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Nano-systems 

Nano 
  Nano-electronics: 

  CMOS < 32nm node 
  Silicon nanowires 
  Carbon nanotubes 
  Flatronics 

  Nano-bio-sensing: 
  Size compatibility 
  Electro-chemistry 

Systems 
  Tera-scale systems: 

  Heterogeneity 
  Sensing, Processing, 

Communication, SW 
Transducers 

  Complexity: 
  Design 
  Management 
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The emerging nano-technologies 

  System technology is build bottom-up,  
starting from materials and their properties 

  New devices exploit functional geometries at the 
molecular level 
  Quantum confinement 

  There is a plethora of new materials and processing 
steps/flows 
  More than 50 elements in a regular CMOS process 

  Enhanced silicon CMOS is likely to remain the main 
manufacturing proces 
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Beyond CMOS 

  Nano-technology provides us with new devices 

  Can they mix and match with standard CMOS technology ? 

  What is the added value? 
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22 nm Tri-Gate Transistors 

[Courtesy: M. Bohr] 
(c) Giovanni De Micheli  



8 

FinFETs versus SiNW FETs 
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Ambipolarity 

  Device characteristics controlled by backgate voltage 
  Four-terminal devices 
  Back gate determines type:  n or p 

[Courtesy: Sacchetto, EPFL] 
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Double Independent gate SiNW FET 
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Silicon Nanowire Transistors 

  Gate all around transistors 
  Double gate to control polarity 

(c) Giovanni De Micheli  [Courtesy: De Marchi, EPFL] 
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Device Id/Vcg 
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New Design Paradigm: Ambipolar Logic 

  CMOS complementary logic efficient only for negative-unate 
functions (INV, NAND, NOR…etc) 

  Ambipolar logic is efficient for both unate and binate functions 

  Optimal for XOR and XNOR dominated circuits
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Alternative logic families 
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Sea-of-Tiles (SoT) 

  Homogeneous array of Tiles 
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Sea-of-Tiles (SoT) 

  Homogeneous array of Tiles 
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Dumbbell-stick diagrams 
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Layout abstraction and regularity with Tiles 
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System architectural trends 

  Many-core processing 
  Frequency scaling has leveled-off  
  Exploit application-level parallelism  

  On-chip communication  
  Bottleneck for system performance 

  Networks-on-Chip (NoC) 
  Adopted as scalable interconnect 

Intel Single-Chip Cloud Computer 

[Courtesy: Howard, ISSCC 2010] 
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Networks-on-Chip Scalable Interconnect 

  NoC modular architecture 
  Network Interfaces (NIs) 
  Switches 
  Links 

  Scalable 
  Multiple parallel transactions 
  Segmented point-to-point wires 

  Used in prototypes and products 
  Bone, Intel Polaris, SCC 
  TI OMAP, Tilera TILE-Gx 

xpipes library  
[Courtesy: Stergiou DATE 2005]  
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Specialization for Power Efficiency 

  Limited power budget for 
mobile applications 
  Trade-off programmability 

for power-efficiency 
  Specialized heterogeneous 

IP-cores 

  Communication is a 
major power consumer 
  Traffic patterns are known 
  Application specific NoC 

design is needed 

TI OMAP 5 application platform 

(c) Giovanni De Micheli  
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Application specific NoCs 

  Challenges 
  Many parameters (i.e., data-size, frequency, connectivity) 
  Tools are required to find the best topology  

  New technologies 
  More IP-cores 
  More constraints (i.e., 3D-IC vertical connectivity) 

?

(c) Giovanni De Micheli  
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Design automation for NoCs 

  Large design space 
  What topology ? 
  Which mapping ? 
  Which routes to use ? 

  Optimize parameters 
  Link width, buffer sizes 

  Simulate, verify, test 

(c) Giovanni De Micheli  
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STHORM ANoC 
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3D NoC Design 

  Use NoCs to support Wide I/O 
  Challenges: 

  Meet application constraints in a 3D structure 
-  Bandwidth, latency 
-  Which topology, switches, layers and floorplan locations? 

  Meet 3D technology constraints 
-  Maximum available TSV constraints 
-  Communication between adjacent layers 

(c) Giovanni De Micheli  
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Extending 3D Integration to sensing 

(c) Giovanni De Micheli  

32-130nm Digital Post-Processing 

Memory 

High speed/density CMOS 
technologies for digital 
circuits and memories 

22-45nm 

Analog Front-end 

Technologies enabling low 
noise operation for the 
analog circuits 

90-600 nm 

Biosensor Array 1000-10000 nm 

Custom micro-fabrication for 
the bio‑layer 

[ Courtesy Guiducci: 2010] 
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No need for cleaning. Bio-layer is disposed after 
each measurement and CMOS layers are used 
repeatedly 

Increased sensitivity and array density due to 
vertical interconnections from the bio-layer to the 
readout electronics 

Sophisticated algorithms for highly-specific target 
identification run on-chip DSP and memory 

[ C. Guiducci 2010] 

Disposable bio-layer 
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Memristive SiNW-based Biosensors 

  Crystalline, free-standing, Silicon Nanowires manifest memristive conductivity 
due to the nano-scale of  the fabricated structures 

  The voltage-gap between the forward and backward current minima in I/V 
curves increases after NW functionalization with antibodies 

In a controlled humidity range, Si NW device sense 
antigen molecules (i.e., cancer biomarkers) thanks 
to molecule up-take (immuno-recognition events) 
displayed by voltage gap changes. 

Surface modification 
with antibodies 

Increasing with 
respect to humidity in 

bio-modified NWs 

Small and constant in 
bare NWs 

S. Carrara et al. , 
Sens. Actuators B, 2012 

F. Puppo, IEEE T.  Nanobiosci., submitted 

200 nm 

29.31 nm 
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CNT nanostructured sensors 

metabolite 
range 

Without 
MWCNT ! 

Cyclophosphamide detection -  S.Carrara (c) Giovanni De Micheli  
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CARBON NANOTUBES 

CNTs + PROBE ENZYMES 

CNT nano-structered electrodes 
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Nanosystems applications 

  Health: 
  Personalized medicine, real-time medical monitoring 

  Environment: 
  Weather, pollution monitoring, rock stability 

  Energy: 
  Smart grid, data centers, energy-proportional computing 

  Computing, communication, control 
  Scientific and consumer applications 

  Defense: 
  Design of command and control systems 
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Nano-Tera.ch 

  Health: 
  Personalized medicine, real-time medical monitoring 

  Environment: 
  Weather, pollution monitoring, rock stability 

  Energy: 
  Smart grid, data centers, energy-proportional computing 
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Conclusions 

  Nano-systems exploit the synergy of devices, circuits 
and architectures 

  New technologies enrich CMOS with novel devices 
  Silicon nanowire and carbon nanotube devices 
  Controlling ambipolarity can be efficiently used in logic design 

  New architectures and design styles: 
  Regularity of the fabric is key to robustness 
  3-Dimensional integration gives an extra degree of freedom 

  Hybridization of new technologies opens new frontiers 

(c) Giovanni De Micheli  
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