
H2O: A Hands-free Adaptive Store

Ioannis Alagiannis? Stratos Idreos‡ Anastasia Ailamaki?

?Ecole Polytechnique Fédérale de Lausanne
{ioannis.alagiannis, anastasia.ailamaki}@epfl.ch

‡Harvard University
stratos@seas.harvard.edu

ABSTRACT
Modern state-of-the-art database systems are designed around a
single data storage layout. This is a fixed decision that drives the
whole architectural design of a database system, i.e., row-stores,
column-stores. However, none of those choices is a universally
good solution; different workloads require different storage layouts
and data access methods in order to achieve good performance.

In this paper, we present the H2O system which introduces two
novel concepts. First, it is flexible to support multiple storage
layouts and data access patterns in a single engine. Second, and
most importantly, it decides on-the-fly, i.e., during query process-
ing, which design is best for classes of queries and the respective
data parts. At any given point in time, parts of the data might
be materialized in various patterns purely depending on the query
workload; as the workload changes and with every single query,
the storage and access patterns continuously adapt. In this way,
H2O makes no a priori and fixed decisions on how data should be
stored, allowing each single query to enjoy a storage and access
pattern which is tailored to its specific properties.

We present a detailed analysis of H2O using both synthetic bench-
marks and realistic scientific workloads. We demonstrate that while
existing systems cannot achieve maximum performance across all
workloads, H2O can always match the best case performance with-
out requiring any tuning or workload knowledge.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design - Access meth-
ods; H.2.4 [Database Management]: Systems - Query Processing

General Terms
Algorithms, Design, Performance

Keywords
Adaptive storage; adaptive hybrids; dynamic operators

1. INTRODUCTION
Big Data. Nowadays, modern business and scientific applica-

tions accumulate data at an increasingly rapid pace. This data ex-
plosion gives birth to new usage scenarios and data analysis op-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2610502.

0

10

20

30

40

2 10 20 30 40 50 60 70 80 90 100

E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

Attributes Accessed (%)

DBMS-C

DBMS-R

Figure 1: Inability of state-of-the-art database systems to main-
tain optimal behavior across different workload patterns.

portunities but it also significantly stresses the capabilities of cur-
rent data management engines. More complex scenarios lead to
the need for more complex queries which in turn makes it increas-
ingly more difficult to tune and set-up database systems for modern
applications or to maintain systems at a well-tuned state as an ap-
plication evolves.

The Fixed Storage Layout Problem. The way data is stored
defines how data should be accessed for a given query pattern and
thus it defines the maximum performance we may get from a da-
tabase system. Modern state-of-the-art database systems are de-
signed around a single data storage layout. This is a fixed de-
cision that drives the whole design of the architecture of a data-
base system. For example, traditional row-store systems store data
one row at a time [20] while modern column-store systems store
data one column at a time [1]. However, none of those choices is
a universally good solution; different workloads require different
storage layouts and data access methods in order to achieve good
performance. Database systems vendors provide different storage
engines under the same software suite to efficiently support work-
loads with different characteristics. For example, MySQL supports
multiple storage engines (e.g., MyISAM, InnoDB); however, com-
munication between the different data formats on the storage layer
is not possible. More importantly, each storage engine requires a
special execution engine, i.e., an engine that knows how to best
access the data stored on each particular format.

Example. Figure 1 illustrates an example of how even a well-
tuned high-performance DBMS cannot efficiently cope with vari-
ous workloads. In this example, we test 2 state-of-the-art commer-
cial systems, a row-store DBMS (DBMS-R) and a column-store
DBMS (DBMS-C). We report the time needed to run a single an-
alytical select-project-aggregate query in a modern machine. Fig-
ure 1 shows that none of those 2 state-of-the-art systems is a uni-
versally good solution; for different classes of queries (in this case
depending on the number of attributes accessed), a different system

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148004308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is more appropriate and by a big margin (we discuss the example
of Figure 1 and its exact set-up in more detail later on).

The root cause for the observed behavior is the fixed data layout
and the fixed execution strategies used internally by each DBMS.
These are closely interconnected and define the properties of the
query engine and, as a result, the final performance. Intuitively,
column stores perform better when columns are processed indepen-
dently, while row-stores are more suited for queries touching many
attributes. In both systems, the data layout is a static input parame-
ter leading to compromised designs. Thus, it restricts these systems
from adapting when the workload changes. Contrary to common
belief that column-stores always outperform row-stores for analyt-
ical queries, we observe that row-stores can show superior perfor-
mance in a class of workloads which becomes increasingly impor-
tant. Such workloads appear both in business (e.g., network perfor-
mance and management applications) and scientific domains (e.g.,
neuro-science, chemical and biological applications) and the com-
mon characteristic is that queries access an increased number of
attributes from wide tables. For example, neuro-imaging datasets
used to study the structure of human brain consist of more than
7000 attributes. In this direction, commercial vendors are continu-
ously increasing the support for wide tables e.g., SQL Server today
allows a total of 30K columns per table while the maximum num-
ber of columns per SELECT statement is now at 4096, aiming at
serving the requirements of new research fields and applications.

Ad-hoc Workloads. If one knows the workload a priori for a
given application, then a specialized hybrid system may be used
which may be perfectly tuned for the given workload [16, 29].
However, if the workload changes a new design is needed to achieve
good performance. As more and more applications, businesses
and scientific domains become data-centric, more systems are con-
fronted with ad-hoc and exploratory workloads where a single de-
sign choice cannot cover optimally the whole workload or may
even become a bottleneck. As a result modern businesses often
need to employ several different systems in order to accommodate
workloads with different properties [52].

H2O: An Adaptive Hybrid System. An ideal system should be
able to combine the benefits of all possible storage layouts and ex-
ecution strategies. If the workload changes, then the storage layout
must also change in real time since optimal performance requires
workload-specific storage layouts and execution strategies.

In this paper, we present the H2O system that does not make any
fixed decisions regarding storage layouts and execution strategies.
Instead, H2O continuously adapts based on the workload. Every
single query is a trigger to decide (or to rethink) how the respective
data should be stored and how it should be accessed. New layouts
are created or old layouts are refined on-the-fly as we process in-
coming queries. At any given point in time, there may be several
different storage formats (e.g., rows, columns, groups of attributes)
co-existing and several execution strategies used. In addition, the
same piece of data may be stored in more than one formats if differ-
ent parts of the query workload need to access it in different ways.
The result is a query execution engine DBMS that combines Hybrid
storage layouts, Hybrid query plans and dynamic Operators (H2O).

Contributions. Our contributions are as follows:

• We show that fixed data layout approaches can be sub-optimal
for the challenges of dynamic workloads.

• We show that adaptive data layouts along with hybrid query
execution strategies can provide an always tuned system even
when the workload changes.

• We discuss in detail lightweight techniques for making on-
the-fly decisions regarding a good storage layout based on

query patterns, for refining the actual data layouts and for
compiling on-the-fly the necessary operators to provide good
access patterns and plans.

• We show that for dynamic workloads H2O can outperform
solutions based on static data layouts.

2. BACKGROUND AND MOTIVATION
In this section, we provide the necessary background regarding

the basics of column store and row store layouts and query plans.
Then we motivate the need for a system that always adapts its stor-
age and execution strategies. We show that different storage layouts
require completely different execution strategies and lead to drasti-
cally different behavior.

2.1 Storage Layout and Query Execution
Row-stores. Traditional DBMS (e.g., Oracle, DB2, SQL Server)

are mainly designed for OLTP-style applications. They follow the
N-ary storage model (NSM) in which data is organized as tuples
(rows) and is stored sequentially in slotted pages. The row-store
data layout is optimized for write-intensive workloads and thus in-
serting new or updating old records is an efficient action. On the
other hand, it may impose an unnecessary overhead both in terms
of disk and memory bandwidth if only a small subset of the to-
tal attributes of a table is needed for a specific query. Regarding
query processing, most NSM systems implement the volcano-style
processing model in which data is processed one tuple (or block)
at a time. The tuple at a time model comes with nearly negligible
materialization overhead in memory; however, it leads to increased
instruction misses and a high function call overhead [7, 40].

Column-stores. In contrast, modern column-store DBMS (e.g.,
SybaseIQ [35], Vertica [32], Vectorwise [54], MonetDB [7]) have
been proven the proper match for analytical queries (OLAP ap-
plications) since they can efficiently execute queries with specific
characteristics such as low projectivity and aggregates. Column-
stores are inspired by the decomposition storage model (DSM) in
which data is organized as columns and is processed one column
at a time. The column-store data layout allows for loading in main
memory only the relevant attributes for a query and thus signifi-
cantly reducing I/O cost. Additionally, it can be efficiently com-
bined with low-level architecture-conscious optimizations and late
materialization techniques to further improve performance. On the
other hand, reconstructing tuples from multiple columns and up-
dates might become quite expensive.

