View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Secure and Private Proofs for Location-Based Activity
Summaries in Urban Areas

Anh Pham, Kévin Huguenin, Igor Bilogrevic, and Jean-Pierre Hubaux
EPFL, Switzerland
{thivananh.pham,kevin.huguenin,igor.bilogrevic,jean-pierre.hubaux} @epfl.ch

ABSTRACT

Activity-based social networks, where people upload and
share information about their location-based activities
(e.g., the routes of their activities), are increasingly popu-
lar. Such systems, however, raise privacy and security is-
sues: the service providers know the exact locations of their
users; the users can report fake location information to, for
example, unduly brag about their performance. In this pa-
per, we propose a secure privacy-preserving system for re-
porting location-based activity summaries (e.g., the total dis-
tance covered and the elevation gain). Our solution is based
on a combination of cryptographic techniques and geometric
algorithms, and it relies on existing Wi-Fi access point net-
works deployed in urban areas. We evaluate our solution by
using real data-sets from the FON community networks and
from the Garmin Connect activity-based social network, and
show that it can achieve tight (up to a median accuracy of
79%) verifiable lower-bounds of the distance covered and of
the elevation gain, while protecting the location privacy of the
users with respect to both the social network operator and the
access point network operator(s).
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INTRODUCTION

Over the last years, the presence and usage of embedded sen-
sors in mobile devices has significantly increased. Location-
based services (LBSs) are nowadays able to keep users in-
formed about traffic conditions, significant events happening
in proximity and nearby presence of other people with similar
interests. More recently, LBSs are increasingly used by peo-
ple to track, monitor and share their physical activities and
performance over time; in particular, health- and wellness-
related applications, such as Fitbit [10], Achievemint [1],
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Garmin connect [13], Nike+ [24] and Jawbone UP [20], al-
low users to keep track of their performance while running,
hiking or cycling. In the current form of such systems, the
users’ mobile devices or activity trackers collect and send the
users’ locations (while pursuing their activities) to the service
provider.

A popular feature of such applications is the ability to share
summaries of users’ activities or performance statistics with
other users or service providers on social networks. For
instance, users can share the total distance covered during
their activities, the cumulative elevation gain and the actual
path. In exchange for their data, users can be rewarded with
coupons and discounts [32] or even with cash [1], with awards
in competitions [25, 30], or simply with a better “social repu-
tation” within their social circles.

Although activity tracking and sharing services are gaining
popularity, there are two important issues that can hinder their
wide-scale adoption and viability. First, users’ location data,
which is known to service providers, can be used to infer pri-
vate information about them, such as their home/work loca-
tions [14, 17], activity preferences [23], interests [26] and so-
cial networks [8,22]. Second, users might be tempted to cheat
when reporting their performance [6], in order to obtain a bet-
ter reward, which can endanger the viability of the system for
the service provider and its affiliates, as well as its attractive-
ness to other users. Location cheating can be achieved by
making mobile devices report erroneous location information
to the activity tracker app, or by spoofing the GPS or Wi-Fi
signals used to geo-locate the users’ [16].

A straightforward solution to those issues would consist in
enforcing the use of either secure and/or privacy-preserving
location proofs for users [4,16,21], where their location could
be either (1) trusted and known (as it is the case for activ-
ity trackers) or (2) untrusted and known (but useless for ob-
taining rewards), respectively. In fact, solutions guaranteeing
property (1) would benefit the service provider by ensuring
that cheating is infeasible, whereas solutions satisfying (2)
would protect users’ location privacy but would provide a too
coarse-grained location resolution to be useful for the pur-
poses of obtaining a reward or comparing performances.

In this paper, we propose a novel infrastructure-based ap-
proach that provides guarantees both in terms of cheating pre-
vention and location privacy for the users vis-a-vis the ser-
vice provider, while allowing the latter to compute accurate
summaries and statistics of users’ activities, such as the to-


https://core.ac.uk/display/148004297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tal distance covered during an activity. Our approach relies
on existing wireless access point (AP) networks, and it alle-
viates the need for a costly deployment of a dedicated ad-hoc
infrastructure. Instead, it could rely on strategic partnerships
between social network providers and access point network
operators. Our approach consists of two phases: First, users
obtain secure and privacy-preserving proofs of performance
during their activities, by relying on a lightweight message
exchange protocol between a user’s mobile device and the
Wi-Fi access points encountered while pursuing the activity;
second, the service provider computes an accurate summary
of a user’s activity, such as the total distance covered between
two time instants or the elevation gain, without learning any
additional information about the user’s actual location. Our
protocol produces, in a privacy-preserving way, a secure and
accurate lower bound of the actual distance covered by a user
while performing an activity. Finally, our solution is able to
take advantage of the co-existence of multiple access point
operators to improve the accuracy/privacy trade-off. To the
best of our knowledge, this is the first work to address privacy
and cheating issues in the computation of activity summaries.

We evaluate our solution on a large data set of real user ac-
tivities, collected from the Garmin connect [13] social net-
work in the regions of Brussels (Belgium), London (UK) and
Paris (France). For these regions, we also extract the actual
locations of a network of deployed Wi-Fi APs operated by
FON [11]. Moreover, to evaluate the benefits of having mul-
tiple operators in a given area, we extract the locations of a
second network for the urban area of Paris. The experimental
results show that our solution achieves a good accuracy (up
to a median accuracy of 79%) and it can gracefully balance
accuracy and privacy. We also conduct a sensitivity analysis
to evaluate the effect of the distribution of the access points
on the performance of our solution.

