
1

Spatial Locality Speculation to Reduce Energy in
Chip-Multiprocessor Networks-on-Chip

Hyungjun Kim∗, Boris Grot†, Paul V. Gratz∗ and Daniel A. Jiménez‡
∗Department of Electrical and Computer Engineering, Texas A&M University

†Institute of Computing and Multimedia Systems, EPFL
‡Department of Computer Science, The University of Texas at San Antonio

∗{hyungjun,pgratz}@tamu.edu †boris.grot@epfl.ch ‡dj@cs.utsa.edu

F

Abstract—As processor chips become increasingly parallel, an effi-
cient communication substrate is critical for meeting performance and
energy targets. In this work, we target the root cause of network
energy consumption through techniques that reduce link and router-
level switching activity. We specifically focus on memory subsystem
traffic, as it comprises the bulk of NoC load in a CMP. By transmitting
only the flits that contain words predicted useful using a novel spatial
locality predictor, our scheme seeks to reduce network activity. We aim
to further lower NoC energy through microarchitectural mechanisms
that inhibit datapath switching activity for unused words in individual
flits. Using simulation-based performance studies and detailed energy
models based on synthesized router designs and different link wire
types, we show that (a) the prediction mechanism achieves very high
accuracy, with an average rate of false-unused prediction of just 2.5%;
(b) the combined NoC energy savings enabled by the predictor and
microarchitectural support are 36% on average and up to 57% in the
best case; and (c) there is no system performance penalty as a result of
this technique.

1 INTRODUCTION
While process technology scaling continues providing
more transistors, the transistor performance and power
gains that accompany process scaling have largely
ceased [1]. Chip-multiprocessor (CMP) designs achieve
greater efficiency than traditional uniprocessors through
concurrent parallel execution of multiple programs or
threads. As the core count in chip-multiprocessor (CMP)
systems increases, networks-on-chip (NoCs) present a
scalable alternative to traditional, bus-based designs for
interconnection between processor cores [2]. As in most
current VLSI designs, power efficiency has also become
a first-order constraint in NoC design. The energy con-
sumed by the NoC itself is 28% of the per-tile power
in the Intel Teraflop chip [3] and 36% of the total chip
power in MIT RAW chip [4]. In this paper we present a
novel technique to reduce energy consumption for CMP
core interconnect leveraging spatial locality speculation
to identify unused cache block words. In particular, we
propose to predict which words in each cache block
fetch will be used and leverage that prediction to reduce
dynamic energy consumption in the NoC channels and
routers through diminished switching activity.

1.1 Motivation
Current CMPs employ cache hierarchies of multiple lev-
els prior to main memory [5], [6]. Caches organize data
into blocks containing multiple contiguous words in an

0%

10%

20%

30%

40%

50%

60%

70%

80%

Fig. 1. Percentage of 64-byte block, cache words utilized
per block in the PARSEC multithreaded benchmarks.

effort to capture spatial locality and reduce the likelihood
of subsequent misses. Unfortunately, applications often
do not fully utilize all the words fetched for a given
cache block, as recently noted by Pujara et al. [7].

Figure 1 shows the percentage of words utilized in the
PARSEC multithreaded benchmark suite [8]. On average,
61% of cache block words in the PARSEC suite bench-
marks will never be referenced and represent energy
wasted in transference through the memory hierarchy 1.
In this work, we focus on the waste associated with
traditional approaches to spatial locality, in particular the
wasted energy and power caused by large cache blocks
containing unused data.

1.2 CMP Interconnect
Networks-on-chip (NoCs) purport to be a scalable inter-
connect to meet the increasing bandwidth demands of
future CMPs [2]. NoCs must be carefully designed to
meet many constraints. Energy efficiency, in particular,
is a challenge in future NoCs as the energy consumed
by the NoC itself is a significant fraction of the total
chip power [3], [4]. The NoC packet datapath, consisting
of the link, crossbar and FIFOs, consumes a significant
portion of interconnect power, 55% of network power in
the Intel Teraflop chip [3].

Existing NoCs implement channels with relatively
large link bit-widths (>=128 bits) [9], [10], a trend
expected to continue as more wire density becomes

1. Versus 64-byte lines, 32-byte lines reduces unused words to 45%,
however it increases AMAT 11% (See Section 5.3).



2

available in future process technologies. These high-
bandwidth link wires reduce the latency of cache block
transmission by allowing more words to be transferred
in each cycle, minimizing serialization latency for large
packets. In some cases, however, not all the words in
a flit are useful to the processor. In particular, unused
cache block words represent wasted power and energy.
We propose to use spatial locality speculation to leverage
unused words of the block transfers between the lower
and upper cache levels to save energy.

1.3 Proposed Technique
The goal of the proposed technique is to reduce dynamic
energy in CMP interconnect by leveraging spatial local-
ity speculation on the expected used words in fetched
cache blocks in CMP processor memory systems.

The paper makes the following contributions:
• A novel intra-cache-block spatial locality predictor,

to identify words unlikely to be used before the
block is evicted.

• A static packet encoding technique which leverages
spatial locality prediction to reduce the network
activity factor, and hence dynamic energy, in the
NoC routers and links. The static encoding requires
no modification to the NoC and minimal additions
to the processor caches to achieve significant energy
savings with negligible performance overhead.

• A complementary dynamic packet encoding tech-
nique which facilitates additional energy savings in
NoC links and routers via light-weight microarchi-
tectural enhancements.

In a 16-core CMP implemented in a 45-nm process
technology, the proposed technique achieves an average
of ∼35% savings in total dynamic interconnect energy
at the cost of less than 1% increase in memory system
latency.

The rest of this paper is organized as follows: Section 2
discusses the related work and background in caches,
NoCs and power efficiency on-chip to provide the intu-
ition behind our power saving flit-encoding technique.
Section 3 discusses our proposed technique in detail,
including the proposed spatial locality predictor and
the proposed packet encoding schemes. Section 4 and 5
present the experimental setup and the results. Finally,
we conclude in Section 6.

2 BACKGROUND AND RELATED WORK
2.1 Dynamic Power Consumption
When a bit is transmitted over interconnect wire or
stored in an SRAM cell, dynamic power is consumed as a
result of a capacitive load being charged up and also due
to transient currents during the momentary short from
Vdd to Gnd while transistors are switching. Dynamic
power is not consumed in the absence of switching
activity. Equation 1 shows the dynamic and short-circuit
components of power consumption in a CMOS circuit.

P = α · C · V 2 · f + t · α · V · Ishort · f (1)

In the equation, P is the power consumed, C is the
switched capacitance, V is the supplied voltage, and F

is the clock frequency. α represents the activity factor,
which is the probability that the capacitive load C is
charged in a given cycle. C, V, and F are a function
of technology and design parameters. In systems that
support dynamic voltage-frequency scaling (DVFS), V
and F might be tunable at run time; however, dynamic
voltage and frequency adjustments typically cannot be
done at a fine spatial or temporal granularity [11]. In
this work, we target the activity factor, α, as it enables
dynamic energy reduction at a very fine granularity.

2.2 NoC Power and Energy
Researchers have recently begun focusing on the energy
and power in NoCs, which have been shown to be
significant contributors to overall chip power and energy
consumption [3], [4], [12], [13].

One effective way to reduce NoC power consumption
is to reduce the amount of data sent over the network.
To that extent, recent work has focused on compression
at the cache and network levels [14], [15] as an effective
power-reduction technique. In general, however, com-
pression techniques have overheads in terms of latency
for compression and decompression. The technique we
present is orthogonal to, and could potentially be used in
conjunction with, these loss-less compression techniques
to further reduce power. Our work seeks to reduce the
amount of data transmitted through identification and
removal of useless words; traditional compression could
be used to more densely pack the remaining data.

Researchers have also proposed a variety of techniques
to reduce interconnect energy consumption through re-
duced voltage swing [16]. Schinkel et al. propose a
scheme which uses a capacitative transmitter to lower
the signal swing to 125 mV without the use of an addi-
tional low-voltage power supply [17]. In this work we
evaluate our prediction and packet encoding techniques
for links composed of both full-signal swing as well as
low-signal swing wires.