Query Processing. Lets assume the following query.

Q1: select a+b+ c f rom R where d<v1 and e>v2

In a typical row-store query execution, the system reads the data
pages of relation R and processes single tuples one-by-one accord-
ing to the operators in the query plan. For Q1, firstly, the query
engine performs predicate evaluation for the two conditional state-
ments. Then, if both predicates qualify, it computes the expression
in the select clause. The aforementioned steps will be repeated until
all the tuples of the table have been processed.

For the same query, a column-store follows a different evaluation
procedure. The attributes processed in the query are accessed inde-
pendently. Initially, the system reads column d (assuming d is the
highly selective one) and evaluates the predicate d < X for all the
values of column d. The output of this step is a list of tuple IDs of
the qualifying tuples which is used to fetch all the qualifying tuples
of e and materialize them in a new intermediate column. Then, the
intermediate column is accessed and the predicate e > Y is evalu-
ated. Finally, a new intermediate list of IDs is created for the qual-
ifying tuples considering both predicates in the where clause. The

0

2

4

6

8

10

12

2 10 20 30 40 50 60 70 80 90 100

E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

Aggregations Computed (%)

DBMS-C

DBMS-R

0

5

10

15

20

25

30

2 10 20 30 40 50 60 70 80 90 100

E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

Attributes Accessed (%)

DBMS-C

DBMS-R

0

5

10

15

2 10 20 30 40 50 60 70 80 90 100

E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

Attributes accessed (%)

DBMS-C

DBMS-R

(a) Selectivity 100% (no where clause) (b) Selectivity 40% (c) Selectivity 1%
Figure 2: DBMS-C vs. DBMS-R: the “optimal” DBMS changes with the workload.

latter list of tuple IDs is used to filter columns a, b and c processed
in the select clause before applying the sum operator to compute
the final aggregation result. The above query processing algorithm
is based on a late tuple re-construction policy. There are more pos-
sible implementations and optimizations for the same query plan
(e.g., using early materialization, bit-vectors instead of list of IDs,
considering the vectorized execution paradigm). Nevertheless, the
common characteristic is the materialization overhead of interme-
diate results which becomes significant when many attributes are
accessed in the same query.

Overall, a column-store DBMS exploits different execution strate-
gies than a row-store DBMS to fully benefit from the column-
oriented data layout [2]. To identify the optimal way for executing
a query not only the storage layout but the execution model should
be considered. Each choice of data layout and execution strategy
comes with pros and cons, and the right combination depends on
the target application and workload.

2.2 One Size Does Not Fit All
We now revisit our motivating experiment from Section 1 to dis-

cuss in more detail the fact that even well-tuned systems cannot
provide optimal performance when the workload changes.

Software and Methodology. We use two state-of-the-art disk-
based commercial DBMS, a row-store and a columns-store. To pre-
serve anonymity we refer to the column-store DBMS as “DBMS-
C” and to the row-store DBMS as “DBMS-R”. The data fits in main
memory and we report execution time from hot runs to focus on
the in-memory processing part of the query engine and avoid any
interference with disk I/O operations and especially compression
that can hide storage layout specific characteristics. Additionally,
indexes are not used. Both systems compute query results over un-
compressed data in memory and are tuned to use all the available
CPUs on our server. Comparing full systems is not trivial as these
systems are very complex and full of rich features that may affect
performance. To the best of our knowledge the above comparison
isolates as best as possible the performance relevant to the storage
layout and execution patterns in these commercial systems.

Database Workload. The input relation consists of 50 million
tuples and each tuple contains 250 attributes with integers ran-
domly distributed in the range [−109, 109]. We examine two dif-
ferent types of queries: a) project and b) select-project. In both
cases the queries compute aggregations on a set of attributes and
the projectivity progressively increases from 2% to 100%. We use
aggregations to minimize the number of tuples returned from the
DBMS and thus we avoid any overhead that might affect the exe-
cution times. The second set of queries has an extra where clause
consisting of multiple filter conditions. The attributes accessed in
the where clause and in the select clause are the same. We generate
the filter conditions so as the selectivity remains the same for all
queries. The purpose of these sets of queries is to study the behav-
ior of the two different DBMS when gradually the number of at-

tributes involved in the query increases. For this input relation, we
report a 13% larger memory footprint for DBMS-R. This is due to
the overhead that comes with traditional organization of attributes
into tuples and pages. Accessing more data is translated into an
additional performance penalty for the above read-only workloads.

Results. Figure 2 complements the graph in Figure 1. Fig-
ure 2(a) illustrates the difference in terms of performance between
DBMS-C and DBMS-R when the queries compute only aggrega-
tions. DBMS-C is always faster from 6x when only 5 attributes are
accessed up to 65% when all attributes are accessed. In Figures 2(b)
and 2(c), we observe the same behavior as in Figure 1 even though
the selectivity is lower, 40% and 1% respectively. When few at-
tributes are accessed DBMS-C is faster; however, as the number
of attributes accessed both in the select and the where clause in-
creases, we find that there is a crossover point where query process-
ing with DBMS-C is no longer the optimal for the given queries.

Discussion. We observe that none of the two systems attains
optimal performance for the whole experiment. On the contrary,
which is the “best” DBMS changes as we modify the query char-
acteristics. Row-stores expected to perform poorly when analytical
queries are executed on wide tables without index support. How-
ever, we show that even with such a setup row-stores can actually
be faster for certain queries demonstrating the need to have the op-
tion to move from one layout to another. Overall, selecting the
underlying data layout (row-store or column-store) is a critical first
tuning decision which is hard to change if the workload evolves.
In this work we focus on full-table scans and we do not investigate
index-accesses. Deciding which index to build, especially if there
is no a priori workload knowledge is a problem orthogonal to the
techniques we present.

3. THE H2O SYSTEM
Column-stores and row-stores are extremes of the design space.

If we knew the workload exactly, we could prepare the perfect hy-
brid design, i.e., store the frequently accessed columns together
and we could also create execution strategies that perfectly exploit
these layouts. However, workload knowledge is not always avail-
able while preparing all possible layouts and execution strategies
up front is not possible due the vast number of choices. There is
not enough space to store these alternatives and there is not enough
time to prepare them. Furthermore, a system would need an equal
number of specialized operators/code to properly access these lay-
outs in order to extract all possible benefits.

In this section, we discuss the design of H2O an adaptive hy-
brid query execution engine which identifies workload changes and
evolves both the data organization and the execution strategy ac-
cording to the workload needs. Additionally, we show how differ-
ent storage data layouts can coexist in the same query engine and
be combined with different execution strategies, how H2O creates
access operators on-the-fly and finally, we discuss the adaptation
mechanism used by H2O to change the data layouts.

A
d

a
p

ta
ti

o
n

M
e

ch
a

n
is

m

Query

Processor
w
o
r
k
lo
a
d

Data Layout

Manager

Operator

Generator

Figure 3: H2O architecture.

Architecture. Figure 3 shows the architecture of H2O . H2O sup-
ports several data layouts and the Data Layout Manager is respon-
sible for creating and maintaining the different data layouts. When
a new query arrives, the Query Processor examines the query and
decides how the data will be accessed. It evaluates the alternative
access plans considering the available data layouts and when the
data layout and the execution strategy have been chosen the Op-
erator Generator creates on-the-fly the proper code for the access
operators. The adaptation mechanism of H2O is periodically acti-
vated to evaluate the current data layouts and propose alternative
layouts to the Layout Manager.

3.1 Data Storage Layouts
H2O supports three types of data layouts:
Row-major. The row-major layout in H2O follows the typical

way of organizing attributes into tuples and storing tuples sequen-
tially into pages (Figure 4b). Attributes are densely-packed and no
additional space is left for updates.

Column-major. In the column-store layout data is organized
into individual columns (Figure 4a). Each column maintains only
the attribute values and we do not store any tuple IDs.

Groups of Columns. The column-major and row-major layouts
are the two extremes of the physical data layout design space but
not the only options. Groups of columns are hybrid layouts with
characteristics derived from those extremes. The hybrid layouts are
integral part and the driving force of the adaptive design we have
adopted in H2O. A group of columns is a vertical partition contain-
ing a subset of the attributes of the original relation (Figure 4c).

In H2O groups of columns are workload-aware vertical parti-
tions used to store together attributes that are frequently accessed
together. Attributes d and e in Figure 4c can be such an example.
The width of a group of columns depends on the workload char-
acteristics and can significantly affect the behavior of the system.
Wide groups of columns in which only few attributes are accessed
decrease memory bandwidth utilization, similarly with a row-major
layout while a narrow group of columns might come with increased
space requirements due to padding. For all the above data layouts,
we consider fixed length attributes.