The remainder of the paper is organized as follows. We first
survey the related work and we introduce the system and ad-
versarial models. We then present our solution and we report
on its evaluation in terms of its performance, and of its secu-
rity and privacy properties. Finally, we present directions for
future work and conclude this paper.

RELATED WORK

Prior works that study the secure verification of location in-
formation can, from a broad perspective, be grouped in two
categories, depending on the presence or absence of the in-
frastructure. We first discuss the infrastructure-independent
studies [19, 31, 33], and then we discuss the infrastructure-
dependent ones [4, 15,21,28].

In the infrastructure-independent approach, a user obtains lo-
cation evidences from her neighbors by using short range
communication technologies, such as Bluetooth [31, 33].
Specifically, Talasila et al. [31] propose a location authenti-
cation protocol called LINK (Location verification through
Immediate Neighbors Knowledge), where a set of users help
verify each others’ location claims. The protocol operates
by keeping a centralized authority that, based on users spatio-
temporal correlation, decides whether such claims are authen-
tic or not. Similarly, Zhu et al. [33] propose the APPLAUS

system, where mutually co-located users rely on Bluetooth
communications to generate their location claims, which are
then sent to a centralized location verifier. In addition to
the security and privacy guarantees presented in [31], Zhu et
al. [33] allow individual users to evaluate their own location
privacy and decide whether to accept location proof requests
by other users. Jadliwala et al. [19] provide a formal analysis
of the conditions that need to be satisfied in an ad-hoc net-
work, in order to enable the existence of any distance-based
localization protocols in wireless networks.

More in line with our work, the infrastructure-dependent
studies assume the presence of a centrally-operated set of ac-
cess points (AP) to produce and verify location claims. For
instance, to ensure the presence of a user in a given region,
the AP can require her to be execute together a nonce-based,
challenge-response protocol, with constraints on the maxi-
mum round-trip delay of the messages exchanged between
the user and the AP [28], or any distance bounding proto-
col [5,7,29], which enables the AP to check the minimum
distance between itself and the user. In particular, [5] pro-
pose a verifiable multilateration protocol that can be used to
securely position nodes in a wireless network. Once the se-
cure localization phase is done, the user can obtain a location
proof, which is a document signed by the witnesses to certify
that at a specific time, the user is at a specific geographical
location [28]; for example, an AP can embed its coverage
range, its center coordinate and a timestamp in the location
proof, in order to certify that at the specified timestamp, the
user is in the coverage area of the AP. Alternatively, in [21] a
user can choose to obtain location proofs for different levels
of granularity for the precision of her location, and choose
the one to disclose to the service provider depending on her
preferences and privacy sensitivity.

He et al. [16] present a study that deals specifically with a
cheating attack on a social network (Foursquare). The authors
show how the users can easily override or bypass the GPS
verification mechanisms of the service provider by, notably,
modifying the values that are returned by the API calls to the
geo-location interface of the smartphones. The attacker can
achieve such a result by either using the APIs provided by the
online services, or via device emulators.

Our work relies on an infrastructure of wireless access points
to provide secure location and distance proofs, in line with
the infrastructure-dependent models discussed above; how-
ever, it is the first, to the best of our knowledge, to provide
secure distance proofs and to tackle the challenge of activity
summaries in online social networks.

SYSTEM ARCHITECTURE

In this section, we describe the different entities involved in
our system: A user, a Wi-Fi network operator and a social
network provider. Figure 1 depicts the system we consider
and a sketch of the solution. We also describe the adversarial
model in this scenario.

Users
We assume that some users pursue location-based activities,
where they move in a given geographical region, and that



they want to obtain statistics or summaries of their activities.
These users are equipped with GPS- and WiFi-enabled de-
vices and have sporadic Internet connectivity (at least at some
point in time before and after the activity). Therefore, they
can locate themselves and communicate with nearby Wi-Fi
access-points. We assume a unit-disc model for Wi-Fi com-
munications, in which a user and an AP can communicate
only if the distance between them is lower than a given ra-
dius R, which is constant across all users and all APs. In
particular, we assume that users cannot violate this model by,
for example, increasing the transmission power of their de-
vices. We assume that users can obtain random identifiers
(or pseudonyms) from the online service provider, and that
they can use such pseudonyms to protect their privacy while
pursuing their activities. A pseudonym contains a pair of
public/private keys, generated with a public-key encryption
scheme such as RSA [27] or Elgamal [9]. We assume that
users do not hand their pseudonyms to other users (this can
be enforced by embedding sensitive or critical information
about the users in their pseudonyms, such as tokens that en-
able the users to reset their passwords). Finally, we assume
direct Wi-Fi connections to have much smaller communica-
tion delays than cellular Internet connections, thus allowing
us to prevent proxy/relay attacks [16] by using delay-based
challenge-response mechanisms.

Users might be tempted to cheat by reporting locations that
are different from their actual locations, in order to unduly
brag about their performance or obtain rewards. To do so,
users might, for instance, forge messages or reuse messages
they, or their friends, obtained in the past.

