G ,

(8.34)

where the continuity constant is γ= 1 and ||{v, q,g}||V ×Q×G := ||v||V +||q||Q+p
α||g||G . For any {v, q,g} ∈

K , the kernel of B defined in (8.29), we have by Theorem 8.1.1 that ||v||V ≤CP ||g||G /αa , which yields

A ({v, q,g}, {v, q,g}) = ||v||2L +||q ||2Q +α||g||2G
≥ α2

aα

2C 2
P

||v||2V +||q ||2Q + α

2
||g||2G

≥ 1

3
min

{
α2

aα

2C 2
P

,
1

2

}
||{v, q,g}||2V ×Q×G ,

(8.35)

from which we can infer that A is coercive on K with a coercivity constant ε= (1/3)min{α2
aα/(2C 2

P ),1/2}.
As for the continuity of the bilinear form B defined in (8.20), by Assumption 8.1 and Theorem 8.1.1 we
have for any {{u, p, f}, {v, q}} ∈ (V ×Q×G )× (V ×Q),

|B({u, p, f}, {v, q})| ≤ νmax ||u||V ||v||V +γb ||v||V ||p||Q +γb ||u||V ||q ||Q +||f||G ||v||V
≤ max{νmax ,γb ,1/

p
α}||{u, p, f}||V ×Q×G ||{v, q}||V ×Q ,

(8.36)
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the continuity constant being δ= max{νmax ,γb ,1/
p
α}. Finally, B satisfies the inf-sup condition, as

inf
{v,q}∈V ×Q

sup
{u,p,f}∈V ×Q×G

B({u, p, f}, {v, q})

||{u, p, f}||V ×Q×G ||{v, q}||V ×Q

≥ inf
{v,q}∈V ×Q

sup
{u,p,0}∈V ×Q×G

B({u, p,0}, {v, q})

||{u, p,0}||V ×Q×G ||{v, q}||V ×Q
≥β.

(8.37)

The inf-sup constant β> 0 depends on αa ,γa ,βb as follows (see [209]):

β= 1

k12 +max{k11,k22}
, (8.38)

where
k11 =α−2

a (1+β−2
b γ2

a), k22 =β−2
b γ2

ak11 +β−2
b and k12 =β−1

b γak11. (8.39)

We conclude that solving the constrained optimal control problem (8.18) is equivalent to solve the
saddle point problem (8.33), thanks to Proposition 8.2.1. The equivalence between the optimality
system (8.22) and the saddle point system (8.33) can be observed by noticing that by adding the second
equation (optimal equation) of (8.22) to its first one (adjoint equation), we obtain the first equation of
(8.33). ä

Thanks to Lemma 8.2.2 and using Theorem 8.1.1, we can conclude that the optimal solution is unique
and satisfies the a priori (boundedness) estimate:

Theorem 8.2.3 There exists a unique optimal solution to the constrained optimal control problem (8.18).
Moreover, the optimal solution {u, p, f} and the adjoint variables {ua , pa} satisfy the following stability
estimates:

||{u, p, f}||V ×Q×G ≤α1||{ud , pd }||L×Q +β1||h||H (8.40)

and
||{ua , pa}||V ×Q ≤α2||{ud , pd }||L×Q +β2||h||H (8.41)

where the constants α1,β1,α2,β2 are defined as

α1 = 1

ε
max{CP ,1}, β1 = 1

ε

ε+γ
β

CT , (8.42)

and

α2 = 1

β

(
1+ γ

ε

)
max{CP ,1}, β2 = 1

β

γ(ε+γ)

εβ
CT , (8.43)

with the constants ε,γ,β defined in Proposition 8.2.1.

8.3 Stochastic regularity

In this section, we show that under suitable assumptions for the regularity of the viscosity ν : Γ→R+
and boundary data h : Γ→ H in the stochastic space Γ, the solution {u, p, f,ua , pa} : Γ→V ×Q×G×V ×Q
can be analytically extended to a complex region that covers the stochastic space Γ. (Here and in the
following, we denote L,V ,Q,G , H as the deterministic Hilbert space corresponding to their stochastic
counterparts L ,V ,Q,G ,H , e.g., H = L2,d (∂DN ).)

Let k = (k1, . . . ,kN ) ∈NN
0 be a N -dimensional multi-index of non-negative integers, and denote k! =∏k1

i1
i1 · · ·∏kN

iN
iN , |k| = ∑N

n=1 kn , and |k|! = ∏|k|
i=1 i ; let ∂k

y {·} = ∂
k1
y1
∂

k2
y2
· · ·∂kN

yN
{·} represent the k-th order

partial derivative with respect to the parameter y = (y1, . . . , yN ). Let us also define the following
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constants for ease of notation

Cα =α1 +α2,Cβ =β1 +β2,Cα,β = max{α1 +α2,β1 +β2}, (8.44)

where α1,α2,β1,β2 are the stability constants defined in the Brezzi theorem (8.2.3).

We make the following assumption of stochastic regularity on the input data:

Assumption 8.2 For every y ∈ Γ, there exists a N -dimensional positive rate vector r = (r1, . . . ,rN ) ∈RN+
such that the k-th order derivative of the viscosity ν : Γ→ R+ and the boundary condition h : Γ→ H
satisfy

Cα,β

|∂k
yν(y)|
ν(ȳ)

≤ rk and
Cβ||∂k

y h(y)||H
Cα||{ud , pd }||L×Q +Cβ||h(y)||H

≤ |k|!rk. (8.45)

Theorem 8.3.1 Under assumption 8.2, we have the following a priori estimate for the k-th order deriva-
tive of the solution {u, p, f,ua , pa} : Γ→V ×Q ×G ×V ×Q

||∂k
y {u(y), p(y), f(y)}||V ×Q×G +||∂k

y {ua(y), pa(y)}||V ×Q

≤C (Cα||{ud , pd }||L×Q +Cβ||h(y)||H )|k|!(r r)k,
(8.46)

where r r = (r r1,r r2, . . . ,r rN ) with the constant rate r > 1/log(2), and the constant C is independent of k,
which will be provided explicitly in the proof.

Proof The semi-weak formulation of the saddle point problem (8.33) reads: find {u(y), p(y), f(y)} ∈
V ×Q ×G and {ua(y), pa(y)} ∈V ×Q such that

A
(
{u(y), p(y), f(y)}, {va , q a ,g}

)+B({va , q a ,g}, {ua(y), pa(y)}; y)

= (ud ,va)+ (pd , q a) ∀{va , q a ,g} ∈V ×Q ×G ,

B({u(y), p(y),g(y)}, {v, q}; y) = (h(y),v)∂DN ∀{v, q} ∈V ×Q,

(8.47)

where we have used the same bilinear forms A and B for ease of notation, which can be identified in
the semi-weak sense by their explicit dependence on the parameter y . Taking k-th (|k| > 0) order partial
derivative of problem (8.47) with respect to the parameter y , we obtain the following problem thanks
to the general Leibniz rule: find ∂k

y {u(y), p(y), f(y)} ∈V ×Q ×G and ∂k
y {ua(y), pa(y)} ∈V ×Q such that

A
(
∂k

y {u(y), p(y), f(y)}, {va , q a ,g}
)
+B({va , q a ,g},∂k

y {ua(y), pa(y)}; y)

=− ∑
k′∈Λ(k)

(∂k−k′
y ν(y)∇∂k′

y ua(y),∇va) ∀{va , q a ,g} ∈V ×Q ×G ,

B(∂k
y {u(y), p(y),g(y)}, {v, q}; y) = (∂k

y h(y),v)∂DN

− ∑
k′∈Λ(k)

(∂k−k′
y ν(y)∇∂k′

y u(y),∇v) ∀{v, q} ∈V ×Q,

(8.48)

where the multivariate index set Λ(k) is defined as

Λ(k) = {
k′ ∈NN

0 : k ′
n ≤ kn ,∀1 ≤ n ≤ N , and k′ 6= k

}
. (8.49)
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By the Brezzi theorem 8.2.3, the solution of problem (8.48) admits the following estimate

||∂k
y {u(y), p(y), f(y)}||V ×Q×G ≤α1

∑
k′∈Λ(k)

|∂k−k′
y ν(y)|
ν(ȳ)

||∂k′
y ua(y)||V

+β1

(
||∂k

y h(y)||H + ∑
k′∈Λ(k)

|∂k−k′
y ν(y)|
ν(ȳ)

||∂k′
y u(y)||V

)
,

||∂k
y {ua(y), pa(y)}||V ×Q ≤α2

∑
k′∈Λ(k)

|∂k−k′
y ν(y)|
ν(ȳ)

||∂k′
y ua(y)||V

+β2

(
||∂k

y h(y)||H + ∑
k′∈Λ(k)

|∂k−k′
y ν(y)|
ν(ȳ)

||∂k′
y u(y)||V

)
,

(8.50)

where the parameters α1,α2,β1,β2 are given in (8.42) and (8.43). Adding the second inequality of (8.46)
to the first one and noting that ∀k′ ∈Λ(k),

||∂k′
y ua(y)||V ≤ ||∂k′

y {ua(y), pa(y)}||V ×Q (8.51)

and
||∂k′

y u(y)||V ≤ ||∂k′
y {u(y), p(y), f(y)}||V ×Q×G , (8.52)

thus

||∂k
y {u(y), p(y), f(y)}||V ×Q×G +||∂k

y {ua(y), pa(y)}||V ×Q ≤Cβ||∂k
y h(y)||H +Cα,β∑

k′∈Λ(k)

|∂k−k′
y ν(y)|
ν(ȳ)

(
||∂k′

y {u(y), p(y), f(y)}||V ×Q×G +||∂k′
y {ua(y), pa(y)}||V ×Q

)
,

(8.53)

where the constants Cβ and Cα,β are defined in (8.44).