3.2 Continuous Layout Adaptation
H2O targets dynamic workloads in which data access patterns

change and so it needs to continuously adapt. One extreme ap-
proach is to adapt for every query. In this context, every single
query can be a potential trigger to change how the respective data
is stored and how it should be accessed. However, this is feasible
in practice only if the cost of generating a new data layout can be
amortized over a number of future queries. Covering more than
one query with a new data layout can help to amortize the cost
faster. H2O gathers statistics regarding the incoming queries. The
recent query history is used as a trigger to react in changes of the

A B C D E

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

a5 b5 c5 d5 e5

A

a1

a2

a3

a4

a5

B

b1

b2

b3

b4

b5

C

c1

c2

c3

c4

c5

D

d1

d2

d3

d4

d5

E

e1

e2

e3

e4

e5

A B C

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

D E

d1 e1

d2 e2

d3 e3

d4 e4

d5 e5

a) Column Major Layout b) Row Major Layout c) Group of Columns

Figure 4: Data Layouts.

workload. H2O decides a candidate layout pool by estimating the
expected benefit and selecting the most fitting solution.

Monitoring. H2O uses a dynamic window of N queries to mon-
itor the access patterns of the incoming queries. The window size
defines how aggressive or conservative H2O is and the number of
queries from the query history that H2O considers when evaluating
the current schema. For a given set of input queries H2O focuses
on statistics about attribute usage and frequency of attributes ac-
cessed together. The monitoring window is not static but it adapts
when significant changes in the statistics happen. H2O uses the
statistics as an indication of the expected queries and to prune the
search space of candidate data layouts. The access patterns are
stored in the form of two affinity attribute matrices [38] (one for
the where and one for the select clause). Affinity among attributes
expresses the extent to which they are accessed together during pro-
cessing. The basic premise is that attributes accessed together and
have similar frequencies should be grouped together. Differenti-
ating between attributes in the select and the where clause allows
H2O to consider appropriate data layouts according to the query
access patterns. For example, H2O can create a data layout for
predicates that are often evaluated together.

Alternative Data Layouts. Determining the optimal data lay-
out for a given workload is equivalent to the well-known prob-
lem of vertical partitioning which is NP-hard [48]. Enumerating
through all the possible data layouts is infeasible in practice espe-
cially for tables with many attributes (e.g., a table with 10 attributes
can be vertically partitioned into 115975 different partitions). Thus,
proper heuristic techniques should be applied to prune the immense
search space without putting at risk the quality of the solution.

H2O starts with the attributes accessed by the queries to gen-
erate potential data layouts. The initial configuration contains the
narrowest possible groups of columns. When a narrow group of
columns is accessed by a query, all the attributes in the group are
referenced. Then, the algorithm progressively improves the pro-
posed solution by considering new groups of columns. The new
groups are generated by merging narrow groups with groups gen-
erated in previous iterations. The generation and selection phases
are repeated multiple times until no further improvement is possible
for the input workload.

For a given workload W = {q1,q2, ...,qn} and a configuration C,
H2O evaluates the workload and transformation cost T using the
following formula.

cost(W,Ci) =
n

∑
j=1

q j(Ci)+T (Ci−1,Ci) (1)

Intuitively, the initial solution consists of attributes accessed to-
gether within a query and by merging them together H2O reduces
the joining overhead of groups. The size of the initial solution is in
the worst case quadratic to the number of narrow partitions and al-
lows to effectively prune the search space without putting at risk the
quality of the proposed solution. H2O considers attributes accessed
together in the select and the where clause as different potential
groups which allows H2O to examine more executions strategies
(e.g., to exploit a group of columns in the where clause to generate

a vector of tuple IDs for the qualifying tuples). H2O also consid-
ers the transformation cost from one data layout to another in the
evaluation method. This is critical, since the benefit of a new data
layout depends on the cost of generating it and on how many times
H2O is going to use it in order to amortize the creation cost.

Data Reorganization. H2O combines data reorganization with
query processing in order to reduce the time a query has to wait for
a new data layout to be available. Assuming Q1 from Section 2 and
two data layouts R1(a,b,c) and R2(d,e). The selected data layout
from the adaptation mechanism requires to merge those two data
layouts into R(a,b,c,d,e). In this case, blocks from R1 and R2
are read and stitched together into blocks with tuples (a,b,c,d,e).
Then, for each new tuple, the predicates in the where clause are
evaluated and if the tuple qualifies the arithmetic expression in
the select is computed. The early materialization strategy allows
H2O to generate the data layout and compute the query result with-
out scanning the relation twice. The same strategy is also applied
when the new data layout is a subset of a group of columns.

H2O follows a lazy approach to generate new data layouts. It
does not apply the selected data layout immediately but it waits
until the first query requests a new layout. Then, H2O creates the
new data layout as part of the query execution. The source code
for the physical operator that generates the new data layout while
computing the result of the input query is created by applying code
generation techniques described in Section 3.4.

Oscillating Workloads. An adaptation algorithm should be able
to detect changes to the workload and act quickly while avoiding
overreacting for temporary changes. Actually, such a trade-off is
part of any adaptation algorithm and it is not specific to H2O. In
the case of H2O, adapting too fast might create additional overhead
during query processing while slow adaptation might lead to sub-
optimal performance. H2O minimizes the effect of false-positives
due to oscillating workloads by applying the lazy data layouts gen-
eration approach described in this subsection. To completely elim-
inate the effect of oscillating workloads requires predicting future
queries with high probability; however this is not trivial. H2O de-
tects workload shifts by comparing new queries with queries ob-
served in the previous query window. It examines whether the in-
put query access pattern is new or if it has been observed with low
frequency. New access patterns are an indication that there might
be a shift in the workload. In this case, the adaptation window de-
creases to progressively orchestrate a new adaptation phase while
when the workload is stable, H2O increases the adaptation window.

3.3 Execution Strategies
Traditional query processing architectures assume not only a fixed

data layout but predetermined query execution strategies as well.
For example, in a column-store query plan a predicate in the where
clause is evaluated using vectors of tuple IDs to extract the qualify-
ing tuples while a query plan for a row-store examines which tuples
qualify one-by-one and then forwards them in the next query oper-
ator. In this paper, we show that a data layout should be combined
with the proper execution strategy in a query plan. To maximize
the potential of the selected query plan, tailored code should be cre-
ated for the query operators in the plan (e.g., in filters it enhances
predicate evaluation). Having multiple data layouts in H2O also
requires to support the proper execution strategies. Having differ-
ent execution strategies means providing different implementations
integrated in the H2O query engine.

H2O provides multiple execution strategies and adaptively se-
lects the best combination of data layout and execution strategy ac-
cording to the requirements of the input query. Execution strategies
in H2O are designed according to the vectorized query processing

model [7] in which data is represented as small arrays (vectors).
Vectors fit in the L1 cache for better cache locality.

Row-major. The execution strategies for a row-major layout
follow the volcano execution model. Additionally, predicate evalu-
ation is pushed-down to the scan operator for early tuple filtering.

Column-major. For a column-major layout the execution strat-
egy of H2O materializes intermediate results from filter evaluations
into vectors of matching positions. Similarly, it handles the output
of complex arithmetic expressions. For example, in Q1 of Section 2
computing the expression a+b+ c results into the materialization
of two intermediate columns, one for a+b and one for the result of
the addition of the previous intermediate result with c.

Groups of columns. Regarding group of columns, there is no
unique execution strategy. Data layouts can apply any of the strate-
gies used for columns-major or row-major layouts. For example,
predicate evaluation can be pushed-down or it can be computed us-
ing vectors of matching positions as in the case of a column-major
layout. During query processing, H2O evaluates the alternative ex-
ecution strategies and selects the most appropriate one.

All executions strategies materialize the output results in mem-
ory using contiguous memory blocks in a row-major layout.

3.4 Creating Operators On-the-fly
The data independence abstraction in databases provides signifi-

cant flexibility by hiding many low-level details (e.g., how the data
is stored). However, it comes with a hit in performance due to the
considerable interpretation overhead [46]. For example, computing
the qualifying tuples for Q1 from Section 2 using volcano-style pro-
cessing requires evaluating a conjunctive boolean expression (d<v1
and e>v2) for each one of the tuples. In the generic case, the en-
gine needs to be able to compute predicates for all the supported
SQL data types (e.g., integer, double) and additionally complicated
sub-expressions of arbitrary operators. Thus, a generic operator
interface leads to spending more time executing function calls and
interpreting code of complex expressions than computing the query
result [7]. Column-stores suffer less from the interpretation over-
head but this comes with the cost of expensive intermediate results
(e.g., need to materialize lists of IDs) and larger source code base
(e.g., maintain a different operator implementation per data type).