NoC router microarchitectures for low power have
also been explored to reduce power in the transmission
of data which is much smaller than a flit. Das et al. pro-
pose a novel crossbar and arbiter design that supports
concurrent transfers of multiple flits on a single link to
improve bandwidth utilization. [18].

Finally, static power consumption due to leakage cur-
rents is also a significant contributor to total system
power. However, researchers have shown that power-
gating techniques can be comprehensively applied at the
NoC level and are highly effective at reducing leakage
power at periods of low network activity [19].

2.3 Spatial Locality and Cache Block Utilization
Spatial and temporal locality have been studied exten-
sively since caches came into wide use in the early
1980’s [20]. Several works in the 1990’s and early 2000’s
focused on indirectly improving spatial locality through
compile and run-time program and data transformations
which improve the utilization of cache lines [21]–[24].
While these techniques are promising, they either re-
quire compiler transformations or program changes and
cannot be retrofitted onto existing code. Our proposed



3

approach relies on low-overhead hardware mechanisms
and is completely transparent to software.

Hardware techniques to minimize data transfer among
caches and main memory have also been explored in
the literature. Sectored caches were proposed to reduce
the data transmitted for large cache block sizes while
keeping overhead minimal [25]. With the sectored cache,
only a portion of the block (a sector) is fetched, sig-
nificantly reducing both the miss time and the bus
traffic. The proposed technique builds upon this idea
by speculatively fetching, not just the missing sector but
sectors (words in this case) which have predicted spatial
locality with the miss.

Prefetching is a technique where cache lines expected
to be used in the future are fetched prior to their demand
request, to improve performance by reducing misses.
This may come at the cost of more power spent in the
interconnect between caches when inaccurate prefetches
lead to unused cache block fetches. Our technique is
complementary and can be used to compensate prefetch
energy overhead by gating unused words. prefetches.

Pujara et al. examined the utilization of cache lines
and showed that only 57% of words are actually used
by the processor and the usage pattern is quite pre-
dictable [7]. They leverage this information to lower
power in the cache itself by reducing the number of
words read from the lower level cache and written to
the upper level cache. This mechanism is orthogonal and
potentially complementary to our technique, as we focus
primarily on achieving lower energy consumption in the
interconnect. Yoon et al. proposed an architecture that
adaptively chooses memory system granularity based on
spatial locality and error-tolerance tradeoffs [26]. While
this work focuses on contention for off-chip memory
bandwidth, our work targets on-chip interconnect en-
ergy consumption by observing spatial locality. Qureshi
et al. suggested a method to pack the used words in a
part of the cache after evicting it from the normal cache,
thus increasing performance and reducing misses [27].
Their work thus focuses on performance rather than
energy-efficiency and targets the effectiveness of the
second-level cache.

Spatial locality prediction is similar to dead block
prediction [28]. A dead block predictor predicts whether
a cache block will be used again before it is evicted. The
spatial locality predictor introduced in this paper can be
thought of as a similar device at a finer granularity. The
spatial locality predictor, however, takes into account
locality relative to the critical word offset, unlike dead
block predictors. Chen et al. predicted a spatial pattern
using a pattern history table which can be referenced by
the pc appended with the critical offset [29]. The number
of entries in the pattern history table, as well as the
number of indexes increase the memory requirement of
the technique. Unlike these schemes, our predictor uses a
different mechanism for managing prediction thresholds
in the face of mispredictions. Kim et al. proposed spatial
locality speculation to reduce energy in the intercon-
nect [30], we present here an extended journal version
of this earlier work.

3 DESCRIPTION
Our goal is to save dynamic energy in the memory
system interconnect by eliminating switching activity as-
sociated with unused words in cache blocks transferred
between the different levels of the on-chip cache hierar-
chy. To this end we developed a simple, low complexity,
spatial locality predictor, which identifies the words
expected to be used in each cache block. A used word
prediction is made on a L1 cache miss, before generating
a request to the L2. This prediction is used to generate
the response packet eliding the unused words with the
proposed flit encoding schemes described below.

Fig. 2. General CMP Architecture

Figure 2 depicts the general, baseline architecture, rep-
resenting a 16-node NoC-connected CMP. A tile consists
of a processor, a portion of the cache hierarchy and a
Network Interface Controller (NIC), and is bound to a
router in the interconnection network. Each processor
tile contains private L1 instruction and data caches.
We assume the L2 is organized as a shared S-NUCA
cache [31], each tile containing one bank of the L2. The
chip integrates two memory controllers, accessed via the
east port of node 7 and west port of node 8. Caches have
a 64-byte block size. The NoC link width is 16 bytes,
discounting flow-control overheads. Thus, cache-block-
bearing packets are five flits long, with one header flit
and four data flits. Each data flit contains four 32-bit
words, as shown in Figure 5(b).

3.1 Spatial Locality Prediction
3.1.1 Prediction Overview
Our predictor leverages the history of use patterns
within cache blocks brought by a certain instruction has
been accessed. The intuition behind our predictor is that
a given set of instructions may access multiple different
memory address regions in a similar manner. In fact, we
have observed that patterns of spatial locality are highly
correlated to the address of the instruction responsible
for filling the cache (the fill PC). The literature also shows
that a small number of instructions cause the most cache
misses [32]. Moreover, a given sequence of memory
instructions accesses the same fields of data structures
throughout memory [29]. Data structure instances, are
unfortunately not aligned to the cache block, this mis-
alignment can be adjusted by using the offset of the word
which causes the cache miss (the critical word offset) while
accessing the prediction table as in [7].



4

Fig. 3. Prediction example for 4 words/block cache model

3.1.2 Predictor Implementation
Our prediction table is composed of rows of four-bit
saturating counters where each counter corresponds to
a word in the cache block. The table is accessed such
that the fill PC picks the row of the table, and then n
consecutive counters starting from the critical word offset
are chosen where n is the number of words in a cache
block. (Thus, there are 2n - 1 counters per row to account
for all possible n - 1 offsets.) These counters represent
the history of word usage in cache blocks brought by a
certain memory instruction.

The value of the saturating counter relates to the
probability that the corresponding word is used. The
lower the counter is, the higher confidence the word
will not be used. Initially, all counters are set to their
max value, representing a prediction where all words
are used. As cache lines are evicted with unused words,
counters associated with those unused words are decre-
mented while counters associated with used words are
incremented. If a given word counter is equal to or
greater than a fixed threshold (configured at design time),
then the word is predicted to be used; otherwise, it
is predicted not used. We define used-vector as a bit
vector which identifies the words predicted used by the
predictor in the cache block to be filled. A used-vector
of 0xFFFF represents a prediction that all sixteen words
will be used while a used-vector of 0xFF00 signifies that
only the first eight words will be used.

Figure 3 shows the steps to the prediction. In this
example, the number of words in a block is assumed to
be 4 and the threshold is 1, for simplicity. In the figure a
cache miss occurs on an instruction accessing the second
word in a given block (critical word offset = 1). The lower-
order bits of the fill PC select a row in the prediction
table. Among the counters in the row, the selection
window of 4 counters, which initially includes the four
rightmost counters, moves to the left by the number
of the critical word offset. Those selected counters are
translated into a predicted used-vector based on the
threshold value. The used-vector, 1100, indicates that
the first and the second words in this block will be used.

The L1 cache keeps track of the actual used vector
while the block is live, as well as the lower-order bits of
the fill PC, and the critical word offset. When the block
is evicted from the L1, the predictor is updated with
the actual used vector; if a word was used, then the
corresponding counter is incremented; otherwise, it is

decremented. While updating, it finds the corresponding
counters with the fill-PC and the critical word offset as
it does for prediction. In the event a word is falsely
predicted “unused”, the counters for the entire row are
reset to 0xF to reduce the likelihood of future mispre-
dictions. This form of resetting have been shown to
improve confidence over up/down counters for branch
predictors [33]; in initial development of the predictor
we found a considerable improvement in accuracy using
this technique as well. Resetting the counters allows the
predictor to quickly react in the event of destructive
interference and/or new program phases.