To prove the estimate (8.46) for a general k ∈ NN
0 , we adopt an induction argument based on the

recursive result (8.53). To start, we consider the case when |k| = 0. Applying the Brezzi theorem to the
semi-weak problem (8.47), we have{

||{u(y), p(y), f(y)}||V ×Q×G ≤α1||{ud , pd }||L×Q +β1||h(y)||H ,

||{ua(y), pa(y)}||V ×Q ≤α2||{ud , pd }||L×Q +β2||h(y)||H .
(8.54)

Adding the second inequality of (8.54) to the first one, we find

||{u(y), p(y), f(y)}||V ×Q×G +||{ua(y), pa(y)}||V ×Q

≤Cα||{ud , pd }||L×Q +Cβ||h(y)||H
= (Cα||{ud , pd }||L×Q +Cβ||h(y)||H )|k|!rk,

(8.55)

which verifies the estimate (8.46) for |k| = 0 by noting that r > 1 and C = 1.

When |k| = 1, i.e., there exists n,1 ≤ n ≤ N such that kn = 1 and kn∗ = 0 for all n∗ 6= n,1 ≤ n∗ ≤ N , we
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have by the estimates (8.53) and (8.55) and Assumption 8.2

||∂k
y {u(y), p(y), f(y)}||V ×Q×G +||∂k

y {ua(y), pa(y)}||V ×Q

= ||∂kn
y {u(y), p(y), f(y)}||V ×Q×G +||∂kn

y {ua(y), pa(y)}||V ×Q

≤Cβ||∂kn
y h(y)||H +Cα,β

|∂kn
y ν(y)|
ν(ȳ)

(
Cα||{ud , pd }||L×Q +Cβ||h(y)||H

)
≤ 2

(
Cα||{ud , pd }||L×Q +Cβ||h(y)||H

)
rn

= 2
(
Cα||{ud , pd }||L×Q +Cβ||h(y)||H

) |k|!rk,

(8.56)

which yields the estimate (8.46) for |k| = 1 by noting that r > 1 and C = 2.

As for more general k with |k| > 1, we first prove the following auxiliary estimate

||∂k
y {u(y), p(y), f(y)}||V ×Q×G +||∂k

y {ua(y), pa(y)}||V ×Q

≤ (
Cα||{ud , pd }||L×Q +Cβ||h(y)||H

)
s(|k|)rk,

(8.57)

where s(|k|) depends only on |k| according to the following recursive formula,

s(0) = 1, s(1) = 2, s(|k|) = 1+
|k|−1∑
|k′|=0

( |k|
|k′|

)
s(|k′|). (8.58)

In fact, (8.57) holds for |k| = 0 and |k| = 1 due to (8.55) and (8.56). By induction, we assume that the
stability estimate (8.57) holds for every k′ ∈Λ(k), so that (8.53) implies

||∂k
y {u(y), p(y), f(y)}||V ×Q×G +||∂k

y {ua(y), pa(y)}||V ×Q ≤Cβ||∂k
y h(y)||H

+Cα,β

∑
k′∈Λ(k)

|∂k−k′
y ν(y)|
ν(ȳ)

(
Cα||{ud , pd }||L×Q +Cβ||h(y)||H

)
s(|k′|)rk′

≤ (
Cα||{ud , pd }||L×Q +Cβ||h(y)||H

)(|k|!rk + ∑
k′∈Λ(k)

rk−k′
s(|k|′)rk′

)

= (
Cα||{ud , pd }||L×Q +Cβ||h(y)||H

)(|k|!+ |k|−1∑
|k′|=0

( |k|
|k′|

)
s(|k′|)

)
rk

= (
Cα||{ud , pd }||L×Q +Cβ||h(y)||H

)
s(|k|)rk,

(8.59)

where we have used the assumption 8.2 for the second inequality, the fact that rk = rk−k′
rk′

for any
k′ ∈Λ(k), and the following relation by summation reordering

∑
k′∈Λ(k)

s(|k|′) =
|k|−1∑
|k′|=0

( |k|
|k′|

)
s(|k′|), (8.60)

thanks to the definition of Λ(k) in (8.49). By this end, it is left to establish a suitable bound for s(|k|) in
order to prove the estimate (8.46) from the estimate (8.57). Let us denote k = |k|, k ′ = |k′|, and define
t (k) = s(k)/k !, so that from (8.58) we have

t (k) = 1

k !

(
k !+

k−1∑
k ′=0

k !

(k −k ′)!

s(k ′)
k ′!

)
= 1+

k−1∑
k ′=0

t (k ′)
(k −k ′)!

. (8.61)

Suppose that for all k, t(k) ≤ cr r k for some positive constants cr ,r to be determined, so that (8.61)
yields
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t (k)−1 =
k−1∑
k ′=0

t (k ′)
(k −k ′)!

=
k∑

k ′=1

t (k −k ′)
k ′!

≤ cr r k
k∑

k ′=1

r−k ′

k ′!
≤ cr r k

(
e

1
r −1

)
. (8.62)

On the other hand, t (k)−1 ≤ cr r k−1 from our assumption. Hence, we only require that cr r k
(
e1/r −1

)≤
cr r k −1, which can be satisfied when r > 1/log(2) and cr ≥ 1/(2−e1/r ). Therefore, s(k) = t (k)k ! ≤ cr r k k !,
implying that

s(|k|) ≤ cr r |k||k|! = cr rk
r |k|!, (8.63)

where the N -dimensional constant rate vector rr = (r, . . . ,r ). The proof is concluded by substituting
(8.63) into (8.57), noting rk

r rk = (r r)k, and setting C = cr in (8.46). ä

Let us define a complex region associated with the stability estimate (8.46) as

Σ :=
{

z ∈C : ∃y ∈ Γ such that
N∑

n=1
r rn |zn − yn | < 1

}
. (8.64)

Then we have that the solution does not only have bounded partial derivative but can be analytically
extended to the complex region Σ, as stated in the following theorem:

Theorem 8.3.2 Under assumption 8.2, the solution of the semi-weak saddle point problem (8.47) admits
an analytical extension to the region Σ defined in (8.64).

Proof Given any y ∈ Γ, the Taylor expansion of the solution of problem (8.47) {u, p, f} : Γ→V ×Q ×G
and {ua , pa} : Γ→V ×Q about y reads

{u(z), p(z), f(z)} = ∑
k∈NN

0

∂k
y {u(y), p(y), f(y)}

k!
(z − y)k (8.65)

and

{ua(z), pa(z)} = ∑
k∈NN

0

∂k
y {ua(y), pa(y)}

k!
(z − y)k, (8.66)

where (z − y)k =∏N
n=1(zn − yn)kn . By Theorem 8.3.1, we have

||{u(z), p(z), f(z)}||V ×Q×G +||{ua(z), pa(z)}||V ×Q

≤ ∑
k∈NN

0

(
||∂k

y {u(y), p(y), f(y)}||V ×Q×G +||∂k
y {ua(y), pa(y)}||V ×Q

) |z − y |k
k!

≤C (Cα||{ud , pd }||L×Q +Cβ||h(y)||H )
∑

k∈NN
0

|k|!(r r)k |z − y |k
k!

.

(8.67)

Upon reordering, we have

∑
k∈NN

0

|k|!(r r)k |z − y |k
k!

=
∞∑

k=0

∑
|k|=k

k !

k!

N∏
n=1

(r rn |zn − yn |)kn . (8.68)
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8.4. Numerical approximation

By Newton’s generalized binomial formula, we have

∞∑
k=0

∑
|k|=k

k !

k!

N∏
n=1

(r rn |zn − yn |)kn =
∞∑

k=0

(
N∑

n=1
r rn |zn − yn |

)k

, (8.69)

which converges when
∑N

n=1 r rn |zn − yn | < 1. This concludes our proof. ä

8.4 Numerical approximation

In order to solve the constrained optimization problem (8.18), we need to solve the equivalent saddle
point problem (8.33) (or, equivalently (8.25)) thanks to Lemma 8.2.2. Hereafter, we present a numerical
approximation of system (8.25) in the physical domain D by a finite element method. As for the numer-
ical approximation in the probability space, we use the stochastic collocation method as introduced in
chapter 1.

