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Abstract   

For the design of steel-lined pressure tunnels and shafts in anisotropic rock, it is common 

practice to assume for the computation that the system stands in isotropic medium with the 

lowest stiffness measured in situ. In this paper, stresses and displacements in the steel liner of a 

particular steel-lined pressure tunnel are numerically assessed taking into account the 

anisotropic behavior of the rock mass, for the pseudo-static case. The results are compared with 

the corresponding isotropic case.  
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1. Introduction  

The basic criteria that are considered for the design of steel-lined pressure tunnels and shafts 

are (i) the working stress and deformation of the steel liner, and (ii) the load-bearing capacity of 

the surrounding rock mass (Schleiss, 1988). Criterion (i) includes the resistance of the liner to 

buckling (i.e. the stability of the steel liner under outer pressure), the limiting working stresses 

in the liner, and the crack bridging (i.e. the limitation of local deformation in the liner). 

Criterion (ii) aims at avoiding rock mass failure and therefore assuring the assumption of rock 

mass participation in the design. In principle, the limit of the load sharing capacity is reached 

when the tensile stresses transmitted to the rock due to inner pressure are larger than the in 

situ stress field. 

When designing steel-lined pressure tunnels or shafts drilled in rock, designers usually make 

the assumption that the multilayer structure is in isotropic media. The stiffness considered for 

the rock is taken as the lowest modulus of elasticity measured in situ, and the stresses and 

displacements are computed using analytical methods based on compatibility condition of 

deformation of each layer of the radial symmetric system (Hachem and Schleiss, 2009). In 

Europe, according to the C.E.C.T. (1980) recommendations, calculation for primary stresses 

must be performed in the elastic range, and the allowable equivalent stresses (according to von 

Mises theory in triaxial state of stresses) must be below ratios compared to tensile or yield 

strength. 

The influence of anisotropic rock behavior on the deformations and stresses in liners of 

pressure tunnels or shafts has been studied by several authors. Eristov (1967a) developed an 

analytical method for the lining behavior in elastic orthotropic media by partitioning the liner 

into beam elements. This method is similar to the Finite Element Method (FEM) approach 

presented in USACE (1997). Eristov (1967b) also studied experimentally the action of pressure 

tunnels linings in anisotropic media. 
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Postol’skaya (1986) performed a series of parametric investigations of the stress state of the 

crack-resistant lining, using the FEM, in different anisotropic media. More recently, Bobet 

(2011) has developed closed-form solutions for stresses and displacements for lined-tunnels in 

transversely isotropic rock. The multilayer system of steel-lined pressure tunnels or shafts in 

anisotropic rock has not been studied so far. 

This study focuses on the influence of anisotropic rock on stresses and deformations in the steel 

liners of steel-lined pressure tunnels or shafts. A particular geometry with boundary conditions 

was chosen. A finite element model of the multilayer system was implemented and validated 

in isotropic rock compared to the analytical solution. Finally transversely isotropic rock 

behavior was considered and results were compared with the isotropic case. 

2. Steel-lined pressure tunnels or shafts in isotropic rock 

2.1 Axisymmetrical multilayer approach 

 
Figure 1. Definition sketch of the radial symmetrical multilayer system for 
steel lined pressure tunnels with axisymmetrical behavior (Hachem and 
Schleiss, 2011). 

An axisymmetrical multilayer approach is considered (Figure 1), where five zones are 

distinguished (Hachem and Schleiss, 2011):  

1. The steel liner: its inner surface is in contact with pressurized flow and is impervious. 

2. An initial gap between the steel liner and backfill concrete due to steel shrinking as a 

consequence of the contact with cold water. 

3. Backfill concrete: zone between the steel liner and the rock. The concrete usually cracks 

when subjected to inner pressure and thus it is assumed that it cannot transmit tensile 

stresses. 

4. Near-field rock zone: disturbed part of the rock mass as a result of the excavation method 

and the change in the in situ stress field around the tunnel. It is also assumed that this 

zone cannot transmit tensile stresses. 