3.1.3 Impact on Energy
We model a cache with 64B blocks and 4B words.
Each row of the predictor is composed of 31 four-bit
saturating counters where all counters are initialized to
0xF. The predictor table has 256 rows of 31×4 bits each,
thus requiring ∼4KB of storage. We note, although the
“word” size here is 4B, this represents the prediction
granularity, it does not preclude use in a 64b (8B) word
architecture.

In addition to the 4KB prediction table, our scheme
requires extended metadata in each cache tag. In L1, 16
bits (one per word) are necessary to determine which
words have been accessed so that we can update the
predictor. 8 bits for fill-PC and 4 bits for critical word
offset are required to access the prediction table, as well.
We also replace the single valid bit with a vector of
16 bits in L1 and L2 caches. Although, this metadata
increases the power per access of the L1 and L2 caches
by 0.35% and 0.72%, respectively, we also reduce the
number of words read from the lower level caches and
written to the upper level cache by ∼30% and also
the number of words written back into the lower level
cache by ∼40%. Altogether this results an average ∼20%
reduction in dynamic energy consumption per cache
access. The dynamic energy consumed by the prediction
tables is discussed in Section 4.

Although not the focus of this work, leakage energy
dissipation can be also optimized with the help of spatial
locality speculation. Chen et al. achieved 41% of leak-
age energy reduction with their proposed spatial local-
ity predictor and a circuit level selective sub-blocking
technique [29]. We expect a better reduction could be
achieved with our technique (as our predictor accuracy
is higher), we plan to explore this in a future work on
used word prediction for cache power reduction.

3.1.4 Impact on Performance
When an L1 cache miss is discovered, the predictor
supplies a prediction to inform flit composition. The pre-
diction will take two cycles: one for the table access and
one for thresholding and shifting. The fastest approach
would be to speculatively assume that every cache access
will result in a miss and begin the prediction simultane-
ously with address translation; thus, the latency can be
completely hidden. A more energy efficient approach is
to begin the prediction as soon as the tag mismatch is
discovered and simultaneously with victim selection in
the L1 cache. While this approach would add a cycle to
the L1 miss time, no time would be added to the more



5

performance critical L1 hit time. The latter approach was
used in our experiments. If a word predicted unused
actually is used, it is treated as a miss and all words
initially predicted as unused are brought into the upper-
level cache in order to correct this misprediction. This
performance impact of these extra misses is discussed
in Section 5.1.

On eviction of a L1 cache block, the used-vector and
fill PC collected for that block are used to update the
predictor. This process is less latency sensitive than pre-
diction since the predictor does not need to be updated
immediately to provide good accuracy.

3.2 Packet Composition

Once we have predicted the application’s expected spa-
tial locality to determine the unused words in a miss-
ing cache block, we employ a flit encoding technique
which leverages unused words to reduce dynamic link
and router energy in the interconnect between the L1,
directory, L2 cache banks and memory controllers. We
propose two complementary means to leverage spatial
locality prediction to reduce α, the activity factor, in
the NoC, thereby directly reducing dynamic energy: 1)
Remove flits from NoC packets (flit-drop); 2) Keep un-
used interconnect wires at fixed polarity during packet
traversal (word-repeat). For example, if two flits must
be transmitted and all the words in the second flit are
predicted unused, our flit-drop scheme would discard the
unused flit to reduce the number of flits transmitted over
the wire. In contrast, our word-repeat scheme would re-
transmit the first flit, keeping the wires at fixed polarity
to reduce gate switching. These encoding schemes are
also used for writeback packets to include dirty words
only.

The packet compositioning may be implemented ei-
ther “statically”, whereby packet encoding occurs at
packet generation time, or “dynamically”, in which the
unused words in each flit are gated within the router
FIFOs, crossbars and links to avoid causing bit transi-
tions regardless of the flits which proceed or follow it.
We will first discuss the “static” packet compositioning
techniques including flit-drop, static-word-repeat and their
combination. We then discuss the “dynamic” packet
composition techniques which allow greater reductions
in activity factor, at the cost of a small increase in logical
complexity in the routers and a slight increase in link
bit-width.

3.2.1 Static Packet Composition
Figure 4 depicts the format of cache request and reply
packet flits in our design. A packet is composed either
of a head flit and a number of body flits (when the
packet contains a cache block) or it consists of one atomic
flit, as in the case of a request packet or a coherence
protocol message. The head/atomic flit contains a used-
vector. The head flit also contains source and destination
node identifiers, and the physical memory address of the
cache block. The remaining bytes in the head/atomic
flit are unused. We assume a flow-control overhead of
three bits, 1 bit for virtual channel id (VC) and 2 bits for
flit type (FT). As each of body/tail flit contains data of

(a) head/atomic

(b) body/tail

Fig. 4. Flit format for static and dynamic encoding. (Shaded
portion not present in static encoding.)

four words (16 bytes), a flit is 16 bytes and 3 bits wide
including flow control overheads.

Figure 5(a) depicts an example of read request (L1
fill). In this example, tile #1 requests a block at address
0x00001200 which resides in the S-NUCA L2 cache bank
in tile #8. The used-vector is 1111 1100 0000 1010,
indicating the words word0 - word5, word12 and word14
are predicted used. The corresponding response packet
must contain at least those words. Since the baseline
architecture sends the whole block as it is, the packet
contains all of the words from word0 to word15, as shown
in figure 5(b).

Flit-drop: In the flit-drop technique, flits which are
predicted to contain only unused words are dropped
from the packet and only those flits which contain one or
more used words are transmitted. The reduction in the
number of flits per packet, reduces the number of bit
transitions over interconnect wires and therefore the en-
ergy consumed. Latency due to packet serialization and
NoC bandwidth will also be reduced as well. Although
a read request packet may have an arbitrary used-
vector, the response packet must contain all flits which
have any words predicted used leading to some lost
opportunity for packets which have used and unused
words intermingled throughout.

Figure 5(c) depicts the response packet to the request
shown in Figure 5(a) for the flit-drop scheme. The first
body flit, containing word0 - word3, therefore must be in
the packet as all of these words are used. The second
body flit, with word4 - word7, also contains all valid
words, despite the prediction word6 and word7 would
not be used. These extra words are overhead in the flit-
drop scheme because they are not predicted used but
must be sent nevertheless. Although these words waste
dynamic power when the prediction is correct, they may
reduce the miss-prediction probability.

Static-word-repeat:The static-word-repeat scheme, re-
duces the activity factor of flits containing unused words
by repeating the contents in previous flit in the place of
unused words. Flits with fewer used words consume less
power because there are fewer bit transitions between
flits. Words marked as “used” in the used-vector contain
real, valid data. Words marked as “unused” in the used-
vector contain repeats of the word in the same location



6

(a) Request

(b) Baseline Response

(c) Flit-Drop Response

(d) Word-Repeat Response

Fig. 5. Read Request and Corresponding Response
Packets (VC is not shown in this figure.)

in the previous flit. For instance, if word4x+1 is predicted
unused, the NIC places word4(x−1)+1 in its place. As the
bit-lines repeat the same bits, there are no transitions
on those wires and no dynamic energy consumption. A
buffer retaining four words previously fetched by the
NIC is placed between the cache and the NIC and helps
the NIC in repeating words. An extra mux and logic
gates are also necessary in the NIC to encode repeated
words.

Figure 5(d) depicts the response packet for the request
in Figure 5(a) using the static-word-repeat scheme. In
body1, word6 and word7 are unused and, thus, replaced
with word2 and word3 which are at the same location in
the previous flit. All of the words in body2 are repeated
by the words in body1, thus it carries virtually nothing
but flow-control overhead. We also encode the unused
header words, if possible.