Wi-Fi AP Network Operator

We assume the existence of one or multiple Wi-Fi network
operators, and that each operator controls a set of fixed
Wi-Fi APs deployed in the regions where the users pursue
their activities. Each AP is aware of its geographic posi-
tion and of its communication radius. We assume that all
the APs have synchronized clocks, and that they are able
to compute public-key cryptographic operations. In partic-
ular, we assume that all the APs from a same network oper-
ator share a public/private group key pair (GK pub, GK priv),
where GK 1 is known by the users and the service provider,
whereas GK ;i is only known to the network operator and
to its APs.

The access point operators are interested in tracking the users’
locations, based on the information obtained by all of their
APs. They are assumed to be semi-honest or honest-but-
curious, meaning that they do not deviate from the protocol
specified in our solution but they simply analyze the infor-
mation they collect while executing the protocol. We further
assume that different network operators do not collude with
each other and that they do not collude with the social net-
work provider.

Social network provider

We assume that there is a social network provider that of-
fers activity summaries and sharing services for its registered
users. The provider is able to generate sets of pseudonyms for

its users, by using a suitable public-key encryption scheme.
Moreover, it is able to verify the authenticity of messages
signed with the network operators’ group keys (by using their
public group keys). Like the network operators, the social
network provider is interested in the users’ locations and it is
assumed to be honest-but-curious.

SOLUTION

In this section, we present our approach for the secure and
privacy-preserving activity summaries. First, we give a high-
level overview of our solution and define the main operations
it involves. Subsequently, we provide a detailed description
of each of the aforementioned operations. Figure 1 shows an
overview of the solution and the different operations involved.

Overview

From a general perspective, our solution operates as follows.
As a user pursues her location-based activity, she moves and
communicates (through her smartphone) with the wireless ac-
cess points located along her route (and in her communication
range) to obtain location proofs (LP). A location proof is a
digitally signed message, delivered by an access point, that
certifies that the user is, at a given time ¢, in a given range of
an access point that is located at a given position (z,y).! The
times/positions at which users request such location proofs
are determined by a sampling algorithm.?

A user employs different pseudonyms (provided to her be-
forehand by the service provider) when communicating with
the access points. The different location proofs obtained by a
user (from different access points) in a short interval of time
are aligned in time and combined into a more precise location
proof by using intersection techniques. To obtain an activity
proof, a user provides pairs of consecutive precise location
proofs to an access point; more specifically, she obtains a dis-
tance proof (DP) and/or an elevation proof (EP). The activity
proofs that the user obtains are free from location informa-
tion, as they do not include information about where the ac-
tivity was pursued but only about the distance or elevation.
Such proofs are digitally signed messages that certify that a
user achieved (at least) one given performance during a given
time span, e.g., that she ran at least 1 km between 3:02pm and
3:08pm on March 19th. Finally, a user sends all the activity
proofs she collected, while pursuing her activity, to the social
network provider that performs the adequate verifications; if
they are successful, the provider combines the proofs into an
activity summary that it publishes on the user’s profile.

In terms of privacy, the use of pseudonyms protects users’
location (essentially unlinkability of activity proofs) with re-
spect to the access point operators; the lack of location infor-
mation in activity proofs provides protection with respect to

"Throughout the paper, we use an equi-rectangular projection to
map the latitude and longitude of the considered locations to a Carte-
sian coordinate system, in which the Euclidean distance between
two points is a good approximation of the Haversine distance be-
tween the corresponding locations.

2For the sake of clarity, we describe the sampling algorithm after the
location and activity proofs.
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Figure 1. System architecture of the proposed solution. A user first obtains a set of pseudonyms {p1, ..

.,k } from the social network provider. Then,

while performing a location-based activity along the dotted trajectory, she sporadically requests location proofs (LP) at times ¢;, using pseudonyms p;,
to the APs encountered along the trajectory. By using the LPs, the APs compute, and deliver to the user, distance proofs for the different time intervals.
The user finally sends the distance proofs to the social network provider that combines them and publishes the summary on her profile.

the social network provider. Finally, the use of digital signa-
tures and pseudonyms, combined with the fact that the activ-
ity proofs represent lower bounds of the user’s actual perfor-
mance, provide security properties with respect to dishonest
users.

Location proofs

At each sampling time ¢; (determined by the sampling al-
gorithm described below), a user begins to collect location
proofs from the access points in her communication range.
To do so, she periodically broadcasts (during a short time in-
terval starting at time ¢;) location-proof requests that contain
one of her pseudonyms P. Note that a different pseudonym
is used for each sampling time. All the access points in her
communication range send back messages that contain the
pseudonym P, a timestamp ¢ (i.e., the time at which the re-
quest is processed by the access point) and their coordinates
(z,y), digitally signed with the private group key GK pyiv,
namely a location proof LP = sigqx . {Pt, (z,y)}. We

denote by LP, ; = {P;,t ;,(xi;,yi;)} the j-th location
proof collected at sampling time ¢; (note that we omit the
signature for the sake of readability). As the communication
and processing delays differ from one access point to another,
the location proofs collected from different access points at a
same sampling time have different timestamps. Under the
unit-disc communication model (with radius R), such a loca-
tion proof certifies that, at time ¢, the user is at a distance of
at most I? to the access point that issues the location proof. In
other words, it certifies that the user is in a disc of radius R,
centered at the point of coordinate (z,y). We denote such a
disc by C((z,y), R).