5. Far-field rock zone: non-disturbed zone assumed as a homogeneous, isotropic and elastic 

material. 
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2.2 Analytical solution 

The deformation of the system (Figure 1) is derived for each layer from the compatibility 

conditions at the interfaces (Hachem and Schleiss, 2011). It is expressed by Eq. [1] to Eq. [3]: 

0( ) ( )s c
r c r cu r r r u r r= − ∆ = =  [1] 

with 

0 0r∆ ≥ ; 

( ) ( )c crm
r a r au r r u r r= = = ; [2] 

( ) ( )crm rm
r f r fu r r u r r= = = ; [3] 

where u is the displacement in the radial direction (indicated by subscript r), superscript s 

refers to steel, c to backfill concrete, crm to cracked rock mass (near-field zone) and rm to rock 

mass (far-field zone). Two assumptions are made: (i) uncracked layers are homogenous, elastic 

with axisymmetrical behavior, modeled according to the thick-walled cylinder theory 

(Timoshenko and Goodier, 1970) and (ii) cracked layers cannot transfer tensile stresses. It 

yields an analytical development to compute the radial displacements of the different layers, 

and therefore the stresses. 

3. Constitutive model of anisotropic rock  

The anisotropy which is considered for the rock mass in this study is the transverse isotropy, 

i.e. a medium with a plane of isotropy, particular case of orthotropy. Assuming that the y-axis 

is perpendicular to the plane of isotropy and that the z-axis is the longitudinal direction (i.e. out 

of the plane in Figure 1), the generalized Hooke’s law is simplified and expressed by Eq. [4] to 

Eq. [9] (Lekhnitskii, 1963): 
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1
'yz yzG
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1 2(1 )
xz xz xzG E

νγ τ τ+= = ; [8] 

1
'xy xyG

γ τ= .  [9] 

It remains five independent constants to characterize a transversely isotropic material. E and E’ 

are the Young’s moduli in the plane of isotropy and perpendicular to it respectively. The 

Poisson’s coefficients which characterize the reduction in the plane of isotropy for the tension 

in the same plane and the tension in a direction normal to it are written ν and ν’ respectively. 

The shear moduli for the planes parallel and normal to the plane of isotropy are G and G’ 

respectively. G’ can be approximated by the empirical relation according to Eq. [10] (Amadei, 

1996): 
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4. Case study 

The studied case considers a steel-lined pressure shaft, with parameters in typical application 

ranges. Table 1 presents the geometrical and loading properties and Table 2 the material 

properties (for the rock, only in the isotropic case). 

Table 1. Geometrical and loading parameters of the case study. 

PARAMETERS ir  
t  0r∆

 cr  ar  fr
 ip

 

UNITS (m) (m) (m) (m) (m) (m) (bar) 

        
VALUES 2.000 0.030 - 2.030 2.530 3.030 120 

        

Table 2. Material properties of the case study (in isotropic rock). 

PARAMETERS sE  sν  cE  cν  crmE  crmν  rmE  rmν  

UNITS (GPa) (-) (GPa) (-) (GPa) (-) (GPa) (-) 

         
VALUES 210 0.29 20 0.2 10 0.2 10 0.2 

         
 

5. Numerical modeling 

The study is performed with the commercial finite element (FE) software Mechanical APDL 

(ANSYS) 14.0 (ANSYS®, 2011).  

5.1 Finite element model 

The implemented FE model assumes: (i) 2D plane strain conditions; (ii) the tunnel has a 

circular cross section; (iii) the tunnel stands in deep rock, i.e. the dimensions of the whole 

system are large enough so that the surrounding media is considered as infinite; (iv) initial gap 

is vanished; (v) contact between every layer is tied; (vi) materials are linear elastic; (vii) only the 

pseudo-static inner pressure due to water is taken into account; and (viii) only one quarter of 

the tunnel is implemented due to the symmetry in the transversely isotropic case. 