3.2.2 Dynamic Packet Composition
The effectiveness of static packet compositioning
schemes is reduced in two commonly-occurring sce-
narios: (a) when single-flit, atomic packets are being
transmitted, and (b) when flits from multiple packets are
interleaved in the channel. In both cases, repeated words
in the flits cannot be statically leveraged to eliminate
switching activity in the corresponding parts of the data-
path. In response, we propose dynamic packet composition
to reduce NoC switching activity by taking advantage
of invalid words on a flit-by-flit basis. The difference
between dynamic and static composition schemes re-
sides primarily in how word-repeat treats unused words.
In static composition, the unused portion of a flit is
statically set at packet injection by the NIC to minimize
inter-flit switching activity, requiring no changes to the
router datapath. In dynamic composition, portions of the
router datapath are dynamically enabled and disabled

Fig. 6. Dynamic packet compositioning router. (Shaded
portion not present in baseline router.)

based on the validity of each word in the flit. In effect,
an invalid word causes the corresponding portion of the
datapath to hold its previous value, creating the illusion
of word repeat.

To facilitate dynamic composition, the “used-vector”
is distributed into each flit as shown in Figure 4(b). As
a result the link width must be widened by four bits to
accommodate the new “valid-word-vector”, where each
bit indicates whether the corresponding word in that flit
is valid. As the figure shows, the head flit’s “valid-word-
vector” is always set to 1100 because the portion which
corresponds to Word2 and Word3 of a body/tail flit are
always unused.

Dynamic packet compositioning requires some modifi-
cations to a standard NoC router to enable datapath gat-
ing in response to per-flit valid bits. Figure 6 depicts the
microarchitecture of our dynamic packet compositioning
router. Assuming that a whole cycle is required for a flit
to traverse a link, latches are required on both sides of
each link. The additional logic required for link encoding
is shaded in the magnified output port. Plain D-flip-flops
are replaced with enable-D-flip-flops to force the repeat
of the previous flit’s word when the “valid-word-vector”
bit for that word is set to zero, indicating that word is
not used. Alternately, if the “valid-word-vector” bit for
the given word is one, the word is propagated onto the
link in the following cycle, as it would in the traditional
NoC router. In cases where the link traversal consumes
less than a full cycle, this structure could be replaced
with a tristate buffer to similar effect.

We further augment the router’s input FIFO buffers
with per-word write enables connected to the “valid-
word-vector” as shown in Figure 6. In our design, the
read and write pointer control logic in the router’s
input FIFOs remain unmodified; however, the SRAM
array storage used to hold the flits is broken into four
banks, each one word in width. The “valid-word-vector”
bits would gate the valid write enables going to each
of word-wide banks, disabling writes associated with



7

unused words in incoming flits, and saving the energy
associated with those word writes. The combination of
these techniques for dynamic packet composition will
reduce the power and energy consumption of the NoC
links and router datapath proportional to the reduction
in activity factor due to the word-repeat and flit-drop of
unused words.

As flit-drop and word-repeat are complementary, we will
also examine their combination in the evaluation section.
One alternative technique we explored packs together
used words into a minimal size packet. Experimentally
we found this approach produces latency and power
benefits negligibly different from the combination of
flit-drop and word-repeat, while our technique requires
less additional hardware in packet composition, so these
results are not presented. These encoding schemes also
are used for writebacks by marking clean words as
unused.

4 EVALUATION
4.1 Baseline Architecture and Physical Implementa-
tion
Figure 2 depicts the baseline architecture, representing a
16-node NoC-connected CMP. A tile consists of a pro-
cessor, a portion of the cache hierarchy and a Network
Interface Controller (NIC), and is bound to a router in
the interconnection network. The baseline architecture
employs a 4×4 2D mesh topology with X-Y routing
and wormhole flow control. Each router contains 2 VCs
and each input buffer is four flits deep. In our baseline
configuration we assume the tiles are 36mm2 with 6mm-
long links between nodes. Our target technology is 45
nm.

Processor Tiles: Each 36mm2 tile contains an in-
order processor core similar to an Intel Atom Z510
(26mm2) [34], a 512KB L2 cache slice (4mm2), two 32KB
L1 caches (0.65mm2 each) and an interconnect router
(0.078mm2). The remaining area is devoted to a directory
cache and a NIC. Our system is composed of 16 tiles and
results in 576mm2, approximately the size of an IBM
Power7 die [35]. We used CACTI 6.0 [36] to estimate
cache parameters.

The L1 caches are two-way set-associative with a 2 cy-
cle access latency. The L2 banks are 8-way set-associative
with a 15-cycle access time. The 16 L2 banks spread
across the chip comprise an 8-MB S-NUCA L2 [31].
Cache lines in both L1 and L2 caches are 64B wide
(16 four-byte words), except where otherwise noted.
Each node also contains a slice of the directory cache,
interleaved the same as the L2. Its latency is 2 cycles.
The number of entries in each directory cache is equal to
the number of sets in an L2 bank. We assume the latency
of the main memory is 100 cycles. The MESI protocol is
used by the directory to maintain cache coherence. The
predictor’s performance is examined with the threshold
value of 1 unless stated otherwise. The NoC link width
is assumed to be 128 bits wide, discounting flow-control
overheads.

NoC Link Wires: NoC links require repeaters to im-
prove delay in the presence of the growing wire RC
delays due to diminishing interconnect dimensions [1].
These repeaters are major sources of channel power and

TABLE 1
Area and Power

baseline static dynamic
Area (mm2) 0.073 0.078
Static Power (mW) 0.71 0.74

Router with full-swing link
Dynamic Power (mW) 1.73 1.28 0.92
Total Power (mW) 2.45 1.99 1.67

Router with low-swing link
Dynamic Power (mW) 0.62 0.46 0.33
Total Power (mW) 1.34 1.18 1.08

area overhead. Equally problematic is their disruptive
effect on floorplanning, as large swaths of space must
be allocated for each repeater stage. Our analysis shows
that a single, energy-optimized 6 mm link in 45 nm
technology requires 13 repeater stages and dissipates
over 42 mW of power for 128 bits of data at 1 Ghz.

In this work, we consider both full-swing repeated
interconnects (full-swing links) and an alternative design
that lowers the voltage swing to reduce link power
consumption (low-swing links). We adopt a scheme by
Schinkel et al. [17] which uses a capacitative transmit-
ter to lower the signal swing to 125 mV without the
use of an additional low-voltage power supply. The
scheme requires differential wires, doubling the NoC
wire requirements. Our analysis shows a 3.5× energy
reduction with low swing links. However, low-swing
links are not as static-word-repeat friendly as much as
full-swing links are. There is link energy dissipation on
low-swing links, even when a bit repeats the bit ahead
because of leakage currents and high sense amp power
consumption on the receiver side. Thus, the repeated
unused-words consume ∼ 18% of what used-words do.
The dynamic encoding technique fully shuts down those
portions of link by power gating all components with the
“valid-word-vector” bits.

Router Implementation: We synthesized both the
baseline router and our dynamic encoding router on a
TSMC 45nm library to an operating frequency of 1Ghz.
Table 1 shows the area and power of the different router
designs. Note that the baseline router and the one used
in static encoding scheme are identical. The table shows
the average power consumed under PARSEC traffic, sim-
ulated with the methodology described in Section 4.2.
The dynamic power for each benchmark is computed
by dividing the total dynamic energy consumption by
the execution time, then by the number of routers.
Summarizing the data, a router design supporting the
proposed dynamic composition technique requires ∼7%
more area, while reducing dynamic power by 46% under
the loads examined over the baseline at the cost of 4.3%
more leakage power.

Table 2 shows the dynamic energy consumed by a
flit with a given number of words encoded as used,
traversing a router and a link, with respect to the three
flit composition schemes: baseline(base), static(sta) and
dynamic(dyn) encoding. In baseline, a flit always con-
sumes energy as if it carries four used words. In static
encoding, as the number of used words decreases, flits
consume less energy on routers and full-swing links.