Recall the definition of the finite element space X k
h in (6.57). We define V k

h := (X k
h )d ∩V , Qm

h := X m
h ∩Q,

and G l
h := (X l

h)d∩G with k,m, l ≥ 1 as finite element approximation spaces corresponding to the Hilbert
spaces V , Q and G , respectively, defined in Section 8.3. The semi-weak finite element approximation
of the saddle point problem (8.33) reads: for any y ∈ Γ, find {uh(y), ph(y), fh(y)} ∈ V k

h ×Qm
h ×G l

h and

{ua
h(y), pa

h (y)} ∈V k
h ×Qm

h such that
A

(
{uh(y), ph(y), fh(y)}, {va

h , q a
h ,gh}

)+B({va
h , q a

h ,gh}, {ua
h(y), pa

h (y)}; y)

= (ud ,va
h)+ (pd , q a

h ) ∀{va
h , q a

h ,gh} ∈V k
h ×Qm

h ×G l
h ,

B({uh(y), ph(y),gh(y)}, {vh , qh}; y) = (h(y),vh)∂DN ∀{vh , qh} ∈V k
h ×Qm

h .

(8.70)

The well-posedness of problem (8.70) can be guaranteed by fulfilling the same conditions in Proposition
8.2.1 in finite element spaces. In particular, the compatibility condition (8.32) is satisfied in the
finite element spaces V k

h ,Qm
h ,G l

h as a consequence (as can be observed from the proof (8.37)) of

the compatibility condition (8.12) in V k
h ,Qm

h , for which we may use, e.g., the Taylor-Hood elements
(m = k −1,k ≥ 2) among many feasible choices [161], leading to stable finite element approximation
featuring optimal convergence rate. We set l = k for the control function space G l

h .

Let the finite element solution of the saddle point problem (8.70) be written as

uh(y) =
Nv∑

n=1
un(y)ψn , ph(y) =

Np∑
n=1

pn(y)ϕn , fh(y) =
Nv∑

n=1
fn(y)ψn , (8.71)

and

ua
h(y) =

Nv∑
n=1

ua
n(y)ψn , pa

h (y) =
Np∑

n=1
pa

n(y)ϕn , (8.72)

where ψn ,1 ≤ n ≤ Nv and ϕn ,1 ≤ n ≤ Np are the bases of the finite element spaces V k
h and Qk

h ,

respectively. Note that the bases of V k
h and G l

h are the same when k = l . Corresponding to the matrix
operators defined in (8.24), the finite element mass matrices Mv,h (note that Mg ,h = Mc,h = Mv,h when
k = l ) and Mp,h are obtained as

(Mv,h)mn = (ψn ,ψm),1 ≤ m,n ≤ Nv ; (Mp,h)mn = (ϕn ,ϕm),1 ≤ m,n ≤ Np , (8.73)
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and the mass matrix for Neumann boundary condition is given by

(Mn,h)mn = (ψm ,ψn)∂DN ,1 ≤ m,n ≤ Nv . (8.74)

The stiffness matrix Ay
h is obtained as

(Ay
h)mn = a(ψn ,ψm ; y),1 ≤ m,n ≤ Nv , (8.75)

and the matrix B y
h corresponding to the compatibility condition is written as

(Bh)mn = b(ψm ,ϕn),1 ≤ m ≤ Nv ,1 ≤ n ≤ Np . (8.76)

Let Uh(y) = (u1(y), . . . ,uNv (y))T represent the coefficient vector for the finite element function uh(y),
and Ph(y), Fh(y), U a

h (y), P a
h (y) the coefficient vectors for the functions ph(y), fh(y), ua

h(y), and Ud ,h ,
Pd ,h , Hh(y) the values of ud , pd , h(y) at the finite element nodes. To this end, the algebraic formulation
of problem (8.70) can be written via the optimality operator system (8.25) as

Mv,h 0 0 Ay
h B T

h
0 Mp,h 0 Bh 0
0 0 αMg ,h −M T

c,h 0

Ay
h B T

h −Mc,h 0 0
Bh 0 0 0 0




Uh(y)
Ph(y)
Fh(y)
U a

h (y)
P a

h (y)

=


Mv,hUd ,h

Mp,hPd ,h

0
Mn,h Hh(y)

0

 . (8.77)

The matrix of the linear system (8.77) becomes ill-conditioned with large condition number when h
or α is very small, which makes it unsuitable for direct solve. Alternatively, we seek the solution by
MINRES iteration with the help of the following block diagonal preconditioner [185, 169] (which share
similar structure as (7.25) in chapter 7),

P (y) =
 M̂s,h 0 0

0 αM̂g ,h 0
0 0 K̂ y

s,h M−1
s,h(K̂ y

s,h)T

 . (8.78)

The mass matrix Ms,h and the saddle point matrix K y
s,h corresponding to the Stokes problem (8.2) in

deterministic setting are defined as

Ms,h =
(

Mv,h 0
0 Mp,h

)
and K y

s,h =
(

Ay
h B T

h
Bh 0

)
, (8.79)

where the matrices M̂s,h , M̂g ,h and K̂ y
s,h can be regarded as convenient approximations of Ms,h , Mg ,h

and K y
s,h obtained by using suitable iteration methods [144, 169], e.g., symmetric Gauss-Seidel iteration

for M̂s,h and M̂g ,h , and inexact Uzawa iteration for K̂ y
s,h .

8.5 Multilevel and weighted reduced basis method

To solve a full system (8.77) at one sample y ∈ Γ is very expensive when the number of degrees of freedom
of the finite element approximation is large. The task becomes prohibitive when the dimension of
the probability space Γ is so high that a large number of samples are necessary to be used in order to
obtain accurate statistics of interest. To circumvent this computational obstacle, we adopt a reduced
basis method [49, 66, 142, 143] and propose a new algorithm featuring multilevel greedy algorithm
and weighted a posteriori error bound. The crucial consideration is that the optimal solution of the
constrained optimization problem (8.18) resides in a low-dimensional manifold, despite the fact that
the random inputs live in high-dimensional probability space.
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8.5.1 Reduced basis approximation

The idea behind reduced basis approximation is to take “snapshots" - that is high fidelity solutions of
the underlying PDE model - as bases and then approximate the solution at a new sample by Galerkin
projection on the pre-selected snapshots [178, 49]. Specific to the finite element problem (8.77),
the associated reduced basis problem can be formulated as: for any y ∈ Γ, find {ur (y), pr (y), fr (y)} ∈
VNr ×QNr ×GNr and {ua

r (y), pa
r (y)} ∈VNr ×QNr such that

A
(
{ur (y), pr (y), fr (y)}, {va

r , q a
r ,gr }

)+B({va
r , q a

r ,gr }, {ua
r (y), pa

r (y)}; y)

= (ud ,va
r )+ (pd , q a

r ) ∀{va
r , q a

r ,gr } ∈VNr ×QNr ×GNr ,

B({ur (y), pr (y),gr (y)}, {vr , qr }; y) = (h(y),vr )∂DN ∀{vr , qr } ∈VNr ×QNr ,

(8.80)

where VNr ,QNr ,GNr are reduced basis spaces constructed from the snapshots at the pre-selected
samples y1, . . . , y Nr . More in detail, GNr is constructed by

GNr = span{fh(yn),1 ≤ n ≤ Nr }. (8.81)

As for QNr , we take the union of the state and adjoint snapshots of pressure in order to guarantee the
approximate stability in the reduced basis space [144, 143], written as

QNr =Q s
Nr

∪Qa
Nr

= span{ph(yn), pa
h (yn),1 ≤ n ≤ Nr }. (8.82)

As for VNr , a simple union of the state and adjoint snapshots of velocity is not sufficient to satisfy the
compatibility condition (8.32) in the reduced basis spaces. To overcome this difficulty, the reduced
basis velocity space can be enriched by introducing the supremizer operator T : Qm

h →V k
h [180, 177],

(T qh ,vh)A = b(vh , qh) ∀v ∈V k
h , (8.83)

where the A-scalar product is defined as

(u,v)A = a(u,v; ȳ) ∀u,v ∈V , (8.84)

being ȳ ∈ Γ a reference value, for instance, the center of Γ. Then, we construct the reduced basis velocity
space VNr as the union of state and adjoint velocity snapshots enriched by pressure supremizers

VNr =V s
Nr

∪V a
Nr

= span{uh(yn),T ph(yn),ua
h(yn),T pa

h (yn),1 ≤ n ≤ Nr }. (8.85)

It can be proven [177] that the compatibility condition (8.12) is satisfied in V s
Nr

and V a
Nr

with βNr
b ≥βh

b ,

being βNr
b and βh

b the compatibility constants of the bilinear form b of (8.12) in the reduced basis space
and finite element space, respectively. Consequently, the compatibility condition (8.32) is satisfied in
VNr following the proof of (8.37), with the compatibility constants βNr ≥βh corresponding to that in
(8.38). Following the argument in the proof of Lemma 8.2.2, it is straightforward to check that the other
conditions in Proposition 8.2.1 are also satisfied in the reduced basis space VNr ×QNr ×GNr . Hence,
there exists a unique reduced basis solution to problem (8.80).