H2O maintains data into various data layouts and thus to obtain
the best performance needs to include the implementation of nu-
merous execution strategies.

For example, having a system that has all the possible code up-
front is not possible especially when workload-aware layouts should
be combined in the same query plans. The potential combinations
of data layouts and access methods are numerous. To compute
a > X and (a+ b) > X requires different physical operators. A
generic operator can cover both cases. However, the performance
will not be optimal due to the interpretation overhead; the over-
head of dynamically interpreting complex logic (e.g., expressions
of predicates) to low level code. Thus, H2O creates dynamic oper-
ators for accessing on-the-fly the data referenced from the query
regardless of the way it is internally stored in the system (pure
columnar or group of columns format). H2O generates dynamic
operators not only to reduce the interpretation overhead but also
in order to combine workload-specific data layouts and execution
strategies in the same access operator.

To generate layout-aware access operators, H2O uses source code
templates. Each template provides a high-level structure for dif-
ferent query plans (e.g., filter tuples with or without list of tuple
IDs). Internally, a template invokes functions that generate the spe-
cialized code for specific basic operations; for example, accessing
specific attributes in a tuple, evaluate boolean expressions, express

1 // Compiled equivalent of vectorized primitive
2 // Input: Column group R(a,b,c,d,e)
3 // For each tuple evaluate both predicates in one step
4 // Compute arithmetic expression for qualifying tuples
5 long q1_single_column_group(const int n,
6 const T∗ res, T∗ R, T∗ val1, T∗ val2) {
7 int i, j = 0;
8 const T ∗ptr = R;
9 for (i = 0 ; i < n; i++) {

10 if (ptr[3] < ∗val1 && ptr[4] > ∗val2)
11 res[j++] = ptr[0] + ptr[1] + ptr[2];
12 ptr = getNextTuple(i);
13 }
14 return j;
15 }

Figure 5: Generated code for Q1 when all the data is stored in
a single column group.

1 // Compiled equivalent of vectorized primitives
2 // Input: Column groups R1(a,b,c) and R2(d,e)
3 // For each batch of tuples call
4 nsel = q1_sel_vector(n, sel, R2, val1, val2);
5 q1_compute_expression(nsel, res, R1, sel);
6
7 // Compute arithmetic expression using the positions from sel
8 void q1_compute_expression(const int n,
9 const T∗ res, T∗ R1, int∗ sel) {

10 int i = 0;
11 const T ∗ptr = R1;
12 if (sel == NULL) {
13 for (i = 0 ; i < n; i++) {
14 res[i] = ptr[0] + ptr[1] + ptr[2];
15 ptr = getNextTuple(i); }
16 } else {
17 for (i = 0 ; i < n; i++) {
18 ptr = getNextTuple(sel, i);
19 res[sel[i]] = ptr[0] + ptr[1] + ptr[2]; }
20 }
21 }
22
23 // Compute selection vector sel for both predicates in R2(d,e)
24 int q1_sel_vector(const int n,
25 const T∗ sel, T∗ R2, T∗ val1, T∗ val2) {
26 int i, j = 0;
27 const T ∗ptr = R2;
28 for (i = 0 ; i < n; i++) {
29 if (ptr[0] < ∗val1 && ptr[1] > ∗val2)
30 sel[j++] = i;
31 ptr = getNextTuple(i);
32 }
33 return j;
34 }

Figure 6: Generated code for Q1 when the needed attributes
are stored into two different column groups.

complex arithmetic expressions, perform type casting, etc. The
code generation procedure takes as input the needed data layouts
from the data layout manager and the set of attributes required by
the query, selects the proper template and generates as an output
the source code of the access operator. The source code is com-
piled using an external compiler into a library and then, the new
library is dynamically linked and injected in the query execution
plan. To minimize the overhead of code generation, H2O stores
newly generated operators into a cache. If the same operator is re-
quested by a future query, H2O accesses it directly from the cache.
The available query templates in H2O support select-project-join
queries and can be extended by writing new query operators.

Example. Figures 5 and 6 show two dynamically compiled
equivalents of vectorized primitives for access operators for two
different data layouts.

Figure 5 shows the generated code when all the accessed at-
tributes for Q1 (a,b,c,d,e) are stored in the same column group.
The on-the-fly code takes as input the group of columns, the con-
stant values val1 and val2 used for the predicate evaluation and an

output buffer for storing the result of the expression a+ b+ c for
the qualifying tuples. For each tuple H2O evaluates in one step the
two predicates for the conditional statement (Line 9) pushing down
the selection to the scan operator. If both predicates are true then
the arithmetic expression in the select clause is computed. The
code is tailored for the characteristics of the available data layout
and query. It fully utilizes the attributes in the data layout and thus
avoids unnecessary memory accesses. Additionally, it is CPU effi-
cient (the filter and the arithmetic expression are computed without
any overhead) while it does not require any intermediate results.
This code can be part of a more complex query plan.

The second on-the-fly code in Figure 6 is generated assuming
two available groups of columns R1(a,b,c) and R2(d,e) storing
the attributes in the select and where clause respectively. Since
there are two groups of columns we can adopt a different execution
strategy to optimize performance. In this case, the generated code
exploits the two column groups by initiating a column-store like
execution strategy. The query is computed using two functions;
one for tuple selection and one for computing the expression. Ini-
tially, a selection vector containing the IDs of the qualifying tuples
is computed. The selection vector is again computed in one step
by evaluating the predicates together. The code that computes the
arithmetic expression takes as parameter the selection vector, ad-
ditionally to the group of columns and the values val1 and val2.
Then, it evaluates the expression only for the tuple with these IDs
and thus, avoiding unnecessary computation. On the other hand,
the materialization of the selection vector is required.

3.5 Query Cost Model
To select the optimal combination of data layout and execution

strategy, H2O evaluates different access methods for the available
data layouts and estimates the expected execution cost. The query
cost estimation is computed using the following formula:

q(L) =
|L|

∑
i=1

max(costIO
i ,costCPU

i) (2)

For a given query q and a set of data layouts L, H2O considers the
I/O and CPU cost for accessing the layouts during query process-
ing. The cost model assumes that disk I/O and CPU operations
overlap. In practice, when data is read from disk, disk accesses
dominate the overall query cost since disk access latency is orders
of magnitude higher than main-memory latency.

H2O distinguishes between row-major and column-major lay-
outs. Groups of columns are modeled similarly to the row-major
layouts. The cost of sequential I/O is calculated as the amount of
data accessed (e.g., number of tuples multiplied by the average tu-
ple width for a row) divided by the bandwidth of the hard disk
while the cost of random I/O additionally considers block accesses
and read buffers (e..g, through a buffer pool).

H2O estimates the CPU cost based on the number of cache misses
incurred when a data layout is processed. Data cache misses have
significant impact (due to cache misses cause CPU-stalls) on query
processing [5] and thus, they can provide a good indication regard-
ing the expected execution cost of query plans. A data cache miss
occurs when a cache line has to be fetched from a higher level in
the memory hierarchy, stalling the current instruction until needed
data is available. For a given query Q and a given data layout L
the cost model computes the number of data cache misses based
on the data layout width, the number of tuples and the number of
data words accessed for an access pattern following an approach
similar to [16]. The cost of accessing intermediate results is also
considered. This is important since not all execution strategies in
H2O generate intermediate results.

4. EXPERIMENTAL ANALYSIS
In this section, we present a detailed experimental analysis of

H2O. We show that H2O can gracefully adapt to changing work-
loads by automatically adjusting the physical data layout and au-
tomatically producing the appropriate query processing strategies
and access code. In addition, we present a sensitivity analysis on
the basic parameters that affect the behavior of H2O such as which
physical layout is best for different types of queries. We examine
how H2O performs in comparison with approaches that use a static
data layout advisor. We use both fine tuned micro-benchmarks and
the real-life workload SDSS from the SkyServer project.1

The main benefit of hybrid data layouts comes during scan oper-
ations which are responsible for touching the majority of the data.
In our analysis, we focus on scan based queries and we do not con-
sider joins. In an efficient modern design a join implemented as in
memory cache conscious join, e.g., radix join [36], would typically
compute the join using only the join keys with positions (row ids)
being the payload. Thus, the actual data layout of the data will have
little effect during the join. On the other hand, post join projection
will be affected positively (compared to using full rows) as we can
fetch the payload columns from hybrid layouts.