8

TABLE 2
Per-Flit Dynamic Energy (pJ)

Router Full Swing Link Low Swing Link
n base sta dyn base sta dyn base sta dyn
0

3.58

0.73 0.34

43.10

0.99 2.30

12.31

0.35 0.66
1 1.31 1.01 11.52 12.83 3.34 3.67
2 1.90 2.01 22.04 23.36 6.33 6.67
3 2.77 2.79 32.57 33.89 9.32 9.68
4 3.58 3.65 43.10 44.41 12.31 12.69

n: number of used words

Static-encoding reduces NoC energy by minimizing the
number of transitions on the wires in the links and in the
routers’ crossbars. Dynamic-encoding further reduces
router energy by gating flit buffer accesses. The four-bit,
valid-word-vector in each flit controls the write enable
signals of each word buffer, disabling writes associated
with unused words. Similarly, it also gates low-swing
links, shutting down the transceiver pair on wires asso-
ciated with the unused words. CACTI 6.0 [36] was used
to measure the energy consumption due to accessing the
predictor; which is 10.9 pJ per access.

4.2 Simulation Methodology
We used the M5 full system simulator to generate
CMP cache block utilization traces for multi-threaded
applications [37]. Details of the system configuration
are presented in section 4.1. Our workload consists
of the PARSEC shared-memory multi-processor bench-
marks [8], cross-compiled using the methodology de-
scribed by Gebhart et. al [38]. All applications in the
suite currently supported by M5 were used. Traces were
taken from the “region of interest.” Each trace contains
up to a billion memory operations; fewer if the end
of the application was reached. Cycle accurate timing
estimation was performed using the Netrace, memory
system dependence tracking methodology [39].

The total network energy consumption for each bench-
mark is measured by summing the energy of all L1
and L2 cache fill and spill and coherence packets as
they traverse routers and links in the network. In effect,
Table 2 is consulted whenever a flit with a certain
number of used words traverses a router and a link.
Note that even for the same flit, the used word number
may vary according to the encoding scheme in use. For
example, for an atomic flit, n = 4 in static encoding while
n = 2 in dynamic. The predictor’s energy is also added
whenever the predictor is accessed.

4.3 Energy Consumption
Figure 7 shows the breakdown of dynamic energy con-
sumption. For each benchmark, we conducted energy
simulations for three configurations, each represented
by one stacked bar for that benchmark: 1) baseline -
baseline, 2) s-combo - static-word-repeat and flit-drop
combined, and 3) d-combo - dynamic-word-repeat and
flit-drop combined. We also show the average energy
consumption with pure flit-drop (flitdrop), static-word-
repeat (s-wr) and dynamic-word-repeat (d-wr). The bars
are normalized against the energy consumed by baseline.
Each bar is subdivided into up to four components. The
first bar shows the “read” energy, energy consumed by

(a) full-signal swing link

(b) low-signal swing link

Fig. 7. Dynamic energy breakdown

cache fills and the second bar, “write”, by writebacks.
The third bar, “coh”, shows the energy due to the cache
coherence packets and the fourth bar, “pred” shows the
energy consumed by predictors. The figure shows data
for both full-swing and low-swing links.

In the baseline configuration we see that, on average,
read communication consumes the most dynamic energy
with ∼59% of the total. Coherence traffic consumes the
second most with ∼28% of the total energy followed
by write communication with ∼13% of the total energy.
This breakdown follows the intuition that reads are more
frequent than writes. Thus, techniques which only focus
on writebacks will miss much potential gain. It is also
interesting to note that cache coherence traffic shows a
very significant contribution to overall cache intercon-
nect energy. Similarly, work which does not consider
atomic packets may miss significant gain.

The figure also shows that among the flit encoding
schemes, d-combo shows the greatest improvement with
∼36% dynamic energy savings on average when full-
signal swing link is used. If low-signal swing links are
used, it becomes ∼34%. The pure dynamic-word-repeat
(d-wr) is the second best resulting in additional ∼1% en-
ergy consumption. This implies that dropping flits only
with flow control bits does not significantly contribute
to energy reduction when dynamic- word-repeat is used.
However, combining flit-drop is still beneficial to reduce
latency. The combined static encoding (s-combo) provides
an energy savings of only ∼17% and ∼15% of baseline,
under full-swing and low-swing links, respectively. This
indicates the significant gains that dynamic encoding
provides, primarily in the cache coherence traffic which
is predominately made up of single flit packets. We find
the predictor merely contributes 1.5% of the total energy



9

Fig. 8. Dynamic energy breakdown for reads

when full-signal swing link is used, and 4.1% when low-
signal swing link is used.

Table 1 shows the average power with either type of
links. It reveals that despite the increased static power,
the dynamic encoding scheme still outperforms the base-
line and the static encoding as well, regardless of link
type.

In the following sections we will examine each of the
traffic types in detail to gain a deeper understanding
of the performance of our proposed technique. As full-
swing link and low-swing link show similar trends, only
graphs for full-swing links will be shown hereafter.

4.3.1 Read Energy Discussion
Figure 8 shows the breakdown of dynamic energy con-
sumption for reads. Each bar is subdivided into five
components and also normalized against baseline. The
first bar “l2” depicts the energy consumed by L2 cache
fills and spills. Although the prediction actually occurs
on L1 cache misses, the encoding schemes are also
used for the transactions between the L2 and memory
controller, based upon used-vector generated on the L1
cache miss the lead to the L2 miss.

The second bar shows the “used” energy, energy con-
sumed by the words which will be referenced by the pro-
gram, hence “used” bars are nearly equal, with the ex-
ception of a slight increase in energy due to router over-
heads in the dynamic scheme. The third bar, “unused”,
shows the energy consumed to bring in words which
will not be referenced prior to eviction. This also includes
the energy consumed by words which result from false-
positive predictions, i.e. an incorrect prediction that the
word will be used. The fourth bar, “overhead”, shows
the energy for NoC packet overheads, including header
information and flow control bits. The fifth bar, “extra”,
shows the energy consumed by the packet overhead due
extra cache line fills to correct “false-negative” mispre-
dictions. Our goal is to remove, as much as possible, the
dynamic datapath energy consumed by unused words
denoted by unused and, where possible, the packet over-
heads in overhead, while minimizing redundant misses
due to mispredictions in extra. Unused words consume
an average of 33% of total dynamic datapath energy, and
up to 53% of total dynamic datapath energy in case of
blackscholes (shown as Black in the graphs.)

The d-combo scheme, on average, reduces total dy-
namic datapath energy by ∼32%. Our prediction mech-

anism combined with the encoding schemes approx-
imately halves the “unused” portion, on average. In
case of Black where the predictor performs the best, the
speculation mechanism removes 90% of the “unused”
portion resulting in a 66% energy savings for cache fills
when combined dynamic encoding is used. The extra
transmission due to mispredictions, shown as “extra” in
the stack, contributes less than 1% of energy consump-
tion for cache fills.

4.3.2 Coherence Energy Discussion
In the simulated system coherence is maintained via
the MESI protocol. Coherence protocol messages and
responses represent a significant fraction of the net-
work traffic. Those protocol messages are composed
primarily of single-flit packets, and contribute ∼28% of
total network energy consumption. Figure 9 shows the
breakdown of dynamic energy consumption for coher-
ence packets. Although these single-flit packets contain
∼50% unused data, as discussed in Section 3.2.1, static-
encoding can not be used to reduce their energy dissi-
pation. Dynamic-encoding, however, reduce it by up to
45.5%.

Fig. 9. Dynamic energy breakdown for coherent packets

4.3.3 Write Energy Discussion
Figure 7 shows that writebacks consume an average of
13% of total dynamic energy. Upon dirty line writeback,
we find that, on average, 40% of the words in the block
are clean, and those words contribute 23% of the total
energy consumed by writebacks.

Figure 10 shows the dynamic energy breakdown
caused by writebacks. The first bar, “dirty”, shows the
energy consumed by the dirty words in cache lines. The
second bar “overhead” shows the energy consumed by
NoC packet overheads. The third bar, “clean”, includes
the link energy consumed by sending clean words in
writeback packets. Our goal is to remove the portion
of the energy consumption associated with transmitting
“clean” words. On average, the s-combo scheme reduces
the energy consumption due to writebacks by 29%.
Further savings are achieved by d-combo. It encodes not
only body/tail flits but also head flits of the writeback
packets resulting in a 40% savings. When full swing links
are used, it is possible to remove all of energy dissipation
due to clean words with the static flit-encoding scheme.
However, when static word repeat is used with low
swing links, although clean words are encoded to repeat
the words in the flit ahead, those words cause energy
dissipation due to leakage currents and high sense amp
power consumption on the receiver side.