To model the cracked layers (i.e. that cannot transmit tensile stress) using linear elastic 

materials, the concerned layers have been radially divided into homogenous parts to rapidly 

prohibit the circumferential tensile stresses after the layer interface, so that it behaves only in 

compression. The assumed opening of the cracks is 0.05 deg and the opening of the solid parts 

is 2.95 deg. 

As the influence of discrete cracks was not the goal of the present study, a first layer of 

uncracked concrete (of thickness equal to 0.5t = 15 mm) was introduced arbitrarily in order to 

absorb the effects of discontinuities outside of the steel liner. The sketch of the FE model is 

shown in Figure 2.  
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Figure 2. Sketch of the finite element model. 

The mesh contains a total of 72’835 elements of type PLANE183 8-node quadrilateral (ANSYS®, 

2011). The liner is discretized by 8 elements along its thickness and 570 elements along its 

quarter-circumference, for a total of 4’560 elements. The large number of elements is due to 

element-shape requirements induced by the small openings of the vacuums of the cracked 

layers. The convergence of the mesh was verified. 

5.2 Validation in isotropic rock 

In the case with isotropic rock behavior, the analytical development obtained by the 

compatibility conditions (Eq. [1] to Eq. [3]) indicates that radial displacements as well as 

circumferential stresses (hoop stresses) are constant for a given radius in the steel liner. For the 

studied case considering isotropic rock with an elastic modulus of 10 GPa, the analytical 

solution gives 2.38·10-3 m for the maximum radial displacement and 268 MPa for the maximum 

circumferential stress. The results obtained with the finite element model are 2.31·10-3 m and 

272 MPa respectively. The error compared to the analytical approach is therefore +1.5% for the 

maximum stresses and -2.9% for the maximum radial displacements. 

The finite element model has therefore a satisfying behavior in isotropic rock. It may be noted 

that the accuracy of the displacements and stresses in the liner also depends on the thickness of 

the first layer of sound concrete that has been introduced. Without considering the latter, the 

FE model is more conservative and gives larger stresses compared to the analytical solution, 

due to the influence of the radial cracks in backfill concrete. 

With the same geometry but with isotropic rock with an elastic modulus of 20 GPa, the error 

compared to the analytical solution becomes +2.4% for the maximum stresses and -1.3% for the 

maximum radial displacements. This is the same order of magnitude than with an elastic 

modulus of 10 GPa, and thus the behavior of the model does not strongly depend on the rock 

stiffness. 
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Despite the use of the thin sound concrete layer, the stresses and displacements have a larger 

variation across the thickness of the liner as well as across the circumference in between the 

discontinuities in the backfill concrete. The system in the FE model is slightly stiffer (it gives 

larger radial displacements) but the maximum stresses are slightly larger due to the remaining 

influence of the discontinuities. 

6. Systemic analysis in anisotropic rock 

A parametric study is performed on the rock mass properties. Based on the corresponding 

isotropic case as a reference where the modulus of elasticity is equal to 10 GPa, five 

transversely isotropic rock masses are simulated, and compared to the results in the isotropic 

case. The properties of these rock materials are shown in Table 3. 

Table 3. Properties of the tested rock masses. 

 / 'E E  E  'E  ν  'ν  G  'G  

 (-) (GPa) (GPa) (-) (-) (GPa) (GPa) 

        
ROCK 1 1.00 10 10 0.2 0.2 4.17 4.17 
ROCK 2 1.20 12 10 0.2 0.15 5.00 4.69 
ROCK 3 1.40 14 10 0.2 0.15 5.83 4.96 
ROCK 4 1.60 16 10 0.2 0.15 6.67 5.19 
ROCK 5 1.80 18 10 0.2 0.15 7.50 5.39 
ROCK 6 2.00 20 10 0.2 0.15 8.33 5.56 

        
 

These properties satisfy the thermodynamic constraints for a material that is transversely 

isotropic (Amadei, 1987). 