System Implementation. We have designed and implemented
a H2O prototype from scratch using C++ with all the functional-
ity of adaptively generating data layouts and the supporting code.
Our code-generation techniques use a layer of C++ macros to gen-
erate tailored code. The compilation overhead in our experiments
varies from 10 to 150 ms and depends on the query complexity.
Orthogonally to this work, the compilation overhead can be further
reduced by using the LLVM framework [34]. In all experiments,
the compilation overhead is included in the query execution time.

Experimental Setup. All experiments are conducted in a Sandy
Bridge server with a dual socket Intel(R) Xeon(R) CPU E5-2660 (8
cores per socket @ 2.20 GHz), equipped with 64 KB L1 cache and
256 KB L2 cache per core, 20 MB L3 cache shared, and 128 GB
RAMrunning Red Hat Enterprise Linux 6.3 (Santiago - 64bit) with
kernel version 2.6.32. The server is equipped with a RAID-0 of 7
250 GB 7500 RPM SATA disks. The compiler used is icc 13.0.0.

4.1 Adapting to Workload Changes
In this experiment, we demonstrate how H2O automatically adapts

to changes in the workload and how it manages to always stay close
to the optimal performance (as if we had perfectly tuned the system
a priori assuming enough workload knowledge).

Micro-benchmark. Here we compare H2O against a column-
store implementation and a row-store implementation. In both cases,
we use our own engines which share the same design principles and
much of the code base with H2O; thus these comparisons purely re-
flect the differences in data layouts and access patterns.

For this experiment we use a relation R of 100 million tuples.
Each tuple consists of 150 attributes with integer values randomly
generated in

[
−109,109). We execute a sequence of 100 queries.

The queries are select-project-aggregation queries and each query
refers to z randomly selected attributes of R, where z = [10,30].

Figure 7 plots the response time for each query in the work-
load, i.e., we see the query processing performance as the workload
evolves. In addition to H2O, column-store and row-store, we plot a
fourth curve in Figure 7 which represents the optimal performance;
that is, the performance we would get for each single query if we
had a perfectly tailored data layout as well as the most appropri-
ate code to access the data (without including the cost of creating
the data layout). We did this manually assuming for the sake of

1http://skyserver.sdss.org

Row-store Column-store H2O
538.2 sec 283.7 sec 204.7 sec

Table 1: Cumulative Execution Time of the Queries in Figure 7.

comparison against the theoretical case of having perfect workload
knowledge and ample time to prepare the layout for each query.

For this experiment, relation R is initially stored in a column-
major format. This is the more desirable starting point as it is eas-
ier to morph to other layouts. However, H2O can adapt regardless
of the initial data layout. The initial data layout affects the query
performance of the first few queries only. We discuss such an ex-
periment in detail later on.

Initially, H2O executes queries using the available data layout.
In this way, we see in Figure 7 that H2O matches the behavior
of the column-store system. Periodically, though, H2O activates
the adaptation mechanism and evaluates the current status of the
system (set initially at a window size of 20 queries here but this
window size also adaptively adjusts as the workload stabilizes or
changes more rapidly). H2O identifies groups of columns that are
being accessed together in queries (e.g., 5 out of the 20 queries re-
fer to attributes a1,a5,a8,a9,a10). Then, H2O evaluates alternative
data layouts and execution strategies and creates a candidate list of
4 new groups of columns. H2O does not create the new layout im-
mediately. This happens only if a query refers to the attributes in
this group of columns and can benefit from the creation of the new
data layout. These estimations are performed using the cost model.

Following Query 20, and having the new candidate layouts as
possible future layouts, in the next 10 queries, 2 out of the 4 can-
didate groups of columns are created. This happens for queries 23
and 29 and these queries pay the overhead of creating the new data
layout. Query 23 pays a significant part of the creation overhead;
however, 4 queries use the new data layouts and enjoy optimal per-
formance. From query 29 up to query 68 no data reorganization
is required. Another data reorganization takes place after 80 and a
new data layout is added to H2O .

There are queries for which H2O cannot match the optimal per-
formance. For example a group of columns is better for queries 2
to 8; however, there is no query that triggers the adaptation mech-
anism. In the end of the first evaluation it recognizes the change
in the workload and proposes the needed data layouts. For 80% of
the queries H2O executes queries using a column group data layout
while for the rest of the queries it uses a column-major layout. For
the given workload a row-major data layout is suboptimal.

Overall, we observe that H2O outperforms both the static column-
store and row-store alternative approaches by 38% and 1.6x re-
spectively, as shown in Table 1. More importantly it can adapt to
workload changes, meaning that it can be used in scenarios where
otherwise more than one systems would be necessary. Query per-
formance in H2O gets closer to the optimal case without requiring
a priori workload knowledge.

H2O using Real Workload. In this experiment, we evaluate
H2O using the SkyServer workload. We test against a scenario
where we use AutoPart [41], an offline physical, design tool for
vertical partitioning, in order to get the best possible physical de-
sign recommendation. For the experiment, we use a subset of the
“PhotoObjAll” table which is the most commonly used and 250 of
the SkyServer queries. Figure 8 shows that H2O manages to out-
perform the choices of the offline tool. By being able to adapt to
individual queries as opposed to the whole workload we can opti-
mize performance even more than an offline tool.

Dynamic window. In this experiment, we show how H2O bene-
fits from a dynamic adaptation window when the workload changes.
We use as input the same relation R as in the previous experiment

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

Q
u

e
ry

 R
e

sp
o

n
se

 T
im

e
 (

se
c)

Query Sequence

Row-store Column-store Optimal H2O

Figure 7: H2O vs. Row-store vs. Column-store.

0

200

400

600

800

AutoPart H2O

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

Query Execution

Layout Creation

Figure 8: H2O vs. AutoPart on the SkyServer workload.
in which data this time is organized in a row-major format and a
query sequence of 60 queries. Each query refers 5 to 20 attributes.
The queries compute arithmetic expressions. The first 15 queries
focus on a set of 20 specific attributes while the other 45 queries to
a different one. We compare two variations of H2O, with static and
with dynamic window. The size of the window is 30 queries.

Figure 9 depicts the benefit of the dynamic window. H2O with
dynamic window detects the shift in the workload after the 15th
query and progressively decreases the window size to force a new
adaptation phase. The adaptation algorithm is finally triggered in
the 25th query generating new groups of columns layouts that can
efficiently serve the rest of the workload. On the other hand, when
using a static window we cannot adapt and we have to wait until
the 30th query before generating new layouts and thus fails to adapt
quickly to the new workload. Overall, H2O with dynamic windows
manages to adapt to changes in the workload following even if they
do not happen in a periodic way.

4.2 H2O: Sensitivity Analysis
Next, we discuss a sensitivity analysis of various parameters that

affect the design and behavior of H2O . For the experiments in this
section, we use a relation R containing 100 million tuples. Each tu-
ple contains 150 attributes with integer values randomly generated
in the range

[
−109,109).

4.2.1 Effect of Data Layouts
In this experiment, we present the behavior of the different data

layouts integrated in H2O using queries with different character-
istics. Queries are executed using column-major, row-major and
group of columns layouts. Each group of columns contains only the
attributes accessed by the query. All queries are executed using the
H2O custom operators. We use as input a wide table (100 million
tuples, 150 attributes) to stress test H2O and examine how some
representative query types behave as we increased the number of
attributes accessed. We consider simple select project queries and
queries which compute aggregations and arithmetic expressions.
Queries are based on variations of the following templates:

i. “select a, b, ..., f rom R where <predicates>” for projections

0

2

4

6

8

10

0 10 20 30 40 50 60

E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

Query Sequence

Static window

Dynamic window

Figure 9: Static vs. dynamic adaptation window.

ii. “select max(a), max(b),..., f rom R where <predicates>” for
aggregations

iii. “select a + b + ... f rom R where <predicates>” for arithmetic
expressions

The accessed attributes are randomly generated. The cost of cre-
ating each group of columns layout is not considered in the mea-
surements. We examine queries with and without where clause. In
Figures 10(a-c) we vary the number of attributes accessed from 5 to
150 while there is no where clause. In Figures 10(d-f) each query
accesses 20 attributes randomly selected from R while one of these
attributes is the predicate in the where clause. We progressively
vary selectivity from 0.1% to 100%. Figure 10 depicts the results
(in all graphs the y-axis is in log scale). We report numbers from
hot runs and each data point we report is the average of 5 execu-
tions. We discuss each case in detail below.