Activity proofs

To obtain an activity proof (i.e., a distance proof or an el-
evation proof), a user sends to any access point (whenever
she needs it) the location proofs she collected at two con-
secutive sampling times ¢; and ¢;4;. The contacted access
point first combines the different location proofs, collected at
each of the two sampling times, into more precise location

proofs, by aligning them in time and intersecting them. As
these location proofs have different timestamps, the first step
of the combination consists in aligning the different location
proofs as follows. Assuming the speed at which users move
is upper-bounded by a constant vy, ., the fact that a user is at
a distance at most d to an access point at time ¢, means that at
time ¢/, the user is at a distance of at most d + vmax - [t — /| to
this access point. The second step of the combination simply
consists in computing the intersection of the aligned location
proofs. Note that only the locations proofs with a timestamp
in [t;,t; + 0t] are combined. The access point determines a
geographical area A; where the user was a time ¢; from the
following expression

Ai = ﬂc((xi,ﬁyi,j)vR + Umax ° |t7, - ti,j|) (l)

J

The access point repeats the same operation for the location
proofs obtained at sample time ¢ + 1.

The activity proofs are computed from a lower bound of a
user’s performance. As for distance proofs, knowing that a
user was in an area A; at time ¢; and in an area A;; at time
t;11, the distance d; between A; and A; 1 (i.e., the minimum
of the distances between any point in A; and any point in
A;+1) constitutes a lower bound of the distance covered by
a user during the time interval [¢;,¢;11]. More specifically,
using the Euclidean distance, we have

Vie—a)2+y—y)? 2)

d; = min
(z,y) € A,
(z',y") € Aipa

A tight approximation of d; can be obtained by using a non-
linear optimization toolbox such as [POPT [18].

With respect to the elevation proofs, the following expres-
sion gives a lower bound of the cumulative elevation gain’

3Note that the elevation loss can be computed by following the same
line of reasoning.



achieved by a user during the time interval [¢;,¢;1].

(max (0, z(2",y") — 2(z,9)))  (3)

e; = min
(z,y) € A;
(z',y') € Ait1

where z(-, -) denotes the elevation of the point of coordi-
nate (z,y). Note that the “max” operator is used here in
order to account for only positive elevation gains. Unlike
for the lower bound of the covered distance, we compute
the lower bound of the elevation gain analytically: e; =
max (0, ming, yyea,,, 2(¢,y) — max(; e a, 2(7,y)). Fig-
ure 2 illustrates the different stages of the generation of ac-
tivity proofs in the case of the covered distance and of the
elevation gain.

Finally, the access point generates an activity proof
sigGKpm{di, €i, [tis tit1], {Ps, Pi+1}} and sends it back.

Activity summary

To publish an activity summary on her profile, a user uploads
her collected activity proofs to the social network service
provider; in turn, the provider checks that (1) the signatures
of the activity proofs are valid (using the public group keys of
the access points), that (2) all the pseudonyms that appear in
the activity proofs indeed belong to the user and that (3) the
time intervals of the activity proofs do not overlap (otherwise
the distance covered in the time overlap would be counted
twice, hence violating the lower-bound property of the sum-
mary). If this is the case, the social network provider sim-
ply sums the distances (or the elevation gains, respectively)
from the activity proofs and adds the resulting summary to
the user’s profile.

e sampling point
= access point
— — user’s route
+— distance lower bound
elevation gain lower bound
O communication range of an access point (aligned)
Figure 2. Computation of distance and elevation proofs. The shaded ar-
eas correspond to the intersections of the location proofs obtained at the
same sampling time. The 3D plots correspond to the elevation profiles of

the shaded areas, based on which the lower-bound of the elevation gains
are computed.

Sampling algorithms

We now describe our sampling algorithm. The sampling al-
gorithm determines the times/positions (namely the sampling
times/points) at which the user requests location proofs from
the access points in her communication range. The general
objective of the sampling algorithm is to achieve a high ac-
curacy (i.e., tight lower-bounds in the activity proofs) and a
high level of privacy.

We distinguish between two cases: the case where a user
knows beforehand the path of the activity she is about to start,
namely planned sampling, and the case where she does not,
namely unplanned sampling. In both cases, the sampling al-
gorithm knows the locations of the access points. Planned
sampling corresponds to the quite common situation where
a user records the set of her preferred paths and of her past
activities. Such a feature is commonly implemented in ac-
tivity tracker applications (including Garmin’s) in order to
enable users to compete against their own previous perfor-
mance. For instance, the activity tracker application indicates
to the user whether she is late or in advance, compared to
her best performance. With planned sampling, the sampling
points are determined before the user starts the activity with
the full knowledge of the path, thus yielding potentially better
results. We now describe both variants of the algorithm, con-
sidering at first the case of one single access point operator,
and subsequently multiple such operators.

We focus on the case of distance proofs*. The planned and
unplanned versions of the algorithm share a common design
rationale: (1) limit the discrepancies between the actual path
and the lower-bounds, by requesting location proofs where
the direction of the path changes significantly; and (2) enforce
a silence period after requesting certain location proofs, in
order to achieve unlinkability of successive activity proofs.