10

Fig. 10. Dynamic energy breakdown for writes

5 ANALYSIS
In this section we analyze the performance impact of the
proposed energy reduction technique, explore predictor
training and compare against a 32-byte cache line base-
line design.

5.1 Performance
The performance impact of the proposed technique is
governed by two divergent effects. First, the scheme
should improve performance because flit-drop reduces
the number of flits injected into the network. Decreased
flit count improves performance through less serializa-
tion latency, and reduced congestion due to lower load.
Second, offsetting the benefit from flit-drop, incorrectly
predicting a word unused can lead to more misses,
increasing network load and average memory access
time (AMAT). To quantify the impact of the proposed
technique, Figure 11 shows the reduction in flits injected
into the network for each benchmark, the reduction
in individual packet latency, and the AMAT for each
benchmark, all normalized against baseline. Each value
number is normalized against baseline. As the figure
shows, although flit count and individual packet latency
decrease significantly, AMAT is essentially flat across the
benchmarks. In this section we examine the relationship
between network performance and system performance.

5.1.1 Network Performance
As shown in Figure 11, the flit count is reduced by 12%
on average. Optimally, the flit count reduction should
be directly proportional to the block utilization. From
Figures 1, 7 and 11, we see that Blackscholes, which
has the lowest block utilization, and the greatest portion
of read energy consumption, has the greatest reduc-
tion flits across the PARSEC benchmarks. Alternately,
Bodytrack, which also shows one of the lowest block
utilizations, removes merely 1.8% the injected flits. This
is because flit count reduction is related not only to block
utilization, but also prediction accuracy, proportion of
single flit packets, and the used-unused pattern within
the packet. In Bodytrack, flit reduction is low because
single-flit coherent packets make up a larger portion of
the injected packets, and the predictor is less accurate
than for Blackscholes.

Lowered flit count should be correlated with reduced
packet latency. Figure 11 shows normalized packet la-
tency. On average, the network latency is reduced by

Fig. 11. Flit count, packet latency and AMAT normalized
against baseline.

Fig. 12. Packet latency breakdown

∼6% as the number of flits has decreased. In Blacksc-
holes, with greatest reduction in flit count, the packet la-
tency is reduced by 9%, showing one of the best network
performance improvements across the PARSEC bench-
marks. Alternately, Bodytrack’s network performance is
improved by only 1%. Interestingly, flit count reduction
and network latency are not always strictly proportional
to each other; X264, counter-intuitively shows a greater
improvement in packet latency than its reduction in flit
count, warranting further analysis.

Flit-drop improves network performance not only by
reducing the serialization latency but also by avoiding
network congestion. Figure 12 shows the breakdown of
average packet latency. Each bar consists of two compo-
nents; 1) zero load shows the packet latency due to static
hop count and serialization latencies, 2) congestion shows
the latencies due to the resource conflicts. Although each
component contributes 67% and 33% of the average
latency, respectively, the greater impact of reduced flit
count lies in congestion. This effect is illustrated by X264
which has the second greatest congestion latency, as a
result a relatively small reduction in flits translates into
a greater reduction in packet latency. The overall average
packet latency has been reduced by 5.7%.

5.1.2 Overall System Performance Discussion
As a proxy for overall system performance we examine
the technique’s impact on average memory access time
(AMAT). Despite an improvement in packet latency,
Figure 11 shows that AMAT is unchanged on average,



11

Fig. 13. AMAT graph

with some benchmarks showing a slight improvement,
while others showing a slight degradation. To explore
this counter-intuitive result we examine how AMAT
relates to packet latency and L1 miss rate. AMAT in this
work and it can be estimated by Equation 2.

AMAT = Latency(L1) + (1 −HitRate(L1)) × Latency(L2+)
(2)

In this equation, Latency(L1) is the constant L1 latency
for the system, and HitRate(L1) is the hit rate of L1
accesses which varies by benchmark locality and is ef-
fected by false unused-word predictions. Latency(L2+)
is the latency of memory accesses served by L2 and
beyond, which is also known as L1 miss latency. It is
a function of the constant L2 cache access time, L2 miss
rate, network latency and the constant memory access
time. Assuming Latency(L2+) is fixed, AMAT is a linear
function of HitRate(L1). Figure 13 visualizes AMAT as
f(r) where r is L1 hit rate.

In Figure 13, let f1(r) be the AMAT characteristic
for a benchmark, where T1 is the L1 latency and T2 is
L1 latency plus L1 miss latency. Say, with the baseline
scheme, the L1 hit rate is r0 and AMAT becomes f1(r0). If
our prediction mechanism drops the L1 hit rate to r1 and
that does not change L1 miss latency, the AMAT becomes
f1(r1). In such a case, f1(r1)− f1(r0) represents the per-
formance loss due to mispredictions. However, thanks
to our packet composition technique, L1 miss latency,
in general, is lower than that of baseline cases. Thus,
its AMAT characteristic function should be redrawn as
f2(r) and the AMAT at r1 is f2(r1). If f2(r1) < f1(r0) as
in this example, the difference, f1(r0) − f2(r1) denotes
the performance benefit from our prediction technique.

In this example, we can also see that as long as the
predictor drops the L1 hit rate no lower than r2, per-
formance improvement is expected. We define safe range
as the range of L1 hit rate where our prediction scheme
shows equal or better AMAT than the baseline design.
In this particular example, the safe range is [r2, r0]. To
generalize, safe range, ∆r, is calculated as below:

∆r =
∆T

To − ∆T
(1 − ro) (3)

where To and ro are the original L1 miss latency and L1
hit rate, respectively, and ∆T the reduced amount of L1
miss latency. The wider safe range we have, the better
chance that we achieve the performance improvement.

Figure 14(a) shows the average L1 miss latency for

(a) L1 Miss Latency

(b) L1 Hit Rate

Fig. 14. Overall system performance

each benchmark. The bars marked as base show the L1
miss latency for the baseline design, while pred shows
the latency for the proposed scheme. In every case, a
reduction in L1 miss latency is observed. This reduction
is closely related to the reduction in the interconnect net-
work latency shown in Figure 12. Although the packet
latency in the figure is normalized, the L1 miss latency
shows the similar trend to that; the more reduction in the
network latency we have, the more reduction in L1 miss
latency. According to Equation 3, the wider safe range,
and, in turn, no performance degradation, is expected for
benchmarks with a lower base and a bigger gap between
base and pred. However, the safe range is still up to L1
hit rate.

Figure 14(b) shows the original L1 hit rate (”l1 hit
base”) the new L1 hit rate (”l1 hit pred”) and the changed
average memory access time (”norm lat”). On average,
L1 hit rate is decreased by 0.15%. Blackscholes (“Black”)
has the third greatest improvement in L1 miss latency,
the lowest L1 miss latency and the second lowest L1
hit rate, it results in the greatest overall performance
improvement of 4.2%. By contrast, “X264”, while having
the greatest L1 miss latency improvement, also has one
of the highest L1 miss latency, and the highest L1 hit rate,
therefore achieves the worst overall system performance.
Although “Canneal” shows the worst impact on L1 hit
rate, due to its low original L1 hit rate, the reduced L1
hit rate is still in its safe range, thus, no performance
penalty for mispredictions is shown.

5.2 Predictor Tuning
As with many speculative techniques, our scheme incurs
a performance penalty when mis-speculation occurs. In
this case, the penalty manifests as increased L1D misses.



12

Fig. 15. Breakdown of Predictions Outcomes

As Figure 14(b) shows, L1D hit rates are barely impacted
by our technique. One possible interpretation of this
data is that our predictor is overly conservative, and
that energy gain could be achieved by more aggressively
tuning our predictor, in this section we explore predictor
tuning to this end.