Projections. Figure 10(a) plots the query execution time for the
three alternative data layouts as we increase the projected attributes
while there is no where clause in the queries. The group of columns
layout outperforms the row-major and column-major layouts re-
gardless of the number of projected attributes. For projections of
less than 30 attributes a column-major layout is faster than the row-
major layout; however, when more than 20% of the attributes are
referenced, performance falls up to 15X due to the high tuple recon-
struction cost. As expected performance of the row-major layout
and of groups of columns matches when all attributes are accessed.

For the same query template (i), in Figure 10(d) we additionally
consider the effect of predicates in the where clause. We keep the
number of projected attributes the same (20 attributes) while we
vary selectivity from 0.1% to 100%. Regardless of the selectivity
working with groups of columns is faster than using the other two
data layouts.

Aggregations. Figure 10(b) shows the response time as we in-
crease the number of aggregations in the queries. Using a column-
major layout outperforms the other two data layouts. The biggest
performance difference is when 5 aggregations are computed 1.5X
and 15X from the group of columns layout and the row-major lay-
out respectively. The gap between groups of columns and column-

0.1

1

10

100

5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

1
0

5

1
1

5

1
2

5

1
3

5

1
4

5

E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

Attributes Projected

 H2O - Row

 H2O - Group of Columns

 H2O - Column

(a)

0.1

1

10

5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

1
0

5

1
1

5

1
2

5

1
3

5

1
4

5

E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

Attributes Aggregated

 H2O - Row

 H2O - Group of Columns

 H2O - Column

(b)

0.1

1

10

5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

1
0

5

1
1

5

1
2

5

1
3

5

1
4

5

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

Attributes Accessed

 H2O - Row

 H2O - Group of Columns
 H2O - Column

(c)

0.1

1

10

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

Selectivity

 H2O - Row
 H2O - Group of Columns
 H2O - Column

(d)

0.1

1

10

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
E

xe
cu

ti
o

n
 T

im
e

 (
se

c)

Selectivity

 H2O - Row

 H2O - Group of Columns

 H2O - Column

(e)

0.1

1

10

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

Selectivity

 H2O - Row

 H2O - Group of Columns

 H2O - Column

(f)
Figure 10: Basic operators of H2O.

major layout gets smaller as more aggregations are computed. The
group of columns layout improves the performance in comparison
to the row-major layout by reducing cache misses.

In Figure 10(e) we vary the selectivity of a query that com-
putes 20 aggregations. The column-major layout and the group
of columns layout clearly outperform the row-major layout. The
column-major layout is slightly faster than the row-major layout for
low selectivities but as selectivity increases the group of columns
layout is marginally faster.

Arithmetic Expressions. Figure 10(c) plots the execution time
for each one of the data layouts as we vary the number of attributes
accessed to compute an arithmetic expression. Group of columns
surpasses the column-major layout from 42% when few attributes
are accessed up to 3X when more accesses required. The differ-
ence in performance is due to the cost of having to materialize in-
termediate results in case of the column-major layout. On the other
hand, combining a group of columns with volcano-style executions
allows for avoiding this overhead.

Figure 10(f) plots execution time for queries based on the third
template with where clause. The results show that the group of
columns layout has superior performance for the whole selectivity
range since does not require the usage of intermediate results.

Discussion. All the above data layouts are part of H2O. H2O com-
bines them with the proper execution strategies to always achieve
the best performance. H2O explores this design space to generate
cache friendly operators without intermediate results if possible.

4.2.2 Effect of Groups of Columns
At any given point in time, H2O maintains multiple layouts. Typ-

ically these are multiple column groups since plain column-major
or row-major extreme cases. In this way, one reasonable question
is how does performance vary depending on which column group
we access. It might be that we do not always have available the op-
timal column group or we have to fetch the data needed for a single
query from multiple column groups or we have to access a given
column group containing more columns than the ones we need.

We first test the case where queries need to access only a sub-
set of the attributes stored in a column group. Here, we use a
group of 30 randomly selected attributes from R. The queries com-
pute aggregations with filter following the template presented in
the previous subsection, accessing 5, 10, 15, 20 and 25 randomly

selected out of the 30 attributes of the column group. We examine
the difference in performance for queries with 1%, 10%, 50% and
100% selectivity using the same attribute in the where clause. For
each query, we compare the execution time with the optimal case
in which a tailored data layout has been created containing only the
needed attributes to answer this particular query.

Figure 11 depicts the results. It shows the performance penalty
to access the whole column group as opposed to accessing the per-
fect column group as a ratio. The graph plots the results for each
query grouped according to the selectivity. We observe that as less
useful attributes are accessed the higher the performance penalty.
This penalty varies with the number of useful attributes accessed.
For example, when only 5 out of the 30 attributes of the group of
columns are accessed, we observe the most significant drop in per-
formance, up to 142%. This drop is due to the unnecessary memory
accesses in comparison with the optimal group of columns. On the
other hand, when a query accesses 25 out of the 30 attributes the
overhead is almost negligible (3% in the worse case).

Other than queries having to access only a subset of a column
group, another important case is when a single query needs to ac-
cess multiple column groups. The question for an adaptive system
in this case is whether we should build a new column group to fit
the query or fetch the data from existing column groups. To study
this problem, we use an aggregation with filter query Q that refers
25 attributes from R. We vary the number of groups of columns the
query has to access from 2 to 5. In each case, the union of groups
of columns contains all the needed attributes. For example, when
2 column groups are accessed, the first column group contains 10
of the needed attributes and the second column group the remain-
ing 15 attributes. We experiment with selectivity 1%, 10%, 50%
and 100%. We compare the response time of Q using the optimal
column group with the cases we have to increase the number of
accessed groups of columns. Figure 12 plots the response of each
query normalized by the response time of queries accessing all the
attributes in a single group of columns. Accessing more than one
group of columns in the same query does not necessarily impose
an additional overhead. On the contrary, combining two groups of
columns might even be beneficial for highly selective queries.

Discussion. Accessing only a subset of the attributes of a col-
umn group, accessing multiple column groups or accessing mul-
tiple groups each one containing a subset of the columns needed

0

20

40

60

80

100

1% 10% 50% 100%

P
e

rf
o

rm
a

n
ce

 D
e

cr
e

a
se

 (
%

)

Selectivity

25 attrs 20 attrs

15 attrs 10 attrs

5 attrs

~142% ~128% ~105%

Figure 11: Accessing a subset of a column group.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1% 10% 50% 100%

N
o

rm
a

li
ze

d
 R

e
sp

o
n

se
 T

im
e

Selectivity

2 Groups 3 Groups 4 Groups 5 Groups

Figure 12: Accessing more than one group of columns.

0

2

4

6

8

10

Q1 Q2 Q3 Q4

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c) Offline

Online

Figure 13: Online vs. Offline reorganization.

are few of the important scenarios when multiple column groups
co-exist. The previous experiments show that groups of columns
can be effective even if not the optimal group of columns is avail-
able and thus it is ok to extend monitoring periods and not to react
instantly to changes in the workload in this case. Additionally, nar-
row groups of columns can be gracefully combined in the same
query operator without imposing significant overhead.

4.2.3 Data Reorganization
H2O adapts continuously to the workload. One approach would

be to separate the preparation of data layouts from query process-
ing. Instead H2O answers an incoming query while adapting the
physical layout for this queries. This is achieved by generating an
operator that integrates the creation of a new data layout and the
code needed to answer the query in one physical operator

In this experiment we show that online adaptation brings signif-
icant benefits. The set up is as follows. We assume that two new
groups of columns are created from relation R (100 million tuples,
100 attributes with integer values). The first one contains 10 and
the second 25 attributes. In the offline case, the column groups
are created and then queries are executed while in the online case
the column group creation and the query execution overlap. We
test two scenarios. In the first scenario the initial layout is row-
major (Q1 and Q2) while in the second scenario the initial layout is
column-major (Q3 and Q4). In both cases, we test the cost to trans-
form those initial layouts into the optimal set of column groups for
a set of queries. We use two queries in each scenario. Q1 and Q3
trigger the generation of a new group of columns which contains
10 attributes, while Q2 and Q4 create a group of 20 columns. The
queries compute 10 and 20 aggregations (without where clause) re-
spectively on the attributes of the new layouts.

Figure 13 shows the results. The offline bars depict the cumu-
lative response time for creating the column group and executing
the query as two separate steps, i.e., first the data layout is created
separately and only then we can process the queries. The special-
ized operator generated by H2O performs the same tasks but in one

0

1

2

3

4

5

6

7

8

Q1-Row Q2-Row Q1-Group of

Columns

Q2-Group of

Columns
E

x
e

cu
ti

o
n

 T
im

e
 (

se
c) Generated Code

Generic Operator

Figure 14: Generic Operator vs. Generated Code.

step. The online case is faster regardless of the storage of the initial
relation and the width of the new column group. The improve-
ment varies from 22% to 37% when the initial relation is stored
in a columnar layout and from 38% to 61% when the initial data
is in a row-oriented layout. For all cases online reorganization is
significantly faster than performing the same operation offline. By
overlapping execution and data organization H2O manages to im-
prove significantly the overall execution time of the two tasks.