For the sake of algebraic stability, we perform Gram-Schmidt orthonormalization [177] on the reduced
basis spaces VNr , QNr and GNr , obtaining the orthonormal bases such that VNr = span{ζv

n ,1 ≤ n ≤ 4Nr },
QNr = span{ζp

n ,1 ≤ n ≤ 2Nr } and GNr = span{ζg
n ,1 ≤ n ≤ Nr }. Finally, at any y ∈ Γ, we project the finite

element solution {uh(y), ph(y), fh(y)} ∈V k
h ×Qm

h ×G l
h into the reduced basis space VNr ×QNr ×GNr as

uh(y) =
4Nr∑
n=1

un(y)ζv
n , ph(y) =

2Nr∑
n=1

pn(y)ζp
n , fh(y) =

Nr∑
n=1

fn(y)ζg
n , (8.86)
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and the adjoint variables {ua
h(y), pa

h (y)} ∈V k
h ×Qm

h into VNr ×QNr as

ua
h(y) =

4Nr∑
n=1

ua
n(y)ζv

n , pa
h (y) =

2Nr∑
n=1

pa
n(y)ζp

n . (8.87)

Let Ur (y) = (u1(y), . . . ,u4Nr (y)) denote the coefficient vector of the reduced basis approximation, and
define Pr (y),Fr (y),U a

r (y) and P a
r (y) similarly, corresponding to those of the finite element approx-

imation. Let Z v
Nr

= (ζv
1 , . . . ,ζv

4Nr
)T , Z

p
Nr

= (ζp
1 , . . . ,ζp

2Nr
)T and Z

g
Nr

= (ζg
1 , . . . ,ζg

Nr
)T , by which we de-

fine the reduced basis mass matrices as follows: Mv,r = (Z v
Nr

)T Mv,hZ v
Nr

, Mp,r = (Z p
Nr

)T Mp,hZ
p
Nr

,

Mg ,r = (Z g
Nr

)T Mg ,hZ
g
Nr

, Mc,r = (Z v
Nr

)T Mc,hZ
g
Nr

, Mn,r = (Z v
Nr

)T Mn,hZ v
Nr

, and the Stokes matrices Ay
r

and Br as Ay
r = (Z v

Nr
)T Ay

hZ v
Nr

, and Br = (Z p
Nr

)T BhZ v
Nr

. The reduced basis data vector Ud ,r ,Pd ,r , Hr (y)

are defined as Ud ,r = (Z v
Nr

)T Ud ,h ,Pd ,r = (Z p
Nr

)T Pd ,h , Hr (y) = (Z v
Nr

)T Hh(y). By projecting the finite
element system (8.77) into the reduced basis spaces, we obtain the algebraic formulation of the reduced
basis problem corresponding to the finite element algebraic system (8.77) as

Mv,r 0 0 Ay
r B T

r
0 Mp,r 0 Br 0
0 0 αMg ,r −M T

c,r 0
Ay

r B T
r −Mc,r 0 0

Br 0 0 0 0




Ur (y)
Pr (y)
Fr (y)
U a

r (y)
P a

r (y)

=


Mv,r Ud ,r

Mp,r Pd ,r

0
Mn,r Hr (y)

0

 , (8.88)

which is a 13Nr ×13Nr linear system, whose numerical solution costs far less computational effort than
solving the finite element system (8.77) thanks to the fact that Nr is much smaller than the number of
degrees of freedom of the finite element discretization.

8.5.2 A multilevel greedy algorithm

The efficiency of the reduced basis approximation depends critically on the choice of reduced bases, and
thus on the samples y1, . . . , y Nr selected in the construction of the reduced basis spaces VNr ,QNr ,GNr .
In order to choose the most representative samples, we propose a multilevel greedy algorithm based
on the sparse grid construction for stochastic collocation method and reduce the computational cost
of the construction of the reduced basis spaces.

The multilevel greedy algorithm for construction of the reduced basis space is presented in Algorithm
10.

To begin, we choose the first sample from the zeroth level of the sparse grid, i.e., y1 ∈ H(q, N ) (or
Hα(q, N ) for anisotropic sparse grid) with q −N = 0, where only one collocation node is available. We
solve the finite element problem (8.77) at y1 and construct the reduced basis space V1,Q1,G1 according
to (8.81), (8.82) and (8.85).

Let Er denote the reduced basis approximation error defined as

Er (y) := ||uh −ur ||V, (8.89)

where we denote the Hilbert space V =V ×Q×G×V ×Q, the solution u(y) := {u(y), p(y), f(y),ua(y), pa(y)}
with finite element approximation uh and reduced basis approximation ur . At each of the level
q −N = l , l = 1,2, . . . ,L with prescribed L ∈N+, we first construct the set of collocation nodes H (q, N ) of
the sparse grid and then choose the “most representative" sample y Nr +1 by minimizing Er (y) over the
new collocation nodes in the current level of the sparse grid, i.e.

y Nr +1 = arg max
y∈H(q,N )\H(q−1,N )

Er (y). (8.90)
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Note that in the hierarchical sparse grid with nested collocation nodes, we have H (q−1, N ) ⊂ H (q, N ), q ≥
N +1, which provides further computational efficiency since there is no need to evaluate the error at
the collocation nodes in the previous level. After updating the reduced basis spaces VNr , QNr and GNr

by the finite element solution of problem (8.77) at y Nr +1, we set Nr +1 → Nr and proceed to choose the
next sample until the error Er (y Nr +1) is smaller than a prescribed tolerance εtol . Then we move to the
next level q −N = l +1. However, in order to compute the reduced basis approximation error (8.89), we
have to solve the full finite element system (8.77), which is out of reach. Instead of computing an exact
reduced basis approximation error Er (y), we seek to evaluate a cheap, sharp and reliable error bound
4r (y) depending on {ur (y), pr (y), fr (y),ua

r (y), pa
r (y)} at y ∈ Γ such that

c4r (y) ≤ Er (y) ≤4r (y) (8.91)

with the constant c as close to 1 as possible.

Algorithm 10 A multilevel greedy algorithm

1: procedure INITIALIZATION

2: Set maximum sparse grid level L, tolerance εtol , q = N , take y1 ∈ H(q, N );
3: Solve (8.77), construct the initial reduced basis spaces V1, Q1, G1, set Nr = 1.
4: end procedure

5: procedure CONSTRUCTION

6: for q = N +1, . . . , N +L do
7: Construct the set of collocation nodes H(q, N ), take H(q, N ) \ H(q −1, N );
8: Solve (8.88) to obtain y Nr +1 = argmaxy∈H(q,N )\H(q−1,N )4r (y);
9: while 4r (y Nr +1) ≥ εtol do

10: Set Nr ← Nr +1;
11: Solve (8.77) at y Nr , update the reduced basis spaces VNr ,QNr ,GNr ;
12: Solve (8.88) to obtain y Nr +1 = argmaxy∈H(q,N )\H(q−1,N )4r (y).
13: end while
14: end for
15: end procedure

8.5.3 A weighted a posteriori error bound

In order to efficiently evaluate a sharp and reliable bound for the reduced basis approximation error,
we carry out a residual-based a posteriori error estimate. At first, we reformulate the semi-weak saddle
point problem (8.47) as an elliptic problem: for any y ∈ Γ, find u(y) ∈ V

B(u(y),v; y) = F(v; y) ∀v ∈ V, (8.92)

where the bilinear form B(·, ·; y) : V×V →R is given by

B(u(y),v; y) =A
(
{u(y), p(y), f(y)}, {va , q a ,g}

)
+B({va , q a ,g}, {ua(y), pa(y)}; y)+B({u(y), p(y),g(y)}, {v, q}; y),

(8.93)

and the linear functional
F(v; y) = (ud ,va)+ (pd , q a)+ (h(y),v)∂DN . (8.94)

The bilinear form B(·, ·; y) : V×V →R can be proven to be continuous and weakly coercive [209] since
the bilinear forms A ,B satisfy the conditions in Proposition 8.2.1, yielding the continuous and weak
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coercivity constants γc (y) and βc (y) defined as

γc (y) := B(u,v; y)

||u||V||v||V
<∞ and βc (y) := inf

v∈V
sup
u∈V

B(u,v; y)

||u||V||v||V
> 0. (8.95)