Silence periods

To highlight the importance of silence periods, consider a user
who collects three location proofs at three successive sam-
pling times (with pseudonyms P;, P, and Ps). If she requests
a distance proof for the time interval between the first two lo-
cations proofs and another distance proof for the time interval
between the last two, the access point operator can link the
three location proofs (as it knows that P, and P» belong to
the same user and so do P, and P3) and thus track the user
despite the use of pseudonyms. To circumvent this issue, a
user requests an additional location proof some time after she
requests the second location proof, leaving her with four lo-
cations proofs. The time between the second and the third
(i.e., the additional) location proofs is called a silence period.
Finally, the user requests distance proofs only for the time
intervals between the first and the second and between the
third and the forth location proofs. The distance covered be-
tween the second and the third location proofs is not counted
in the user’s activity summary. The users repeat this process
throughout her activity, as depicted in Figure 3. The duration
AT of the silence period® is a parameter of the system that
enables users to balance their accuracy of the activity sum-
maries and their privacy: Short silence periods yield high-
accuracy activity summaries (as the distances covered dur-
ing the silence periods, which are not counted in the activity
summary, are small) but provide low privacy guaranties (as

“The problem is simpler for elevation proofs as the optimal sampling
strategy simply consists in requesting location proofs at the points
where the elevation is a locally minimal/maximal.

3In practice, the length of the silence period is a random vari-
able of mean AT (e.g., drawn for the uniform distribution on
[0.5AT,1.5AT)) in order to prevent an access point operator from
linking two distance proofs based on the time elapsed between them.



the access point operators can link with high confidence two
successive activity proofs because the time interval between
them is short). Conversely, long silence periods yield low-
accuracy activity summaries and provide high privacy guar-
anties.

silence period (AT)

Figure 3. Silence period. By implementing a silence period between
every pair of successive distance proofs (i.e., not requesting a distance
proof for this period), a user reduces the risk of her distance proofs being
linked by the access point, hence protecting her privacy.

Multiple access point operators

In the case where multiple access point operators are in-
volved, the silence periods are not always needed: By re-
questing successive distance proofs from different operators
(assumed to not collude with each other), a user does not need
to wait for AT seconds (i.e., implement a silence period)
to reduce the risks of linking her distance proofs. At every
sample point, a user requests location proofs from the access
points of all the operators. Then, for each interval between
two successive sampling points, she determines which oper-
ator would provide the largest distance proof, by computing
locally the lower-bound distance for the location proofs she
collected, and requests a distance proof from an access point
that belongs to this operator. In order to protect her privacy,
a user never requests two successive distance proofs from the
same operator, unless she implements a silence period. With
two operators, a user alternatively requests distance proofs
from each of the two access point operators, as illustrated in
Figure 4.

Figure 4. Case of multiple access point operators (Operator 1 in blue
and Operator 2 in red). At every sampling point, a user requests lo-
cation proofs from both operators. Then, she requests distance proofs
alternatively from different operators to reduce the risk of linking the
distance proofs she collects without reducing the accuracy of her activ-
ity summary (unlike when implementing silence periods).

For the sake of simplicity, we now describe the planned and
unplanned sampling algorithms without silence periods, in
the case of a single access point operator.

Planned sampling

As the path and the location of the access points are known
to the algorithm, a user can determine in advance the location
proofs she can collect (and the resulting areas {A;}, as de-
fined in Eq. (1)) at all the points on the path. We sample regu-
larly on the path (e.g., every 10 m) and we process each sam-
ple in a greedy fashion. The first two points of the path are, by
default, sampling points. We iterate on the points of the path,
starting at the third one. We process point 7 as follows: (1) We
add point i to the set of sampling points, and (2) we remove
the last recently added sampling point, if this yields a larger

lower-bound distance. Algorithm 1 embodies a pseudo-code
version of the planned sampling algorithm, where A(p) de-
notes the area resulting from the combination of the locations
proofs the users collects at a point p and d( -, - ) denotes the
minimum distance between two such areas.

Note that in practice, a user would not follow the exact same
path as she previously did. Therefore, the algorithm deter-
mines sampling points based on the previously recorded path
and the user requests location proofs when she reaches the
vicinity of a pre-determined sampling point (e.g., within 20
m).

Algorithm 1 Planned sampling algorithm.

Input: (p1,...,Pn) > Sequence of points on the path
Output: S > Set of sampling points
ta+1 > Index of the next-to-last sampling point
b+ 2 > Index of the last sampling point
1 S+ {a,b}
for i = 3 ton do
if d(A(pa), A(pi)) > d(A(pa), A(py)) + d(A(ps), A(p;)) then
S+ S—{b}
else
a<+b
end if
S« Su{i}
b1
: end for
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Unplanned sampling

In the unplanned version, only the current and past positions
of the user are known to the algorithm. A users first collects
location proofs at the starting point of her activity (e.g., when
she presses the “start” button on her mobile device). As the
user pursues her activity, the algorithm periodically deter-
mines whether location proofs should be requested. To do
so, the algorithm compares the actual distance covered since
the last sampling point with the straight-line distance between
the last sampling point and the current position. If the differ-
ence between the two distances is higher than a threshold, the
algorithm triggers the collection of location proofs. To limit
the rate at which location proofs are collected, we impose a
minimal distance between two sampling points.