7. Results 

Simulations were performed for all types of rock masses introduced in Table 3. In the 

following, dimensionless results are presented in terms of simulated radial displacements and 

first principal stresses, representative of the tangential stresses (hoop stresses) in cylindrical 

coordinates. 

7.1 Stresses 

First principal stresses were obtained at the inner fiber of the steel liner. As in common practice 

the lowest stiffness of the rock is considered in an assumed isotropic case, the results in 

transversely isotropic rock masses are presented under dimensionless form, i.e. divided by the 

corresponding results in isotropic case. Dimensionless first principal stresses are plotted in 

Figure 3 over the angle of location in cylindrical coordinates. Maximum stresses occur at 0 deg, 

i.e. in the plane of isotropy of the rock medium, while minimum stresses occur at 90 deg, i.e. in 

the plane perpendicular to the plane of isotropy. For a ratio of anisotropy of 2, which is 

commonly found in practical cases, the maximum stresses in the liner are reduced by 22% 

compared to the corresponding isotropic case. 
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Figure 3. Dimensionless first principal stresses at the inner fiber 
of the steel liner obtained by finite element analysis as a 
function of anisotropy. 

7.2 Displacements 

Radial displacements were obtained at the inner fiber of the liner, as for stresses. Similarly, they 

are presented under dimensionless form, i.e. divided by the corresponding results in isotropic 

case. Dimensionless radial displacements are plotted in Figure 4 over the angle of location in 

cylindrical coordinates. Maximum displacements occur at 90 deg, i.e. in the plane 

perpendicular to the plane of isotropy, while minimum displacements occur at 0 deg, i.e. in the 

plane of isotropy of the rock medium. Compared to the corresponding isotropic case and for a 

ratio of anisotropy of 2, the maximum radial displacements are increased by 4%, while the 

minimum displacements are decreased by 34%. 

8. Discussion 

The use of a thin sound backfill concrete layer is required to diminish the stress concentrations 

in the liner due to the discontinuities in the cracked backfill concrete which are also not 

considered in the analytical solution. In isotropic rock with the appropriate thickness, the FE 

model gives satisfying results. When considering anisotropic rock behavior where radial 

displacements are no longer constant for a given radius, the sound concrete layer may transmit 

some tensile stresses that do not correspond to the theoretical assumption that cracked layers 

cannot do it. Nevertheless, it seems reasonable to neglect this influence due to the low stiffness 

of concrete compared to steel, as well as the assumed small thickness of this sound layer (in 

this case study 3% of the backfill concrete thickness). Finally, it has to be noted that the FE 

approach presented herein has not the purpose to model cracks behavior in the fissured layers. 

This model, however, uses a linear elastic approach (and thus ease in interpretation) to model 

steel-lined pressure tunnels or shafts multilayer system which behaves realistically in terms of 

stresses and displacements in the liner subjected to pseudo-static loads. 
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Figure 4. Dimensionless radial displacements at the inner fiber of 
the steel liner obtained by finite element analysis as a function 
of anisotropy. 

9. Conclusions 

A linear elastic FE approach was used to study the influence of transversely isotropic rock 

mass behavior on stresses and deformations in the steel liner of steel-lined pressure tunnels or 

shafts. A particular geometry of this hydraulic structure was studied, subjected only to inner 

water pressure, and a sensitivity analysis was performed on the rock mass properties. For a 

ratio of anisotropy of 2, first principal stresses are decreased by more than 20% in the steel liner 

compared to the corresponding isotropic case, and radial displacements are no longer constant 

for a given radius in the liner. 

For the time being the study focused on pseudo-static loading, method commonly used by 

designers of such pressurized waterways. However, this FE approach provides outlooks for 

further studies considering transient loadings such water hammer, by modeling either sound 

or cracked layers in the system while still being in the linear elastic domain. 
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