4.2.4 Importance of Dynamic Operators
In this experiment, we showcase the benefit of creating tailored

code on-the-fly to match the available data layouts. The set-up is
as follows. Q1 is an aggregation and Q2 is an arithmetic expres-
sion query following the templates presented in Section 4.2.1 and
accessing 20 out of the 150 attributes of R. We test the execution
time achieved by a generic database operator versus an operator
that uses tailored code created on the fly to match the underly-
ing layout. We examine the effect both for row-major layout and
groups of columns. The code generation time is included in the
overall query execution time of the dynamically generated operator
and varies from 63 ms to 84 ms. Figure 14 shows the results. We
observe from 16% up to 1.7x performance improvement by creat-
ing tailored code which is due to removing the interpretation over-
head. This justifies the choices in H2O in creating fully adaptive
layouts and code on the fly.

5. RELATED WORK
A large body of recent work both in industry and academia pro-

pose different flavors of hybrid solutions to cope with the recent
data deluge, complex workloads and hardware changes. The need
for hybrid approaches is especially amplified when trying to pro-
vide a unified solution for workloads with different characteristics.
In this section, we review this body of related work and we high-
light how our work pushes the state-of-the-art even further.

A Case for Hybrid Systems. Recent research ideas have rec-
ognized the potential of exploring different physical data repre-
sentations under a unified processing system [43, 11]. Fractured
mirrors [43] exploit the benefits of both NSM and DSM layouts
in the same system. Data is duplicated in both storage layouts
and queries are executed using the appropriate mirror. This path
has been recently adopted in industry, by the main-memory DBMS
SAP HANA [12] which combines OLTP and OLAP workloads in
the same system. Similarly, SQL Server which provides a row-store
memory-optimized database engine for OLTP applications and an
in-memory data warehouse using ColumnStore Index for OLAP
applications [33]. The hybrid approach of mixing of columnar and
row-oriented representations in the same tablespace provided by
DB2 with BLU Acceleration [45] is the most related with H2O.
In addition, HyPer [29], a main-memory hybrid workload system,
combines the benefits of OLTP and OLAP database by executing
mixed workloads of analytical and transactional queries in parallel
on the same database. Furthermore, recent vision works highlight
the importance of hybrid designs. RodentStore [10] envisions a
hybrid system which can be tuned through a declarative storage al-
gebra interface while Idreos et al. [22] presents the idea of a fully
adaptive system that directly reads raw files and stores data in a
query driven way.

The above hybrid approaches expand the capabilities of con-
ventional systems to support mixed workloads assuming, however,
static (pre-configured) data layouts and thus cannot cope with dy-
namic workloads.

Our work here is focused on dynamic environments to enable
quick reactions and exploration when the workload is not known
up front and with limited time to invest in initialization costs. It
focuses on hybrid data layouts for analytical workloads providing
a fully adaptive approach both at the storage and the execution level
to efficiently support dynamic workloads. In that respect, we also
share common ground with other early works in exploration based
techniques, e.g., [6, 10, 22, 26, 30, 37].

Layout and Workload-aware Optimizations. When consid-
ering hybrid architectures, most existing approaches are centered
around storage aspects, i.e., they optimize the way tuples are stored
inside a database page and the proper way of exploiting them dur-
ing query processing. Harizopoulos et al. [19] explore performance
trade-offs between column- and row-oriented architectures in the
context of read-optimized systems showing that the DSM layout
performs better when only few attributes are accessed. Zukowski
et al. [55] present a comprehensive analysis of the overheads of
DSM and NSM models and show that combining the two layouts
in the same plan can be highly beneficial for complex queries.

Organizing attributes into groups either inside the data blocks
or the data pages extends the traditional space of NSM and DSM
layouts with cache-friendly layouts allowing for workload specific
optimizations. To improve cache locality of traditional NSM, Aila-
maki et al. [4] introduce a page layout called PAX. In PAX, data is
globally organized in NSM pages, while inside the page attributes
are organized into vertical partitions optimizing for reducing the
number of cache misses. A generalization of PAX layout is pro-
posed in data morphing [18], where the tuples in a page can be
stored in an even more flexible form combining vertical decompo-
sition and arbitrary groups of attributes and increasing spatial lo-
cality. Multi-resolution Block Storage Model [53] stores attributes
columnwise as PAX maintaining cache efficiency and groups disk
blocks into “super-blocks" with tuples stored among the blocks of
a super-block improving I/O performance of scan operations. In
a similar fashion, Blink [44] vertically partitions columns in byte-
aligned column groups called banks, allowing for efficient ALU

operations. Blink assigns particular columns into banks trying to
minimize padding overhead and wasted space.

All approaches above provide valuable design alternatives. How-
ever, one still needs to know the workload before deciding which
system to use and needs multiple of those systems to accommo-
date varying workloads. H2O pushes the state-of-the-art further by
providing a design which continuously adapts to the workload.

Auto-tuning Techniques. In the past years, there has been con-
siderable work on automated physical design tuning. These tech-
niques facilitate the process of automatically selecting auxiliary
data structures (e.g., indices, materialize views) for a given work-
load to improve performance. Offline approaches [3, 8, 41] assume
a priori knowledge of the workload and cannot cope with dynamic
scenarios while online approaches [49] try to overcome this lim-
itation by monitoring and periodically tuning the system. Online
partitioning [28] adapts the database partitions to fit the observed
workload. However, the above approaches are designed assuming
a static data layout while the execution strategies remain fixed.

Adapting Storage to Queries with Adaptive Indexing. Adap-
tive indexing [13, 14, 15, 17, 23, 24, 25, 27, 50] tackles the problem
of evolving workloads in the context of column-stores by building
and refining partial indexes during query processing. The moto of
adaptive indexing is that the “queries define how the data should
be stored”. We share this motivation here as we also adapt the stor-
age layout on-the-fly based on queries. However, adaptive indexing
research has focused on refining the physical order of data within
a single column at a time without considering co-locating values
across columns. The work on partial sideways cracking considers
multiple columns [25] but what it does is to physically reorganize
more than one columns in the same way as opposed to enforcing
co-location of values from multiple columns as we do here.

In addition, the interest in systems with hybrid storage layouts
has given rise to layout-aware workload analysis tools. Data mor-
phing [18] uses a cache miss cost model to select the proper at-
tribute grouping within an individual page that maximizes perfor-
mance for a given workload. The hybrid engine HYRISE [16] ap-
plies the same idea and presents an offline physical deign tool that
uses a cache misses cost model to evaluate the expected perfor-
mance of different data partitions and proposes the proper verti-
cal partitioning for a given workload. A storage advisor for SAP
HANA database is presented by Rösch et al. [47] considering both,
queries and data characteristics, to propose horizontal and vertical
partitioning schemas. H2O extends AutoPart [41], an offline ver-
tical partitioning algorithm to work for dynamic scenarios. The
above approaches use a static storage layout that is determined
when the relation is created, are optimized assuming a known work-
load and cannot adapt to dynamic changes in the workload. In this
paper, we highlight that no static layout can be optimal for every
query and we design a system that can autonomously refine its stor-
age layouts and execution strategies as the workload evolves.

Just-In-Time Compilation. Compilation of SQL queries into
native code goes back to System R [9]. Recently, there have been
many efforts to take advantage of dynamic translation techniques,
such as Just-In-Time (JiT) compilation in the context of DBMS
to alleviate the interpretation overhead of generic expressions, im-
prove data locality, generate architecture specific source code and
thus, significantly enhance performance. JiT techniques have been
applied to main-memory DBMS using the LLVM framework [39,
34], column-stores [51], group of column systems [42] and stream
processing systems [21] to generate code for the whole query ex-
ecution plan [31], to revise specific code segments or to generate
building primitives for higher-order composite operators. H2O ap-
plies similar techniques to generate layout-aware access operators.

6. CONCLUSIONS
Traditional systems use a static and fixed design regarding data

layouts. However, as applications become more and more data-
driven and with ad-hoc workloads it becomes increasingly hard for
a single traditional system, i.e., with a fixed layout, to be able to
efficiently cover a multitude of scenarios. In this way, today it is
not uncommon for businesses to employ more than one systems.