Therefore, by Babuška theorem [209] we have the following stability estimate

||u(y)||V ≤ ||F(y)||V′

βc (y)
, (8.96)

where V′ is the dual space of V. By the construction of the finite element approximation in section 8.4
and the reduced basis approximation in section 8.5.1, we have that the relation (8.95) holds in both
finite element space Vh =Vh ×Qh ×Gh ×Vh ×Qh and reduced basis space Vr =Vr ×Qr ×Gr ×Vr ×Qr

with constants γNr
c (y) ≤ γh

c (y) ≤ γc (y) and β
Nr
c (y) ≥ βh

c (y) ≥ βc (y). Moreover, the stability estimate
(8.96) holds for the finite element solution and the reduced basis solution with the constant βh

c (y) and

β
Nr
c (y), respectively. Let the reduced basis approximation error be defined as e(y) = uh(y)−ur (y). To

seek an error bound for e(y), we consider the residual

R(vh ; y) := F(vh ; y)−B(ur (y),vh ; y) vh ∈ Vh . (8.97)

Noting that F(vh ; y) = B(uh ,vh ; y),∀vh ∈ Vh , we have from (8.97)

B(e(y),vh ; y) = R(vh ; y) vh ∈ Vh . (8.98)

By the stability estimate (8.96) in the finite element space, we obtain

||e(y)||Vh ≤
||R(y)||V′

h

βh
c (y)

=: 4r (y). (8.99)

Taking the probability density function ρ : Γ→R+ into account, we replace Er (y) in (8.90) by a weighted
a posteriori error bound [49] 4ρ

r (y) =√
ρ(y)4r (y). The error bound 4ρ

r (y) assigns high importance at
the sample with big probability density, leading to more efficient (using less bases to achieve the same
accuracy) evaluation of statistical moments of interest; see [49] for proof and illustrative examples. In
order to evaluate the error bound (8.99), we need to compute both the constant βh

c (y) and the norm
of the residual ||R||V′

h
. For the former, we may apply successive constraint method [101] to compute

a lower bound βLB
c (y) ≤βh

c (y) (or a surrogate lower bound [143]) with cheap computational cost, or
simply use a uniform lower bound βLB

c ≤ βh
c (y) evaluated at the minimum random viscosity νmi n

provided that the random coefficient ν(y) varies in a relatively small range. As for the latter, we turn to
an offline-online decomposition procedure in order to reduce computational effort in the many-query
context.

8.5.4 Offline-online decomposition

The offline-online decomposition takes advantage of the affine structure of the data, as given in
examples (8.15) and (8.16). If the data are provided in a non-affine structure, e.g., log-normal Karhunen–
Loève expansion [149], we may apply a weighted empirical interpolation method to obtain an affine
decomposition of the data function at first; see [48] for details and error analysis. Let us assume that
the random viscosity and the Neumann boundary condition undergoes, after possibly performing
empirical interpolation [11, 48], the following affine structure

ν(y) =
Nν∑

n=1
νnθ

ν
n(y) and h(x, y) =

Nh∑
n=1

hn(x)θh
n (y) ∀(x, y) ∈ ∂DN ×Γ, (8.100)
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where θνn ,1 ≤ n ≤ Nν and θh
n ,1 ≤ n ≤ Nh are functions of the random vector y ∈ Γ. Let the matrix Ay

r
and vector Hr (y) in (8.88) be assembled as

Ay
r =

Nν∑
n=1

An
r θ

ν
n(y) and Hr (y) =

Nh∑
n=1

H n
r θ

h
n (y), (8.101)

where the deterministic reduced basis matrices An
r ,1 ≤ n ≤ Nν are defined as

An
r = (Z v

Nr
)T An

hZ v
Nr

with (An
h )i j = (νn∇ψi ,∇ψ j ),1 ≤ i , j ≤ Nv , (8.102)

and the deterministic reduced basis vectors H n
r ,1 ≤ n ≤ Nh are defined as

H n
r = (Z v

Nr
)T H n

h with (H n
h )i = (hn ,ψi )∂DN ,1 ≤ i ≤ Nv . (8.103)

Accordingly, we decompose the global matrix of the linear system (8.88) as

B0
r =


Mv,r 0 0 0 B T

r
0 Mp,r 0 Br 0
0 0 αMg ,r −M T

c,r 0
0 B T

r −Mc,r 0 0
Br 0 0 0 0

 (8.104)

and Bn
r ,1 ≤ n ≤ Nν with only the blocks (4,1), (1,4) as An

r the other blocks zero. Similarly, we decompose
the vector on the right hand side of the linear system (8.88) as F0

r = (Mv,r Ud ,r , Mp,r Pd ,r ,0,0,0)T and
Fn

r = (0,0,0, Mn,r H n
r ,0)T ,1 ≤ n ≤ Nh . Thus, the algebraic formulation of the problem (8.92) can be

written as: for any y ∈ Γ, find Ur (y) := (Ur (y),Pr (y),Fr (y),U a
r (y),P a

r (y))T ∈R13Nr such that(
Nν∑

n=0
θνn(y)Bn

r

)
Ur (y) =

Nh∑
n=0

θh
n (y)Fn

r . (8.105)

Since Bn
r ,1 ≤ n ≤ Nν and Fn

r ,1 ≤ n ≤ Nh are independent of y , we can assemble them in offline stage.
Given any y ∈ Γ, the reduced basis solution can be obtained by solving the linear system (8.105) with at
most O(Nv +Nh) operations for assembling and O((13Nr )3) operations for solve.

As for the evaluation of the residual norm ||R(y)||V′
h

, we first seek the Riesz representation [165] of R(y)

as ê(y) ∈ Vh such that
(ê(y),vh)Vh = R(vh ; y) ∀vh ∈ Vh , (8.106)

so that we have ||R(y)||V′
h
= ||ê(y)||Vh . Let Bn : Vh ×Vh → R denote the bilinear form defined in the

finite element space corresponding to the matrix Bn
r ,0 ≤ n ≤ Nν and Fn : Vh →R the linear functional

corresponding to the vector Fn
r ,0 ≤ n ≤ Nh , then the residual defined in (8.97) can be decomposed as

R(vh ; y) =
Nh∑

n=0
θh

n (y)Fn(vh)−
Nν∑

n=0
θνn(y)Bn(ur ,vh) ∀vh ∈ Vh . (8.107)

By Riesz representation theorem, we have that there exist fn ∈ Vh ,0 ≤ n ≤ Nh and bk
n ∈ Vh ,0 ≤ n ≤

Nν,1 ≤ k ≤ 13Nr such that

(fn ,vh)Vh = Fn(vh) and (bk
n ,vh)Vh =−Bn(uk

h ,vh) ∀vh ∈ Vh , (8.108)

where we have set the reduced basis solution as uk
h = (ψv

k ,0,0,0,0), 1 ≤ k ≤ 4Nr , uk
h = (0,ϕp

k−4Nr
,0,0,0),

4Nr < k ≤ 6Nr , uk
h = (0,0,ψg

k−6Nr
,0,0), 6Nr < k ≤ 7Nr , uk

h = (0,0,0,ψv
k−7Nr

,0), 7Nr < k ≤ 11Nr , uk
h =

(0,0,0,0,ϕp
k−11Nr

), 11Nr < k ≤ 13Nr , being 0 the vector with length Nv , Np , Nv , Nv , Np at the first to
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fifth argument. Finally, we obtain the norm ||ê(y)||Vh as

||ê(y)||2Vh
=

Nh∑
n=1

Nh∑
n′=1

θh
n (y)(fn , fn′ )Vhθ

h
n′ (y)

+2
Nh∑

n=1

Nν∑
n′=1

13Nr∑
k=1

θh
n (y)(fn ,bk

n′ )Vh (ur )kθ
ν
n′ (y)

+
Nh∑

n=1

Nν∑
n′=1

13Nr∑
k=1

13Nr∑
k ′=1

θνn(y)(ur )k (bk
n ,bk ′

n′ )Vh (ur )k ′θνn′ (y),

(8.109)

where (fn , fn′ )Vh ,1 ≤ n,n′ ≤ Nh , (fn ,bk
n′ )Vh ,1 ≤ n ≤ Nh ,1 ≤ n′ ≤ Nν,1 ≤ k ≤ 13Nr and (bk

n ,bk ′
n′ )Vh ,1 ≤

n,n′ ≤ Nν,1 ≤ k,k ′ ≤ 13Nr are independent of y and can be computed and stored in the offline stage,
while in the online stage, we only need to assemble the formula (8.109) by O((Nh+13Nr Nν)2) operations.
Recall that Nh and Nν are the number of affine terms of the random Neumann boundary condition
and the viscosity, and Nr is the number of selected samples in the construction of reduced basis space,
leading to fast evaluation of the error bound as they are small.

