

European Research Council Established by the European Commission

Nanosystems:

Technology,

Architectures and Applications

Giovanni De Micheli

Outline

- Introduction
- Technology
 - Devices
 - Circuits
- Architecture
 - Communication infrastructure
 - 3D Integration
- Sensors
- Applications
- Conclusions

Nano-systems

Nano

- Nano-electronics:
 - CMOS < 32nm node</p>
 - Silicon nanowires
 - Carbon nanotubes
 - Flatronics
- Nano-bio-sensing:
 - Size compatibility
 - Electro-chemistry

Systems

- Tera-scale systems:
 - Heterogeneity
 - Sensing, Processing, Communication, SW Transducers
- Complexity:
 - Design
 - Management

Outline

- Introduction
- Technology
 - Devices
 - Circuits
- Architecture
 - Communication infrastructure
 - 3D Integration
- Sensors
- Applications
- Conclusions

The emerging nano-technologies

- System technology is build bottom-up, starting from materials and their properties
- New devices exploit functional geometries at the molecular level
 - Quantum confinement
- There is a plethora of new materials and processing steps/flows
 - More than 50 elements in a regular CMOS process
- Enhanced silicon CMOS is likely to remain the main manufacturing proces

Beyond CMOS

Nano-technology provides us with new devices

• Can they mix and match with standard CMOS technology ?

• What is the added value?

22 nm Tri-Gate Transistors

[Courtesy: M. Bohr]

FinFETs versus SiNW FETs

Ambipolarity

- Device characteristics controlled by backgate voltage
 - Four-terminal devices
 - Back gate determines type: n or p

[Courtesy: Sacchetto, EPFL]

(c) Giovanni De Micheli

Double Independent gate SiNW FET

Silicon Nanowire Transistors

- Gate all around transistors
- Double gate to control polarity

(c) Giovanni De Micheli

[Courtesy: De Marchi, EPFL] 11

Device I_d/V_{cg}

New Design Paradigm: Ambipolar Logic

- CMOS complementary logic efficient only for negative-unate functions (INV, NAND, NOR...etc)
- Ambipolar logic is efficient for both unate and binate functions
- Optimal for XOR and XNOR dominated circuits

Alternative logic families

Homogeneous array of Tiles

Sea-of-Tiles (SoT)

Homogeneous array of Tiles

Dumbbell-stick diagrams

Layout abstraction and regularity with Tiles

Outline

- Introduction
- Technology
 - Devices
 - Circuits

Architecture

- Communication infrastructure
- 3D Integration
- Sensors
- Applications
- Conclusions

System architectural trends

Intel Single-Chip Cloud Computer

[Courtesy: Howard, ISSCC 2010]

- Many-core processing
 - Frequency scaling has leveled-off
 - Exploit application-level parallelism
- On-chip communication
 - Bottleneck for system performance
- Networks-on-Chip (NoC)
 - Adopted as scalable interconnect

Networks-on-Chip Scalable Interconnect

NoC modular architecture

- Network Interfaces (NIs)
- Switches
- Links

Scalable

- Multiple parallel transactions
- Segmented point-to-point wires
- Used in prototypes and products
 - Bone, Intel Polaris, SCC
 - TI OMAP, Tilera TILE-Gx

Specialization for Power Efficiency

TI OMAP 5 application platform

- Limited power budget for mobile applications
 - Trade-off programmability for power-efficiency
 - Specialized heterogeneous IP-cores

- Communication is a major power consumer
 - Traffic patterns are known
 - Application specific NoC design is needed

Application specific NoCs

- Challenges
 - Many parameters (i.e., data-size, frequency, connectivity)
 - Tools are required to find the best topology
- New technologies
 - More IP-cores
 - More constraints (i.e., 3D-IC vertical connectivity) (c) Giovanni De Micheli

Design automation for NoCs

- Large design space
 - What topology ?
 - Which mapping ?
 - Which routes to use ?
- Optimize parameters
 - Link width, buffer sizes
- Simulate, verify, test

STHORM ANoC

3D NoC Design

- Use NoCs to support Wide I/O
- Challenges:
 - Meet application constraints in a 3D structure
 - Bandwidth, latency
 - Which topology, switches, layers and floorplan locations?
 - Meet 3D technology constraints
 - Maximum available TSV constraints
 - Communication between adjacent layers

Extending 3D Integration to sensing

Custom micro-fabrication for the bio-layer

Technologies enabling low noise operation for the analog circuits

High speed/density CMOS technologies for digital circuits and memories

[Courtesy Guiducci: 2010]

Disposable bio-layer

No need for cleaning. Bio-layer is disposed after each measurement and CMOS layers are used repeatedly

Increased sensitivity and array density due to vertical interconnections from the bio-layer to the readout electronics

Sophisticated algorithms for highly-specific target identification run on-chip DSP and memory

[C. Guiducci 2010]

(c) Giovanni De Micheli

Outline

- Introduction
- Technology
 - Devices
 - Circuits
- Architecture
 - Communication infrastructure
 - 3D Integration

Sensors

- Applications
- Conclusions

Memristive SiNW-based Biosensors

1

-8

_9

-11

-12

- Crystalline, free-standing, Silicon Nanowires manifest memristive conductivity due to the nano-scale of the fabricated structures
- The voltage-gap between the forward and backward current minima in I/V curves increases after NW functionalization with antibodies

In a controlled humidity range, Si NW device sense antigen molecules (i.e., cancer biomarkers) thanks to molecule up-take (immuno-recognition events) displayed by voltage gap changes.

CNT nanostructured sensors

CNT nano-structered electrodes

Outline

- Introduction
- Technology
 - Devices
 - Circuits
- Architecture
 - Communication infrastructure
 - 3D Integration
- Sensors
- Applications
- Conclusions

Nanosystems applications

- Health:
 - Personalized medicine, real-time medical monitoring
- Environment:
 - Weather, pollution monitoring, rock stability
- Energy:
 - Smart grid, data centers, energy-proportional computing
- Computing, communication, control
 - Scientific and consumer applications
- Defense:
 - Design of command and control systems

Nano-Tera.ch

- Health:
 - Personalized medicine, real-time medical monitoring
- Environment:
 - Weather, pollution monitoring, rock stability
- Energy:
 - Smart grid, data centers, energy-proportional computing

Conclusions

- Nano-systems exploit the synergy of devices, circuits and architectures
- New technologies enrich CMOS with novel devices
 - Silicon nanowire and carbon nanotube devices
 - Controlling ambipolarity can be efficiently used in logic design
- New architectures and design styles:
 - Regularity of the fabric is key to robustness
 - 3-Dimensional integration gives an extra degree of freedom
- Hybridization of new technologies opens new frontiers

Thank You