Our prediction model requires a threshold value to be
configured at design time. As described in Section 3.1.1,
the threshold determines whether a certain word will
be used or not according to its usage history counter. If
the counter value is less than the threshold, the word is
predicted to be unused. The smaller threshold value, the
more biased the predictor towards predicting a word will
be used. Thus, the threshold value tunes the trade-off
between energy consumption and memory access time.

Figure 15 shows the prediction outcomes with respect
to various threshold values (numbers along the bot-
tom) for each of the benchmarks examined. Each bar
is broken into components to show average number
of words in a cache line with the following charac-
teristics. The bars marked true pos show the fraction
of true positives: words predicted used and actually
used. The bars marked true neg show the portion of
true negatives: words predicted unused and actually not
used. The words in this category are the source of the
energy reduction in our design. These two categories
form the portion of the words that the predictor cor-
rectly speculates their spatial localities. The bars marked
false pos show the fraction of false positives: words
predicted used but actually unused. The words in this
category do not cause any miss penalty but represent a
lost opportunity for energy reduction. Finally, the bars
marked false neg show the portion of false negatives:
words predicted unused but actually used. These words
result in additional memory system packets, potentially
increasing both energy and latency. The threshold value
“0” in this figure represents the baseline configuration,
where all words are assumed used. In general, as the
threshold value increases, the portions of true neg and
false neg increase while true pos and false pos decrease.
This implies that the higher threshold chosen, the lower
energy consumption (due to true neg predictions) but
also the higher the latency(due to false neg predictions).

We also note that even with the most aggressive thresh-
old setting, a significant number of false pos predictions
remain, despite significant increases in false neg predic-
tions, implying that headroom for improvement via a
more accurate prediction mechanism exists.

Figure 16 depicts the normalized energy consumption
and normalized average memory access time (AMAT)
for threshold values from 1 to 15. For this experiment,
we use low swing links, a similar trend of energy
consumption and AMAT was found for full swing links.
Figure 16(a) shows a modest downward trend in energy
consumption as the threshold value increases, with the
greatest increase between thresholds of 8 and 12. This is
the expected outcome of growing true neg with higher
threshold values in Figure 15. In some benchmarks, such
as “Black”, “Fluid” and “X264”, there is slight increase
at the highest threshold value. The main reason for this
increase is the energy required to service increased L1D
misses, which overcome the benefit of transmitting fewer
words in the initial request.

Figure 16(b) shows the normalized AMAT with vary-
ing threshold. In general, the latency shows a modest
upward trend as the threshold grows. The higher the
threshold, the more words are speculated as unused by
the predictor, leading to increased L1 miss rates and de-
grading the overall memory system latency. Though this
trend becomes dramatic for a threshold of 15, increasing
AMAT by up to 23% for one application; we find that
thresholds of less than 4 have a minimal negative impact
on AMAT.

Given our goal was to decrease energy with a minimal
impact on performance, we use the Energy × Delay2

metric as a figure of merit for our design. Experimentally
we determined that Energy × Delay2 is approximately
equal across the thresholds between 1 and 8, however,
it considerably increases beyond the threshold 12. This
result validates our choice a threshold value of 1 in our
experiments. We find the performance impact with this
bias is negligible. On average, with this threshold, the
additional latency of each operation is ∼0.6%. These re-
sults show that further energy savings could be achieved
through improved predictor accuracy, which we leave to
future work.



13

(a) Normalized Energy Consumption

(b) Normalized Average Memory Access Time (AMAT)

Fig. 16. Normalized energy and AMAT for different
threshold values

5.3 Case Study: Comparison with Smaller Lines

Naı̈vely, one might conclude that the low cache block
utilization shown in Figure 1 could be an indication that
cache line size is in-fact too long, and that utilization
could be improved by implementing a smaller cache line
size. To explore this concern we examine our technique
versus a 32-byte cache lines baseline.

(a) Block Utilization (b) AMAT (c) Energy

Fig. 17. Comparison to a smaller cache line

Figure 17 shows results for three different configura-
tions; 1) the baseline design with 64-byte cache lines
(64 base), 2) a baseline design with 32-byte lines (32
base) keeping the cache size and associativity the same
as 64 base, and 3) 64-byte lines with our prediction
and dynamic packet composition technique (64 pred).
Figure 17(a) shows the arithmetic average of block
utilization for each configuration across the PARSEC
benchmarks. Figure 17(b) shows the geometric mean of
AMAT and Figure 17(c) depicts the geometric mean of
total energy consumption. These figures show, 32-byte
lines have better utilization than the 64-byte baseline.

Compared with 64 base, however, only a marginal en-
ergy reduction is achieved at the cost of considerable
performance loss. The smaller cache block size results in
the increased L1 misses, and thereby, increased latency
of memory accessing operations. 64 pred, shows even
greater block utilization than 32 base while maintaining
the performance of 64 pred and consuming much less
energy than the rest. Hence, the proposed technique is a
better design choice than shrinking cache lines to reduce
power.

6 CONCLUSIONS

In this paper, we introduce a simple, yet powerful
mechanism using spatial locality speculation to identify
unused cache block words. We also propose a set of static
and dynamic methods of packet composition, leveraging
spatial locality speculation to reduce energy consump-
tion in CMP interconnect. These techniques combine to
reduce the dynamic energy of the NoC datapath through
a reduction in the number of bit transitions, reducing α
the activity factor of the network.

Our results show that with only simple static packet
encoding, requiring no change to typical NoC routers
and very little overhead in the cache hierarchy, we
achieve an average of 17% reduction in the dynamic
energy of the network if full-signal swing links are
used. Our dynamic compositioning technique, requiring
a small amount of logic overhead in the routers, enables
deeper energy savings of 36% and 34%, for full-swing
and low-swing links respectively.

REFERENCES
[1] International Technology Roadmap for Semiconductors

(ITRS) Working Group, “International Technology
Roadmap for Semiconductors (ITRS), 2009 Edition.”
http://www.itrs.net/Links/2009ITRS/Home2009.htm.

[2] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-
Chip Interconnection Networks,” in The 38th International Design
Automation Conference (DAC), 2001.

[3] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-
GHz Mesh Interconnect for a Teraflops Processor,” IEEE Micro,
vol. 27, 2007.

[4] M. Taylor, M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agar-
wal, “Scalar Operand Networks: On-chip Interconnect for ILP in
Partitioned Architectures,” in The IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2002.

[5] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller, “Memory
Performance and Cache Coherency Effects on an Intel Nehalem
Multiprocessor System,” in The 18th International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2009.

[6] Advanced Micro Devices (AMD) Inc., “AMD Opteron
Processors for Servers: AMD64-Based Server Solu-
tions for x86 Computing.” http://www.amd.com/us-
en/Processors/ProductInformation/0,,30 118 8796,00.html.

[7] P. Pujara and A. Aggarwal, “Cache Noise Prediction,” IEEE
Transactions on Computers, vol. 57, 2008.

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Bench-
mark Suite: Characterization and Architectural Implications,” in
The 17th International Conference on Parallel Architectures and Com-
pilation Techniques, 2008.

[9] P. Gratz, C. Kim, R. McDonald, S. W. Keckler, and D. Burger,
“Implementation and Evaluation of On-Chip Network Architec-
tures,” in IEEE International Conference on Computer Design (ICCD),
2006.

[10] P. Gratz, K. Sankaralingam, H. Hanson, P. Shivakumar, R. Mc-
Donald, S. W. Keckler, and D. Burger, “Implementation and Eval-
uation of a Dynamically Routed Processor Operand Network,”
in The 1st ACM/IEEE International Symposium on Networks-on-Chip
(NOCS), 2007.

[11] L. Shang, L.-S. Peh, and N. Jha, “Dynamic voltage scaling with
links for power optimization of interconnection networks,” in
High-Performance Computer Architecture, 2003.



14

[12] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: A Fast
and Accurate NoC Power and Area Model for Early-Stage Design
Space Exploration,” in In The Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2009.

[13] A. Banerjee, R. Mullins, and S. Moore, “A Power and Energy
Exploration of Network-on-Chip Architectures,” in The First In-
ternational Symposium on Networks-on-Chip, 2007.