8.6 Error estimates

The global error of the numerical approximation presented in sections 8.4 and 8.5 comprises three com-
ponents: the stochastic collocation approximation error [8, 149, 148], the finite element approximation
error [165, 161], and the weighted reduced basis approximation error [20, 50, 49], which have been
analyzed individually in different contexts. The global error estimate for the Stokes optimal control
is similar to that for the elliptic optimal control presented in the last chapter. In the following, for
simplicity we provide the finite element approximation error and a global error estimate in the context
of the stochastic Stokes optimal control problem (8.18). The integration error E e

s by the stochastic
collocation method can be estimated the same as Lemmas 6.3.2 and 6.3.3 of chapter 6, and reduced
basis error Er can be bounded the same as in Proposition 1.4.5 of chapter 1 or in Theorem 2.2.5 of
chapter 2 and thus omitted here.

8.6.1 Finite element approximation error

Recall that the bilinear forms A and B of the finite element problem (8.70) satisfy the conditions of
Proposition 8.2.1 in the finite element space V k

h ,Qm
h ,G l

h with the choice of Taylor-Hood elements. More
explicitly, the finite element constants corresponding to those stated in the conditions of Proposition
8.2.1 can be bounded by

γh ≤ 1,εh ≥ 1

3
min

{
α2

aα

2C 2
P

,
1

2

}
,δh ≤ max{νmax ,γb ,1/

p
α},βh ≥β, (8.110)

being the constants αa ,α,CP ,νmax ,γb ,β presented in Lemma 8.2.2. Therefore, by Brezzi theorem
[165, 161], we have the following estimate for the error Eh of the finite element approximation to
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solution of the semi-weak saddle point problem (8.47):

Eh(y) := ||u(y)−uh(y)||V
≤C h

1 inf
{vh ,qh ,gh }∈V k

h ×Qm
h ×G l

h

||{u(y), p(y), f(y)}− {vh , qh ,gh}||V ×Q×G

+C h
2 inf

{va
h ,qa

h }∈V k
h ×Qm

h

||{ua(y), pa(y)}− {va
h , q a

h }||V ×Q

=O(hk )
(
C h

1 (||u(y)||k+1 +||p(y)||k +
p
α||f(y)||k+1)

)
+O(hk )

(
C h

2 (||ua(y)||k+1 +||pa(y)||k )
)

,

(8.111)

where we have chosen m = k −1 and l = k; the constants C h
1 and C h

2 are given by

C h
1 =

(
1+ γh

εh

)(
1+ γh

βh

)(
1+ δh

βh

)
and C h

2 = 1+ δh

εh
+ δh

βh
+ γhδh

εhβh
. (8.112)

Remark 8.6.1 Equivalently, we may formulate the semi-weak saddle point finite element problem (8.70)
as a weakly coercive elliptic problem and apply Babuška theorem to obtain similar finite element error
estimate.

8.6.2 Global error estimate

With the individual error estimate presented above, we obtain the global error estimate in the following
theorem.

Theorem 8.6.1 Under Assumptions 8.1, 8.2, for any given y ∈ Γ, by finite element approximation and
reduced basis approximation we have

||u(y)−ur (y)||V ≤ Eh(y)+Er (y). (8.113)

Moreover, the error for evaluation of the expectation using stochastic collocation method, finite element
method and weighted reduced basis method can be bounded by

||E[u]−E[ur ]||V ≤ E e
s + max

y∈Hα(q,N )
Eh(y)+ max

y∈Hα(q,N )
Er (y), (8.114)

where α= 1 when using the isotropic sparse grid stochastic collocation method.

Proof The proof is straightforward by applying triangular inequality as follows:

||u(y)−ur (y)||V ≤ ||u(y)−uh(y)||V +||uh(y)−ur (y)||V ≤ Eh(y)+Er (y). (8.115)

Similarly, we have the error estimate for the expectation of the optimal solution as

||E[u]−E[ur ]||V ≤ ||u−ur ||L2
ρ (Γ;V)

≤ ||u−us ||L2
ρ (Γ;V) +||us −uh ||L2

ρ (Γ;V) +||uh −ur ||L2
ρ (Γ;V)

≤ E e
s + max

y∈Hα(q,N )
Eh(y)+ max

y∈Hα(q,N )
Er (y).

(8.116)

We remark that Er (y) is bounded by 4r (y), explicitly computed at y ∈ Hα(q, N ). ä
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8.7 Numerical experiments

In this section, we perform two numerical experiments in testing reduced basis approximation error
and stochastic collocation approximation error with sparse grid techniques in isotropic and anisotropic
settings. The aim is to demonstrate the efficiency of the proposed reduced basis method in solving con-
strained optimization problem (8.18). Numerical examples for verifying finite element approximation
error in a similar context can be found in [47].

We consider a two dimensional physical domain D = (0,1)2. The observation data is set as in [92],
ud = (ud1,ud2) and pd = 0, where ud1(x) = ∂x2 (φ(x1)φ(x2))/10 and ud2(x) =−∂x1 (φ(x1)φ(x2))/10 with
φ(ξ) = (1− cos(0.8πξ))(1− ξ)2,ξ ∈ [0,1]. The random viscosity ν is given as in (8.15) which can be
transformed as

ν(yν) = 1

2

Nν∑
n=0

νn + 1

2Nν

Nν∑
n=1

(νn −ν0)yνn , (8.117)

where yν ∈ Γν = [−1,1]Nν corresponding to Nν uniformly distributed random variables. We setν0 = 0.01,
νn = ν0/2n and use Nν = 3 for both the isotropic and anisotropic tests without loss of generality. Homo-
geneous Dirichlet boundary condition is imposed on the upper, lower and left edge. Random Neumann
boundary condition is imposed on the right edge as given in (8.16) on the Neumann boundary, more
explicitly, we set h(x, yh) = (h1(x2, yh),0) with

h1(x2, yh) = 1

10

((p
πL

2

)1/2

yh
1 +

Nh∑
n=1

√
λn

(
sin(nπx2)yh

2n +cos(nπx2)yh
2n+1

))
, (8.118)

which comes from truncation of Karhunen–Loève expansion of a Gauss covariance field with correlation
length L = 1/16 [149]; the eigenvalues λn ,1 ≤ n ≤ Nh are given by

λn =p
πL exp

(−(nπL)2/4
)

; (8.119)

yh
n ,1 ≤ n ≤ 2Nh +1 are uncorrelated with zero mean and unit variance, which are independent of yν.

Therefore, the random inputs are y = (yν, yh), living in N = Nν+2Nh +1 dimensional probability space.
As for the specification of the finite element approximation, we use P1 element for pressure space and
P2 element for velocity and control space with 1342 elements in total.

8.7.1 Isotropic case

In the first experiment, we set yh
n ,1 ≤ n ≤ 2Nh + 1 with Nh = 3 as independent standard normal

random variables (thus the total stochastic dimension N = 10), and apply isotropic sparse grid
stochastic collocation method with Gauss-Legendre abscissa for the collocation of yν and Gauss-
Hermite abscissa for the collocation of yh . In the multilevel greedy algorithm 10, we set the tolerance
εtol = 10−1,10−2,10−3,10−4,10−5, and the interpolation level q −N = 0,1,2,3 in the isotropic sparse
grid Smolyak formula (1.15). A uniformly lower bound of the inf-sup constant βLB

c = 0.1436 is used
since the fluctuation or variance of ν is small compared to its mean value. The results for reduced
basis construction is reported in Table 8.1. The number of collocation nodes in each level is shown in
the second row; the number of selected samples as new bases in each level and the samples whose
weighted error bound 4ρ

r is larger than the tolerance εtol , thus potential as new bases are shown in
the 3rd-6th lines, from which we can see that the number of reduced bases is much less than that of
collocation nodes. For example, with the smallest tolerance εtol = 10−5, we only need 1,10,22,14 new
bases in each level, respectively, resulting in 47 bases in total out of 1581 collocation nodes. Since the
number of samples as potential bases is also small (216 in total), the computational cost for sample
selection in the construction of reduced basis space is negligible compared to the full solve of the finite
element problem (8.77), especially for large scale problems featuring a small mesh size h.
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Table 8.1: The number of samples selected by multilevel greedy algorithm 10 with different tolerance
εtol in each of the sparse grid level; the value in (·) reports the number of samples potential as new
bases.

tolerance \ level q −N = 0 q −N = 1 q −N = 2 q −N = 3 in total
# nodes 1 21 221 1581 1581

εtol = 10−1 1 (1) 6 (14) 1 (21) 0 (0) 8 (36)
εtol = 10−2 1 (1) 8 (20) 7 (80) 4 (28) 20 (129)
εtol = 10−3 1 (1) 9 (20) 13 (86) 5 (62) 28 (169)
εtol = 10−4 1 (1) 9 (20) 18 (90) 9 (67) 37 (178)
εtol = 10−5 1 (1) 10 (20) 22 (90) 14 (105) 47 (216)

Fig. 8.1 (left) displays the weighted error bound 4ρ
r and the true error of the reduced basis approxi-

mation in each level of the construction, from which we can see that the error bound is accurate and
relatively sharp, providing good estimate of the true error with cheap computation. On the right of
Fig. 8.1 we plot the expectation error (in L2

ρ(Γ;V) norm) of the reduced basis approximation using
quadrature formula based on sparse grid of different levels, where the expectation error is defined as

exp. error = |||u||L2
ρ (Γ;V) −||us,r ||L2

ρ (Γ;V)| = |(E[||u||2V])1/2 − (E[||us,r ||2V])1/2|. (8.120)

Note that the “true" value of ||u||L2
ρ (Γ;V) is approximated by the finite element solution uh computed

at the deepest level q −N = 3. From this figure, different accuracy with different εtol can be observed,
implying that decreasing tolerance for the construction of the reduced basis space results in more
accurate evaluation of statistics of the solution. How to balance the reduced basis approximation
error (by choice of εtol ) and the sparse grid quadrature error (by choice of q −N ) is subject to further
investigation.