Summary

In this section, we have presented a solution for providing se-
cure and privacy-preserving activity summaries, and we de-
scribed in detail the different operations it involves. The in-
accuracy of the activity summaries, defined as the difference
between the lower bounds and the actual values, produced by
our solution are due to the fact that (1) the distances covered
inside the areas {A;} as well as the distances covered during
the silence periods are not counted, and (2) the paths taken by
the users between two areas are approximated with a straight
line. We report on the evaluation of the accuracy of our so-
lution in the next section. The security and the privacy prop-
erties of our solution are provided by the use of pseudonyms
and cryptographic techniques, by the aggregation and saniti-
zation of data (with respect to location information), and by
the silence periods. We discuss this in the “Security and pri-
vacy analysis” section.
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Figure 5. Heat-maps of the densities of FON access points (top row) and of Garmin Connect activities (bottom row) in (a) Brussels, (b) London, and
(c) Paris. Note that, for the sake of presentation, the color range differs from one map to another.

PERFORMANCE EVALUATION

We evaluate the performance of the proposed solution on real
traces of users’ activities from Garmin Connect [13], pursued
in cities where wireless access points networks are deployed
by the FON operator [11] (and possibly Free [12]). We con-
sider scenarios where mobile users, equipped with Wi-Fi en-
abled devices, want to report the cumulative elevation gain
and the total distance covered during their location-based ac-
tivities (e.g., running). We focus our evaluation on three geo-
graphical areas corresponding to the cities of Brussels, Lon-
don and Paris.

Data-sets

In order to evaluate our solution, we collected data-sets of
access points locations and activities and we relied on the
Google Elevation API. Table 2 contains general statistics
about the (filtered) data-sets.

Wi-Fi access points

In late 2013, we collected the geographic coordinates of the
Wi-Fi access points from the FON community network in the
region of Brussels, London and Paris. FON is a large commu-
nity network with more than 12 million hotspots worldwide,
most of them located in western Europe. FON achieves very
high coverage in urban areas (up to 2,500 AP/km?) through
strategic partnerships with local ISPs (e.g., Belgacom, British
Telecom, SFR): The routers of the ISPs’ subscribers, pro-
vided by the partner ISP, act as FON hotspots. As ISPs hold
total control over the routers of their subscribers (through au-
tomatic firmware updates), they could easily implement and
deploy our solution. Overall, we obtained the locations of

92,280 unique APs® in Brussels, 39,776 unique APs in Lon-
don, and 87,521 unique APs in Paris. In order to evaluate our
solution with multiple access point network operators (used
jointly as described in the previous section), we also collected
the geographic coordinates of the Wi-Fi access points from
the Free community network. Free is a major French na-
tional ISP that offers community network features based on
the routers of its subscribers. We obtained the locations of
60,280 unique APs from Free in Paris, which correspond to a
density of 4454381 AP/km?. Figure 5 (top) depicts the heat-
maps of the densities of FON access points. We can observe
that the density of access points is low in regions correspond-
ing to rivers, cemeteries, parks, highways and railways; this is
due to the community nature of the FON network (i.e., access
points are in residential areas).

Activities

In early 2014, we collected activity information from Garmin
Connect, an online service where users can upload, and share,
information about their location-based activities, including
the type of activity (e.g., running, biking) and the path of the
activity (under the form of time-coordinates samples). We
collected running activities and we computed, for each of
them, the duration, the length and the cumulative elevation
gain of the path, the inter-sample times, and the density of
APs along the path (i.e., the number of APs met along the
path, assuming a unit-disc communication model with a ra-
dius R = 25 meters, normalized by the length of the path).
For each activity, we divided its path in chunks of 500 m,
and we determine for each chunk whether it is covered by

SWe filtered out duplicated APs (that either have the same identifier
or the exact same coordinates as another AP).



—_
(=3
(=)

T T
Brussels ———

ANARESIS

I London 4
Paris ;

ol |

4 / la

proportion of activities [%]

0 50 100 150 200 0
duration [min]

(a)

10 20 30 40 0
length [km]
(b)

100

elevation gain [m]

(©)

200 0 20 40 60 80 O 20 40 60 80 100
density of APs [AP/km] prop. of covered chunks [%]

) (e

Figure 6. Experimental CDF of the (a) duration, (b) length, (c) elevation gain (d) density of AP (along the activity) and (e) proportion of covered chunks,

among the activities from the Garmin data-set.

at least one access point (i.e., it intersects with the commu-
nication range of at least one access point). This metric is
crucial for our solution to work as a high proportion of cov-
ered chunks ensures that users will be able to collect location
proofs, and thus distance proofs. To exclude clear outliers or
activities that are not covered by a minimal number of access
points from our dataset, we filtered out activities that (1) last
less than 10 minutes or more than 4 hours, or (2) are shorter
than 2 km or longer than 45 km, or (3) have a gap of more
than 10 minutes between two samples, or (4) have less than 4
AP/km along their paths, or (6) have less than 20% of covered
chunks. In the remainder of the paper, we consider only the
activities that pass the aforementioned filters (i.e., the filtered
data-sets). Table 1 summarizes the different filters applied to
our raw data-set.