[14] R. Das, A. Mishra, C. Nicopoulos, D. Park, V. Narayanan, R. Iyer,
M. Yousif, and C. Das, “Performance and power optimization
through data compression in network-on-chip architectures,” in
High Performance Computer Architecture, 2008. IEEE 14th Interna-
tional Symposium on.

[15] Y. Jin, K. H. Yum, and E. J. Kim, “Adaptive data compression
for high-performance low-power on-chip networks,” in The 41st
annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2008.

[16] H. Zhang, V. George, and J. Rabaey, “Low-swing on-chip signal-
ing techniques: effectiveness and robustness,” IEEE Transactions
on VLSI Systems, vol. 8, no. 3, 2000.

[17] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl, and
B. Nauta, “Low-power, high-speed transceivers for network-on-
chip communication,” IEEE Transactions on VLSI Systems, vol. 17,
no. 1, 2009.

[18] R. Das, S. Eachempati, A. Mishra, V. Narayanan, and C. Das,
“Design and evaluation of a hierarchical on-chip interconnect for
next-generation cmps,” in High Performance Computer Architecture,
2009. HPCA 2009. IEEE 15th International Symposium on, 2009.

[19] K. Hale, B. Grot, and S. Keckler, “Segment gating for static energy
reduction in networks-on-chip,” in Network on Chip Architectures,
2009. 2nd International Workshop on.

[20] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2003.

[21] S. Carr, K. S. McKinley, and C.-W. Tseng, “Compiler Optimiza-
tions for Improving Data Locality,” SIGPLAN Notices, vol. 29,
no. 11, 1994.

[22] B. Calder, C. Krintz, S. John, and T. Austin, “Cache-Conscious
Data Placement,” in The 8th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS), 1998.

[23] T. M. Chilimbi, B. Davidson, and J. R. Larus, “Cache-Conscious
Structure Definition,” SIGPLAN Notices, vol. 34, no. 5, 1999.

[24] T. Chilimbi, M. Hill, and J. Larus, “Making Pointer-Based Data
Structures Cache Conscious,” IEEE Computer, vol. 33, no. 12, 2000.

[25] J. S. Liptay, “Structural aspects of the System/360 Model 85, II:
The cache,” IBM Systems Journal, vol. 7, no. 1, 1968.

[26] D. H. Yoon, M. K. Jeong, and M. Erez, “Adaptive granular-
ity memory systems: a tradeoff between storage efficiency and
throughput,” in Proceedings of the 38th annual international sympo-
sium on Computer architecture, 2011.

[27] M. K. Qureshi, M. A. Suleman, and Y. N. Patt, “Line distillation:
Increasing cache capacity by filtering unused words in cache
lines,” High-Performance Computer Architecture, International Sym-
posium on, vol. 0, 2007.

[28] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction & dead-
block correlating prefetchers,” SIGARCH Comput. Archit. News,
vol. 29, no. 2, 2001.

[29] C. F. Chen, S. hyun Yang, and B. Falsafi, “Accurate and
complexity-effective spatial pattern prediction,” in In HPCA-10,
IEEE Computer Society, 2004.

[30] H. Kim, P. Ghoshal, B. Grot, P. V. Gratz, and D. A. Jimènez,
“Reducing Network-on-Chip Energy Consumption Through Spa-
tial Locality Speculation,” in The Fifth ACM/IEEE International
Symposium on Networks-on-Chip (NOCS), 2011.

[31] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-Uniform
Cache Structure for Wire-Delay Dominated On-Chip Caches,” in
ACM SIGPLAN NOTICES, 2002.

[32] S. G. Abraham, R. A. Sugumar, D. Windheiser, B. R. Rau, and
R. Gupta, “Predictability of load/store instruction latencies,” in
Proceedings of the 26th annual international symposium on Microar-
chitecture, IEEE Computer Society Press, 1993.

[33] E. Jacobsen, E. Rotenberg, and J. E. Smith, “Assigning confidence
to conditional branch predictions,” in Proceedings of the 29th
Annual International Symposium on Microarchitecture, 1996.

[34] Intel, “Intel Atom Processor Z510.”
http://ark.intel.com/Product.aspx?id=35469&processor=Z510&spec-
codes=SLB2C.

[35] Jon Stokes, “IBM’s 8-core POWER7:
twice the muscle, half the transistors.”
http://arstechnica.com/hardware/news/2009/09/ibms-8-
core-power7-twice-the-muscle-half-the-transistors.ars.

[36] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Op-
timizing nuca organizations and wiring alternatives for large
caches with cacti 6.0,” in Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, (Washington, DC,
USA), IEEE Computer Society, 2007.

[37] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi,
and S. K. Reinhardt, “The M5 Simulator: Modeling Networked
Systems,” IEEE Micro, vol. 26, 2006.

[38] M. Gebhart, J. Hestness, E. Fatehi, P. Gratz, and S. W. Keckler,
“Running PARSEC 2.1 on M5,” tech. rep., The Univ. of Texas at
Austin, Dept. of Comp. Sci., 2009.

[39] J. Hestness and S. W. Keckler, “Netrace: Dependency-tracking
traces for efficient network-on-chip experimentation,” tech. rep.,
The Univ. of Texas at Austin, Dept. of Comp. Sci., 2011.

Hyungjun Kim is a Ph.D candidate in the de-
partment of Electrical and Computer Engineer-
ing at Texas A&M University. He received his
B.S. degree from Yonsei University in 2002,
and his M.S. degree in Electrical Engineering
from University of Southern California in 2008.
He is currently working with Professor Paul V.
Gratz. His research interests include low power
memory systems and on-chip interconnection
networks.

Boris Grot is a postdoctoral researcher at
EPFL. His research interests include processor
architectures, memory systems, and intercon-
nection networks for high-throughput, energy-
aware computing. Grot has a PhD in computer
science from the University of Texas at Austin.
He is a member of IEEE and the ACM.

Paul V. Gratz (S’04-M’09) is an Assistant Pro-
fessor in the department of Electrical and Com-
puter Engineering at Texas A&M University. He
received his B.S. degree, and M.S. degrees in
Electrical Engineering from The University of
Florida in 1994 and 1997 respectively. He re-
ceived his Ph.D. degree in Electrical and Com-
puter Engineering from the University of Texas
at Austin in 2008. His research interests include
high performance computer architecture, pro-
cessor memory systems and on-chip intercon-

nection networks. He is a member of the IEEE and ACM.

Daniel A. Jiménez is Professor and Chair of
the Department of Computer Science at the
University of Texas at San Antonio. His research
interests include microarchitecture and low-level
compiler optimizations. Jiménez has a PhD in
Computer Sciences from the University of Texas
at Austin. He is a Member of the IEEE and a
Senior Member of the ACM.


	1 Introduction
	1.1 Motivation
	1.2 CMP Interconnect
	1.3 Proposed Technique

	2 Background and Related Work
	2.1 Dynamic Power Consumption
	2.2 NoC Power and Energy
	2.3 Spatial Locality and Cache Block Utilization

	3 Description
	3.1 Spatial Locality Prediction
	3.1.1 Prediction Overview
	3.1.2 Predictor Implementation
	3.1.3 Impact on Energy
	3.1.4 Impact on Performance

	3.2 Packet Composition
	3.2.1 Static Packet Composition
	3.2.2 Dynamic Packet Composition


	4 Evaluation
	4.1 Baseline Architecture and Physical Implementation
	4.2 Simulation Methodology
	4.3 Energy Consumption
	4.3.1 Read Energy Discussion
	4.3.2 Coherence Energy Discussion
	4.3.3 Write Energy Discussion


	5 Analysis
	5.1 Performance
	5.1.1 Network Performance
	5.1.2 Overall System Performance Discussion

	5.2 Predictor Tuning
	5.3 Case Study: Comparison with Smaller Lines

	6 Conclusions
	References
	Biographies
	Hyungjun Kim
	Boris Grot 
	Paul V. Gratz
	Daniel A. Jiménez