0 5 10 15 20 25 30 35 40 45
10

−4

10
−3

10
−2

10
−1

10
0

10
1

 Nr

 p
o

in
tw

is
e

 e
rr

o
r

 

 

 error bound

 true error

10
0

10
1

10
2

10
3

10
4

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

 Nq

 e
x
p

e
c
ta

ti
o

n
 e

rr
o

r

 

 

 1E−1

 1E−2

 1E−3

 1E−4

 1E−5

Figure 8.1: Left, weighted error bound 4ρ
r and true error of the reduced basis approximation at the

selected samples; right, expectation error at different levels with different tolerance εtol .

8.7.2 Anisotropic case

In the second experiment, we solve the constrained optimization problem (8.18) in high-dimensional
probability space by combination of the anisotropic sparse grid techniques and the multilevel weighted
reduced basis method. We set yh

n ,1 ≤ n ≤ Nh in (8.118) with Nh = 3,8,13,18,48 as uniformly distributed
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random variables, thus leading to N = 10,20,30,40,100 stochastic dimensions in total. The weight
parameter α is chosen a priori according to [148] in the following conservative way

αn = 1

2
log

(
1+ 2τn

|Γn |
)

, with τn = 1

4
√
λn

, 1 ≤ n ≤ Nh . (8.121)

We remark that for a more general random field where α is difficult to obtain from a priori estimate, we
may use a posteriori estimate by fitting an empirical convergence rate in each dimension [148], or use
dimension-adaptive approach which determines the weight automatically [79]. The sparse grid level is
chosen as q −N = 0,1,2,3,4. As for the tolerance for the construction of the reduced basis space, we
use εtol = 10−5. The results for the construction of the reduced basis space with different dimension N
and different sparse grid level q −N (results for q −N = 0 are the same as in Table 8.1, thus omitted
here) are presented in Table 8.2. Similar conclusion as for results in the isotropic case in Table 8.1 can
be drawn for those in the anisotropic case in Table 8.2. For example, when N = 40, only 97 samples out
of 40479 are used for the construction of the reduced basis space, thus resulting in only 97 full solve the
finite element problem (8.77) instead of 40479, which considerably reduces the total computational
cost. This observation holds even in the 100 dimensional case. Moreover, the number of nodes of
sparse grid and the number of reduced bases increase as the dimension increase when N is small; see
the change from 10 to 40. However, they stay almost the same when N becomes large; see the change
from 40 to 100, which indicates that out of 100 random variables, the first 40 play the most important
role on the impact of the stochastic optimal solution when we set sparse grid level at q −N = 4.

Table 8.2: The number of samples selected by multilevel greedy algorithm 10 in each of the sparse grid
level with different dimensions; the value in (·) reports the number of samples potential as new bases.

dimension \ level q −N = 1 q −N = 2 q −N = 3 q −N = 4 in total

N = 10 5 (10) 13 (40) 19 (85) 10 (100) 48 (236)
# nodes 11 71 401 2141 2141
N = 20 5 (10) 21 (60) 36 (205) 15 (204) 78 (480)

# nodes 11 91 1021 12121 12121
N = 40 5 (10) 25 (92) 47 (397) 19 (432) 97 (932)

# nodes 11 123 2381 40769 40769
N = 100 5 (10) 25 (92) 47 (397) 19 (436) 97 (936)
# nodes 11 123 2393 41349 41349
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Figure 8.2: Weighted error bound 4ρ
r and true error of the reduced basis approximation at the selected

samples with N = 100 (left); expectation error of different stochastic dimensions (right).
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8.8. Summary

On the left of Fig. 8.2, we plot the weighted a posteriori error bound 4ρ
r and the true error of the reduced

basis approximation at each sparse grid level with stochastic dimension N = 100. We can observe
that the error bound is indeed accurate and sharp for the high-dimensional case, especially when the
reduced basis space becomes large. The right of Fig. 8.2 depicts the expectation error at different sparse
grid level. We show the expectation error with the “true" expectation for each stochastic dimension
computed the same as in the isotropic sparse grid case, from which we can see that the expectation
error converges with an algebraic rate that verifies the error estimate in section 8.6. Moreover, the error
becomes very small at around 4×104 nodes for the 100 dimensional problem by anisotropic sparse
grid technique, which would need around 7×107 nodes for isotropic sparse grid technique at the same
sparse grid level q −N = 4. Furthermore, we can observe that no “plateau" (flattening) of expectation
error appears as in Fig. 8.1, demonstrating that the multilevel reduced basis method is very efficient
in producing the accurate statistics of the stochastic optimal solution even when the number of the
reduced bases shown in Table 8.2 remains critically small (around 97 for high dimensions).

8.8 Summary

In this chapter we studied the mathematical properties of an optimal control problem constrained by
stochastic Stokes equations and developed a computational strategy by using sparse grid techniques
and the model order reduction approach. The existence and uniqueness of the stochastic optimal
solution was proved by establishing the equivalence between the constrained optimization problem
and the stochastic saddle point problem. Moreover, we obtained some stochastic regularity results of
the optimal solution in the probability space under some mild assumptions on the random input data.
In the fully discretized problem, we used finite element approximation in the deterministic space and
stochastic collocation approximation in the probability space, and proposed a multilevel and weighted
reduced basis method in order to reduce the computational effort in the many-query context, for which
a global error estimate was carried out. This computational approach was proven to be very efficient
by two numerical experiments, especially for high-dimensional and large-scale problems requiring a
large number of samples and heavy computational cost for a full solve of the optimization problem at
each sample. Further study on more general statistical cost functional, adaptive scheme to balance
various computational errors and applications to practical flow control problems are ongoing [44].
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Conclusions and Perspectives
In this thesis, we have developed and analyzed novel stochastic computational strategies and algo-
rithms based on model order reduction techniques, specifically a reduced basis method, in order to
overcome some common computational challenges arising in the solution of representative uncer-
tainty quantification problems. To convey a comprehensive understanding of the thesis, we draw a few
generic conclusions beyond the short summary in each chapter. Many other numerical challenges and
open questions besides those we have dealt with were identified along the presentation of the thesis:
some perspectives of further research and application possibilities are outlined in the following.

Conclusions

Throughout the thesis, we have performed detailed comparison of the reduced basis method and the
stochastic collocation method with emphasis on their convergence properties and computational
costs in different contexts of uncertainty quantification problems, e.g., statistical analysis, reliability
analysis and stochastic optimal control problems. From the comparison results, we can conclude
that the reduced basis approximation error converges much faster than the stochastic collocation
approximation error under the same smoothness hypothesis. One major reason is that in the former
method we use the solutions of the underlying problem as the bases, which can capture the main
characteristics of the solution or the quantities of interest associated with the solution. On the other
hand, the latter approximation method uses dictionary bases, such as Lagrange polynomials or piece-
wise splines, which are generic but blind to the underlying problems. Dictionary bases have also been
employed for the other important stochastic computational method – the stochastic Galerkin projec-
tion method based on wavelets or generalized polynomial chaos, which have comparable or slightly
faster convergence rates than the stochastic collocation method but would converge much slower
than the reduced basis method. This major difference between problem-specific bases and dictionary
bases leads to a significant contrast of the two approaches in terms of the number of approximation
bases – the former needs only tens or hundreds of bases while the latter would require millions of
bases or beyond for high-dimensional problems. Another reason is that the reduced basis output is
computed by solving a reduced order model (by Galerkin projection) that retains the same structure of
the underlying problem, while the collocation output is approximated by using some interpolation
formula generic to different problems.