Filter
Duration <10minor >4h
Length <2 km or > 45 km

Inter-sample times > 10 min
Density of AP along activities < 4 AP/km
Proportion of covered chunks < 20%

Table 1. Summary of the filters applied to our activity data-set.

Figure 6 shows the experimental cumulative distribution
functions of the main characteristics of the activities used in
our evaluation and Figure 5 (bottom) depicts the heat-maps
of the densities of activities (i.e., the number of distinct activ-
ities that cross a given area of the map). It can be observed
that many activities take place in parks, where the density of
access points is relatively low. In the filtered data-set, we
observed a median inter-sample time of 3-4 seconds (which
correspond to 7-11 meters).

Table 2 summarizes some relevant (with respect to our solu-
tion) statistics on the filtered data. It can be observed that the
density of access points is lower in London but they are more
uniformly spread, especially along activities (as illustrated by
the relatively small standard deviation compared to Brussels
and Paris). Consequently, the number of covered chunks is
higher in London, thus letting us anticipate better results for
our solution in London.

Elevation
In order to determine the minimum and maximum elevation
of a given region, typically the intersection of discs centered

at the AP locations (as required in our solution to compute
lower-bounds of the elevation gains), we rely on the Google
Elevation API: We pick, uniformly at random, 20 locations
inside the region of interest, we query their elevation, and
we compute the minimum and maximum values. We also
use this API to compute the cumulative elevation gains of the
activities extracted from Garmin Connect.

Brussels London  Paris
Number of AP 92,280 39,776 87,521
Number of activities 107 294 437
Density of AP (AP/km?) 401£569 109+96.6 6461686

Density of AP along activities (AP/km) 17.1+£12.0 5.994+1.67 23.8+18.6
Proportion of covered chunks (%) 63.9420.0 83.04+15.0 77.7£23.5

Table 2. Summary of the statistics of the filtered data-sets (FON and
Garmin Connect) used in the evaluation (mean and standard deviation).

Methodology

We implement our solution in a Java simulator and evalu-
ate its performance for the activities from the Garmin Con-
nect dataset, with the access point networks from the FON
and Free data-sets (under the unit-disc communication model
with a radius of 25 meters). For each activity, we simu-
late the execution of our solution in different scenarios: with
one or multiple access point network operators, with the
planned/unplanned sampling algorithm, and for different val-
ues of the parameters (such as the duration AT of the silence
periods). For each such setting, we compute the correspond-
ing activity summary. We measure the performance of our
solution in terms of the accuracy of an activity summary: the
ratio between the distance (resp. elevation) in the summary
and the actual distance (resp. elevation) covered by the user
during her activity. As the summaries are lower bounds of
the actual performance of the users, the accuracy is between
0 and 100%. We only report on the evaluation of the accuracy
of distance summaries.

Results

First, we look at the absolute performance of our solution in
different settings. Figure 8 shows a box-plot representation
(first quartile, median, third quartile, and outliers) of the ac-
curacy of our solution in the (a) planned and (b) unplanned
cases, in the cities of Brussels, London and Paris, for dif-
ferent durations of the silence periods. In the case of Paris,
we also evaluate our solution with two access point operators
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(Free and FON). Overall, our solution achieves good perfor-
mance: up to a median accuracy of 75.6% (Paris, 1 opera-
tor, planned sampling, AT = 0). This value drops to 68.7%
when unplanned sampling is used. It can be observed that, as
expected, the planned sampling algorithm yields consistently
better results than the unplanned algorithm, and that the ac-
curacy decreases with the duration of the silence period. In
the case of two operators (in Paris), it can be observed that
the accuracy is only slightly better (75.9%) compared to the
scenario with a single operator, when the duration of the si-
lence period is set to 0. This is because a user can optimize
the lengths of her distance proofs between the two operators.
Moreover, the (negative) effect of the duration of the silence
periods on the accuracy is substantially lower in the case of
two operators (68.9% for the case of two operators vs. 44.6%
for the case of a single operator, with planned sampling and
AT=180 s). This is because silence periods are less fre-
quently needed in such a scenario, only when a user requests
a distance proof from an operator and cannot find any ac-
cess points belonging to the other operator for the subsequent
distance proof). Finally, the performances are quite similar
across the different cities, with a slight advantage for Lon-
don, which has a higher proportion of covered chunks. This
confirms our intuition and suggests that the performance of
our solution increases with the proportion of covered chunks.

To further study the sensitivity of our solution to the density
and the distribution of the access points (as captured by the
number of AP/km and the proportion of covered chunks, re-
spectively), we split the activities in three buckets, based on
the values of these two metrics, and we plot the experimental
cumulative density functions of the accuracy in each of these
buckets. Activities with a low density of AP and/or a low
proportion of covered chunks typically correspond to those
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Figure 8. Accuracy of the distance summaries, with the (a) planned and
(b) unplanned sampling algorithm, for different values of the duration
of the silence periods, with the FON netwrok (+ Free for Paris 2 Op.).

that are located in parks; thus they do not really match our
target context, i.e., urban areas. In the case of two operators,
we only consider the values of the metrics with respect to the
FON network.