In this paper, we showcase the problem that for analytical queries
multiple layouts can be beneficial depending on the query work-
load. To get the optimal performance, we not only need the opti-
mal layout but also query processing strategies and access operator
code that are tailored for a given layout. All these together reduce
cache misses, instruction misses and interpretation overhead dur-
ing query execution. We propose H2O, a system that adaptively
and continuously adjusts all three of these elements. It generates
on-the-fly the appropriate layouts, execution strategies and code to
match the workload, as the workload evolves. Using both syn-
thetic benchmarks and real life experiments, we demonstrate that
H2O gracefully adapts as workloads change and stays close to the
optimal performance without requiring any workload knowledge.

Adaptive systems in which new data layouts are created or old
layouts are refined on-the-fly as incoming queries are processed can
create new exciting research paths. For example, one challenging
area with potential high impact is to study (adaptive) indexing to-
gether with adaptive data layouts and execution strategies.
Acknowledgments. The authors would like to thank the anony-
mous reviewers for their valuable comments and suggestions on
how to improve the paper. This work has been supported by the EU
FP7, project No. 317858 “BigFoot - Big Data Analytics of Digi-
tal Footprints” and Swiss National Science Foundation, project No.
CRSII2 136318/1, “Trustworthy Cloud Storage”.

7. REFERENCES
[1] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, and S. Madden. The design and

implementation of modern column-oriented database systems. Foundations and
Trends in Databases, 5(3):197–280, 2013.

[2] D. Abadi, S. Madden, and N. Hachem. Column-stores vs. row-stores: how
different are they really? In SIGMOD, 2008.

[3] S. Agrawal, V. Narasayya, and B. Yang. Integrating vertical and horizontal
partitioning into automated physical database design. In SIGMOD, 2004.

[4] A. Ailamaki, D. DeWitt, M. Hill, and M. Skounakis. Weaving relations for
cache performance. In VLDB, 2001.

[5] A. Ailamaki, D. DeWitt, M. Hill, and D. Wood. DBMSs on a modern
processor: Where does time go? In VLDB, 1999.

[6] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. NoDB:
efficient query execution on raw data files. In SIGMOD, 2012.

[7] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-pipelining query
execution. In CIDR, 2005.

[8] N. Bruno and S. Chaudhuri. Automatic physical database tuning: A
relaxation-based approach. In SIGMOD, 2005.

[9] D. Chamberlin et al. A history and evaluation of System R. Commun. ACM,
24(10):632–646, 1981.

[10] P. Cudré-Mauroux, E. Wu, and S. Madden. The case for RodentStore: An
adaptive, declarative storage system. In CIDR, 2009.

[11] J. Dittrich and A. Jindal. Towards a one size fits all database architecture. In
CIDR, 2011.

[12] F. Färber et al. SAP HANA database: data management for modern business
applications. SIGMOD Record, 40(4):45–51, 2011.

[13] G. Graefe, F. Halim, S. Idreos, H. A. Kuno, and S. Manegold. Concurrency
control for adaptive indexing. PVLDB, 5(7):656–667, 2012.

[14] G. Graefe, F. Halim, S. Idreos, H. A. Kuno, S. Manegold, and B. Seeger.
Transactional support for adaptive indexing. VLDB J., 23(2):303–328, 2014.

[15] G. Graefe and H. Kuno. Self-selecting, self-tuning, incrementally optimized
indexes. In EDBT, 2010.

[16] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudré-Mauroux, and S. Madden.
HYRISE - a main memory hybrid storage engine. PVLDB, 4(2):105–116, 2010.

[17] F. Halim, S. Idreos, P. Karras, and R. Yap. Stochastic database cracking:
Towards robust adaptive indexing in main-memory column-stores. PVLDB,
5(6):502–513, 2012.

[18] R. Hankins and J. Patel. Data morphing: An adaptive, cache-conscious storage
technique. In VLDB, 2003.

[19] S. Harizopoulos, V. Liang, D. Abadi, and S. Madden. Performance tradeoffs in
read-optimized databases. In VLDB, 2006.

[20] J. Hellerstein, M. Stonebraker, and J. R. Hamilton. Architecture of a database
system. Foundations and Trends in Databases, 1(2):141–259, 2007.

[21] M. Hirzel et al. IBM streams processing language: Analyzing big data in
motion. IBM Journal of Research and Development, 57(3/4):7, 2013.

[22] S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki. Here are my data files.
Here are my queries. Where are my results? In CIDR, 2011.

[23] S. Idreos, M. L. Kersten, and S. Manegold. Database cracking. In CIDR, 2007.
[24] S. Idreos, M. L. Kersten, and S. Manegold. Updating a cracked database. In

SIGMOD, 2007.
[25] S. Idreos, M. L. Kersten, and S. Manegold. Self-organizing tuple reconstruction

in column-stores. In SIGMOD, 2009.
[26] S. Idreos and E. Liarou. dbTouch: Analytics at your fingertips. In CIDR, 2013.
[27] S. Idreos, S. Manegold, H. Kuno, and G. Graefe. Merging what’s cracked,

cracking what’s merged: adaptive indexing in main-memory column-stores.
PVLDB, 4(9), 2011.

[28] A. Jindal and J. Dittrich. Relax and let the database do the partitioning online.
In BIRTE, 2011.

[29] A. Kemper and T. Neumann. Hyper: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots. In ICDE, 2011.

[30] M. L. Kersten, S. Idreos, S. Manegold, and E. Liarou. The researcher’s guide to
the data deluge: Querying a scientific database in just a few seconds. PVLDB,
4(12):1474–1477, 2011.

[31] K. Krikellas, S. Viglas, and M. Cintra. Generating code for holistic query
evaluation. In ICDE, 2010.

[32] A. Lamb et al. The Vertica analytic database: C-Store 7 years later. PVLDB,
5(12):1790–1801, 2012.

[33] P.-Å. Larson et al. Enhancements to SQL Server column stores. In SIGMOD,
2013.

[34] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO, 2004.

[35] R. MacNicol and B. French. Sybase IQ Multiplex - designed for analytics. In
VLDB, 2004.

[36] S. Manegold, P. Boncz, and M. Kersten. Optimizing database architecture for
the new bottleneck: memory access. VLDB J., 9(3):231–246, 2000.

[37] A. Nandi and H. V.Jagadish. Guided interaction: Rethinking the query-result
paradigm. In VLDB, 2011.

[38] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical partitioning algorithms
for database design. ACM Trans. Database Syst., 9(4):680–710, 1984.

[39] T. Neumann. Efficiently compiling efficient query plans for modern hardware.
PVLDB, 4(9):539–550, 2011.

[40] S. Padmanabhan, T. Malkemus, R. Agarwal, and A. Jhingran. Block oriented
processing of relational database operations in modern computer architectures.
In ICDE, 2001.

[41] S. Papadomanolakis and A. Ailamaki. AutoPart: Automating schema design for
large scientific databases using data partitioning. In SSDBM, 2004.

[42] H. Pirk et al. CPU and cache efficient management of memory-resident
databases. In ICDE, 2013.

[43] R. Ramamurthy, D. DeWitt, and Q. Su. A case for fractured mirrors. VLDB J.,
12(2):89–101, 2003.

[44] V. Raman et al. Constant-time query processing. In ICDE, 2008.
[45] V. Raman et al. DB2 with BLU acceleration: So much more than just a column

store. PVLDB, 6(11):1080–1091, 2013.
[46] J. Rao, H. Pirahesh, C. Mohan, and G. M. Lohman. Compiled query execution

engine using JVM. In ICDE, 2006.
[47] P. Rösch, L. Dannecker, G. Hackenbroich, and F. Faerber. A storage advisor for

hybrid-store databases. PVLDB, 5(12):1748–1758, 2012.
[48] D. Saccà and G. Wiederhold. Database partitioning in a cluster of processors.

ACM Trans. Database Syst., 10(1):29–56, 1985.
[49] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis. COLT: continuous

on-line tuning. In SIGMOD, 2006.
[50] F. M. Schuhknecht, A. Jindal, and J. Dittrich. The Uncracked Pieces in

Database Cracking. PVLDB, 7(2), 2013.
[51] J. Sompolski, M. Zukowski, and P. Boncz. Vectorization vs. compilation in

query execution. In DaMoN, 2011.
[52] M. Stonebraker and U. Çetintemel. “One size fits all”: An idea whose time has

come and gone. In ICDE, 2005.
[53] J. Zhou and K. Ross. A multi-resolution block storage model for database

design. In IDEAS, 2003.
[54] M. Zukowski and P. Boncz. Vectorwise: Beyond column stores. IEEE Data

Eng. Bull., 35(1):21–27, 2012.
[55] M. Zukowski, N. Nes, and P. Boncz. DSM vs. NSM: CPU performance

tradeoffs in block-oriented query processing. In DaMoN, pages 47–54, 2008.