As for the computational costs, the reduced basis method is demonstrated to be much more efficient
than the stochastic collocation method for large-scale and high-dimensional uncertainty quantification
problems. One reason is that the full solution of a large-scale problem is computationally very expensive,
and the former method is able to replace most of the full solutions by reduced basis solutions with
much cheaper and affordable cost. Another reason is that a large number of samples are typically
needed for high-dimensional problems under certain accuracy constraint, so that the latter method
becomes too expensive or computationally prohibitive to be directly applied since it involves a full
solution at each sample. The significant computational reduction by the reduced basis method is
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however mitigated by a more complex implementation required by this method, as shown in our
presentation related to different contexts of uncertainty quantification problems. More in detail, the
collocation approach can take the underlying deterministic model as a black box and directly use its
solver, while the implementation of the reduced basis approximation depends on the structure of
the model for the evaluation of the a posteriori error bound and the assembling of the reduced basis
system. Efficient implementation and computation of the reduced basis solution and the error bound
for many complex problems, e.g., multiscale and multiphysics problems, may take a lot of workforce
and are still onging research.

The a posteriori error bound plays a critical role in efficiently and accurately solving different uncer-
tainty quantification problems by the reduced basis method. It is this ingredient that enables us to
develop suitable algorithms for different types of problems. By incorporating the probability density
function in the a posteriori error bound according to the model outputs, we developed the weighted al-
gorithm that uses less reduced bases and achieves the same accuracy as the classical one for stochastic
models with arbitrary probability measures. By taking the distance to the limit state surface of a failure
domain into the a posteriori error indicator, we developed a goal-oriented adaptive algorithm that
can construct a refined approximation near the limit sate surface with a limited number of reduced
bases, which remarkably results in the same failure probability as obtained by solving the full model.
By tailoring the stochastic optimality system to feature a convenient implementation of an a posteriori
error bound for both the state and the adjoint variables, we obtained a systemic approximation and
certification of the optimal solution of some stochastic optimal control problems. The a posteriori
error bound does not only provide an appropriate criteria for efficiently constructing the reduced basis
space but also offer a reliable certification for the accuracy of the quantities of interest. These two
properties differ the reduced basis method from some other model order reduction techniques, such
as that by proper orthogonal decomposition for which no accurate or reliable error bounds are pro-
vided except some error indicators (e.g., truncation tolerance). These properties of the reduced basis
method may enable certified pointwise evaluation with remarkable applications in solving uncertainty
quantification problems, such as accurate computation of failure probability.

Different from the application of the reduced basis method in the classical parametric models, its
implementation in the stochastic models for uncertainty quantification problems appreciably benefits
from the other stochastic computational methods for another key ingredient – the training set. As
demonstrated in this thesis, various nodes for interpolation and integration problems used by the
stochastic collocation method have been effectively employed as the training set for the reduced
basis method. An immediate practice is the direct comparison of the approximation errors of the
two methods by taking the collocation nodes as the training set in the first chapter, which also leads
to combination of the two methods for efficiently evaluating the statistical moments of the model
outputs by suitable quadrature/cubature formulas. Moreover, in solving high-dimensional uncertainty
quantification problems, the hierarchical construction of a generalized sparse grid also makes the
adaptive grid nodes available as the training samples for the reduced basis construction. The marriage
of the quadrature/cubature nodes and the training samples yields an automatic, adaptive and efficient
way for constructing and applying the reduced basis method for the solution of a large class of uncer-
tainty quantification problems involving integration, such as the statistical moments, variance-based
sensitivity analysis, stochastic optimal control problems with statistical observations.

Perspectives

We hope that the advantages of various computational strategies and algorithms demonstrated and
advocated in this thesis can boost the development and the application of model order reduction
techniques to solve more general uncertainty quantification problems. In order to achieve this objective,
we outline some further computational challenges besides the ones identified in this thesis and provide
some associated perspectives of promising research topics following two paths.
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1. Development of model order reduction techniques:

• As shown in this thesis, the a posteriori error bound is critically important depending on
different goals of the problem for the efficiency and accuracy of the reduced order/basis
approximation. Therefore, one should always try to make the goal of the problem, e.g.,
pointwise evaluation or integration, as clear as possible beforehand and construct a goal-
oriented a posteriori error bound in order to enhance computational efficiency [32, 4, 39].
A further challenge of particular interest for practical engineering problems is to estimate
the global approximation error including not only the reduced basis error but also spatial
and temporal discretization errors [3]. Thus, how to accurately formulate and efficiently
evaluate a global a posteriori error bound for balanced refinement in the probability space
and the physical space remain an open problem. Moreover, it is crucial to design an
effective strategy for its evaluation in massively parallel architectures for solving large-scale
problems [111].

• Model order reduction techniques have been well developed for linear and steady problems
as mainly considered in this thesis, but they are far from mature for nonlinear and unsteady
problems involving multiscale and multiphysical phenomenons. For instance, the unsteady
Navier–Stokes equations with large Reynolds number or some turbulence flow models
produce a large number of modes that can hardly be captured by a limited number of
reduced bases; how to build a global reduced order model to approximate high-fidelity
fluid and structure interaction models remains to be investigated; it is also significantly
difficult to apply model order reduction techniques in approximating hyperbolic PDEs
that feature locally supported traveling waves or shocks. One possible approach is to allow
the reduced bases to evolve along time such that they can capture the time dependent
main modes/characteristics of the dynamic underlying model [183, 184, 52, 53]. Careful
separation and application of the reduced order approximation and the high-fidelity ap-
proximation in a hybrid way [195], as employed for risk analysis in this thesis, may provide
another potential.

2. Application to uncertainty quantification problems:

• High-dimensional problems have been partially addressed under smoothness hypothesis of
the random input data and sparsity hypothesis of the outputs. However, when the outputs
do not depend smoothly on the inputs either because of nonsmooth random inputs or
due to high nonlinearity of the underlying model, or when the outputs are not sparse such
that many different dimensions of the random inputs play equally important role or they
have strong interaction with each other, the proposed computational framework in this
thesis would not be efficient or even fail. Effective algorithms in detecting and resolving
the low regularity points – discontinuous or singular points – should be incorporated
in the adaptive construction of the reduced order models [128, 105]. Moreover, how to
automatically choose and combine different sampling techniques, e.g., Latin hypercube
sampling or generalized sparse grid sampling, in the reduced basis construction provides
another important research area for accurate and efficient approximation of the quantities
of interest.

• One important branch of uncertainty quantification problems is to predict the risk of failure
of a given system under uncertainties. The hybrid and goal-oriented adaptive reduced
basis method was proved to work efficiently for this type of problem with relatively big
failure probability. When the failure probability becomes critically small (e.g., smaller
than 10−6) and the consequence of the failure is catastrophic, known as high consequence
rare events, the proposed algorithm can not be directly used since a huge number of
standard Monte Carlo samples (e.g., more than 108) is needed to obtain a relatively accurate
evaluation of the failure probability. However, almost all the samples except a few tens or
hundreds in this example locate outside the failure domain, which are of less use but take
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considerable evaluation cost even if the reduced basis online evaluation cost remains small.
Moreover, a very accurate reduced basis approximation, thus relatively expensive online
evaluation, should be constructed to guarantee that the adaptive a posteriori error indicator
for the output becomes smaller than or at least comparable to the failure probability.
This computational complexity becomes more evident in high-dimensional problems.
Therefore, efficient combination of importance sampling techniques (e.g., using cross-
entropy [120]) to reduce the total number of samples, and the hybrid and goal-oriented
adaptive reduced basis models to facilitate accurate certification of the outputs is very
promising albeit challenging.

• Stochastic inverse problems account for another important branch of uncertainty quantifi-
cation problems, including optimal control/design/optimization, parameter estimation
and data assimilation under various uncertainties. Variation approach based on Lagrange
multiplier and a finite-element-stochastic-collocation-reduced-basis approximation has
been employed to solve a simple type of stochastic optimal control problems – linear-
quadratic optimal control. In more practical applications, the observation data may involve
high statistical moments or probability distribution beyond the first order expectation as
considered in this thesis, the underlying model may not be linear or steady, leading to
strongly coupled [197] and highly nonlinear stochastic optimal control problems. In order
to address these more general cases, the one-shot approach used in this thesis does not
apply any more and we have to develop more efficient iterative algorithms and linearization
strategies in combination with model order reduction for both state and adjoint systems.
Additional computational complexity may arise from stochastic constraints for the control
variables [200], which requires more careful formulation of the goal-oriented a posteriori
error estimate for the construction of the reduced order models. These challenges and the
reduction opportunities also apply for other types of stochastic inverse problems, such
as Bayesian inversion by Markov chain Monte Carlo methods for parameter estimation
[122], Kalman filter and its extensions for data assimilation [17]. A common feature of
these stochastic inverse problems is that the many-query requirement comes not only from
the stochastic emulation but also from the iterative emulation of the underlying models,
which makes the reduced order models even more appealing for substantial reduction of
computation.
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