The results are depicted in Figure 7, with planned sampling
and AT = 60 s. It can be observed that the performance is
substantially better for high densities and for high proportions
of covered chunks, as compared to the low counterparts. In
Brussels for instance, the median accuracy goes up to 64.9%
for activities with high densities, whereas it is only 50.6% for
all the activities. Note that even for some activities with a
high density, the accuracy can be quite low (i.e., <20%). We
investigated this issue by manually inspecting the paths of
these activities; we found that, for example, there are activi-
ties where the user first runs to a stadium through a residential
area and then runs a dozen of times inside the stadium on the
400-meter running track. Because the stadium is covered by



a single access point, all the chunks of the activity are cov-
ered. However, this is still not sufficient to obtain non-zero
distance proofs, as all the location proofs inside the stadium
are obtained from the same access point. Because the activity
begins in a residential area with a high access point density,
the average density over the complete activity is higher than
20 AP/km.

SECURITY AND PRIVACY ANALYSIS

In this section, we discuss the security and privacy properties
provided by our mechanism, by considering three possible
adversaries: the users, the service provider and the AP oper-
ator(s).

Adversary: User

First of all, we prevent users from forging location or activity
proofs by using digital signatures. Moreover, valid location
proofs can only be obtained if the users are in communication
range with the APs.

Second, proxy attacks, in which two or more users collude in
order to obtain valid location proofs, can be limited by intro-
ducing constraints on the execution time of the protocol; for
example, the AP operator could impose a communication de-
lay on the Wi-Fi interface that is smaller than the one achieved
by connecting through the cellular network.

Third, users cannot double count some of the distances they
cover because each activity proof contains the initial and final
time instants. Hence, the service provider can check that they
do not overlap before summing them up.

Finally, the activity proofs obtained are, by design, lower-
bounds of the performance achieved by the users. Therefore,
regardless of the way users obtains and combine their location
proofs, the reported summary will always be lower than their
actual performance.

Adversary: Service provider

In our mechanism, the service provider has only access to
location proofs and pseudonyms of the users. As location
proofs do not contain any location information, it cannot link
the distance proofs to actual locations. In a region covered
by APs, a given distance (more precisely, its lower bound)
can be attributed to many possible trajectories between any
two sets of APs, hence rendering unfeasible an accurate in-
ference of the actual locations and trajectory. Moreover, as
a distance also depends on the time difference between the
location proofs, attributing a single distance to a given trajec-
tory is even more challenging.

In order to hide the time at which the distance proofs are
obtained (in addition to their locations), a method based on
order-preserving encryption [3] can be used. This would en-
able the service provider to check that the time intervals of
the activity proofs are indeed disjoint, without knowing the
actual time intervals, hence further protecting the privacy of
the users.

Adversary: AP operator(s)

To prevent the AP operator(s) from tracking the locations of
the users, notably by linking activity proofs in order to recon-
struct the users’ trajectories, our mechanism employs both
randomized pseudonyms (generated by the service provider)
as well as silence periods. Quantifying the location-privacy of
users when pseudonyms and silence periods are employed is a
typical mix-zone problem [2]. In such situations, the location
privacy of a user depends on the other users as well, where
the higher the number of users is, the better their privacy is.
Note that, even if no silence periods are used (in the single
operator scenario), the operator can only track a user during
her activity without being able to link different activities over
time. Thus, this prevents the AP operator from inferring pat-
terns from activity trajectories over time. Note that, unlike the
service provider, the operators have no personal information
about the users (such as their names).

CONCLUSION AND FUTURE WORK

Activity-based social networks have become increasingly
popular over the last few years. In their current form, such
systems rely on the users’ mobile devices to collect and to
report the users’ actual locations while they pursue their ac-
tivities. This provides neither security guarantees against
cheaters, nor privacy protection against curious social net-
work providers, thus potentially threatening their wide-scale
adoption.

In this paper, we propose a solution for providing secure and
private proofs of location-based activities. Our solution relies
on the existing wireless access point networks (at the cost of
only a software upgrade, hence alleviating the need for de-
ploying ad-hoc infrastructures), and it provides protection for
both users and service providers. By targeting activities pur-
sued in urban areas, it does not require users to cooperate
or exchange messages with each others in an ad-hoc manner.
Our experimental evaluation, conducted using real data-sets
of deployed wireless access points and actual users’ outdoor
activities, shows that our solutions achieves a good accuracy
(up to 79%) when estimating a lower-bound of the distance
that users cover during their activities, while providing pri-
vacy and security properties. From a practical perspective,
we envision our scheme to be of interest for strategic part-
nerships between social network providers and access point
network operators. We focused our description and evalua-
tion of our solution on distance summaries and sketched a
solution for elevation gain summaries as well. As such, this
work constitutes a first step towards the design of secure and
private activity-based social networks.

As part of future work, we plan to (1) further improve the ac-
curacy of our solution by optimizing the sampling algorithms,
(2) extend our evaluation to include the case of cumulative
elevation gain summaries, and (3) evaluate our solution on a
real testbed of deployed access points to assess its technical
feasibility and its performance in practice. Finally, we plan to
formalize the system (in the presence of multiple users pur-
suing location-based activities in the same region) as a mix-
zone problem in order to quantify the loss of users’ location
privacy.
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