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ABSTRACT

The steerable wavelet transform is a redundant image repre-
sentation with the remarkable property that its basis functions
can be adaptively rotated to a desired orientation. This makes
the transform well-suited to the design of wavelet-based algo-
rithms applicable to images with a high amount of directional
features. However, arbitrary modification of the wavelet-
domain coefficients may violate consistency constraints be-
cause a legitimate representation must be redundant. In this
paper, by honoring the redundancy of the coefficients, we
demonstrate that it is possible to improve the performance of
regularized least-squares problems in the steerable wavelet
domain. We illustrate that our consistent method significantly
improves upon the performance of conventional denoising
with steerable wavelets.

Index Terms—Image denoising, sparse estimation, wavelet
regularization, steerable wavelet transform

1. INTRODUCTION

The steerable wavelet transform is a multiscale image decom-
position that was first introduced in [1, 2]. The key property
of the transform is that its basis functions can be rotated to
any orientation by forming suitable linear combinations of
the primary directional wavelet components [3]. This makes
the transform practical for the design of wavelet-based algo-
rithms and provide rich directional information [4–9]. The
steerability of the transform implies redundancy where the
corresponding wavelets form a tight frame. Redundancy is
desirable for image analysis and processing. However, for
wavelet-domain estimation problems, it implies that not ev-
ery set of wavelet coefficients can be perfectly inverted back
to the original image domain.

In this work, we propose a simple technique for improving
the performance of `1-based image denoising in the steerable-
wavelet domain. Our technique, which we call consistency,
refers to the fact that the solution obtained by the algorithm
is constrained to the space spanned by the basis functions of
the transform, which results in a certain norm equivalence be-
tween image-domain and wavelet-domain estimations. Previ-
ously, consistency was used in [10] to boost the performance
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of cycle spinning [11]. Our results indicate that the perfor-
mance of consistent image denoising with steerable wavelets
systematically improves the performance of conventional `1-
based wavelet-domain denoising.

2. WAVELET-BASED DENOISING

This paper focuses on the general denoising problem y =
x + n, where x ∈ Rn is the vector containing the samples
of the unknown image of interest and n ∈ Rn is the vector
containing zero-mean white Gaussian noise. In wavelet-based
denoising, the estimation is achieved in three steps.

• Perform the wavelet transform u = Wy ∈ Rm, where,
in general, m ≥ n. The equality m = n happens when
the transform is non-redundant.

• Apply a denoising algorithm represented by fλ :
Rm 7→ Rm that associates the coefficients u to the
estimate ŵ = fλ(u). The vector λ represents the set of
parameters of the algorithm.

• Return to the image domain by applying the inverse
transform to obtain x̂ = WT ŵ ∈ Rn.

In the sequel, we restrict our attention to tight wavelet
frames, which implies that the transform preserves inner
products and is self-reversible

∀x ∈ Rn, WTWx = x. (1)

This also implies that the transform is norm-preserving, with
‖x‖22 = ‖Wx‖22.

A common estimation approach is to solve the regularized
least-squares problem

ŵ = fλ(u) = arg min
w∈Rm

{
1
2
‖w − u‖22 + λΦ(w)

}
, (2)

where the function Φ is a regularizer that promotes solutions
with certain desirable properties and λ > 0 is the regulariza-
tion parameter. The least-squares term in (2) is traditionally
justified by the fact that the transform W is norm-preserving.
Nevertheless, as we show in the sequel, (2) is suboptimal for
redundant W. The popular wavelet-shrinkage algorithm is
obtained by using the non-smooth convex function Φ(·) =
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‖ · ‖1 that favors sparse wavelet-domain solutions and admits
the closed-form solution ŵ = η(u;λ). The soft-thresholding
function η is applied componentwise on the detail wavelet co-
efficients.

3. STEERABLE WAVELET TRANSFORM

After describing the generic approach for wavelet-domain
denoising, we now explain the particular type of steerable
wavelet transforms. The concept relies on two fundamen-
tal elements: the Riesz transform and an isotropic mother
wavelet frame.

3.1. Riesz Transform

Consider the function f ∈ L2(Rd) and its Fourier transform
F{f}(ω) = f̂(ω) =

∫
Rd f(x)e−j〈ω,x〉dx. Then, the Riesz

transform of f is a d-channel filterbank given by

Rf(x) =

R1f(x)
...

Rdf(x)

 =

(h1 ∗ f)(x)
...

(hd ∗ f)(x)

 (3)

where the filters (hn)dn=1 are specified by their Fourier trans-
form ĥn(ω) = −jωn/‖ω‖.

The Riesz transform commutes with a (d × d) rotation
matrix U, with UTU = I, as expressed by the following
property of its impulse response:

F {R{δ}(U·)} (ω) = UF {R{δ}(·)} (ω). (4)

There, δ(x) =
∏d
n=1 δ(xn) is the multidimensional Dirac

distribution. Hence, the rotated Riesz transform of an
isotropic function f corresponds to the multiplication of
U by the non-rotated Riesz transform

Rf(Ux) = URf(x), (5)

which demonstrates the steerability property of the Riesz
transform. From an implementation point of view, the Riesz
transform along the direction specified by the unit vector
u = (u1, . . . , ud) ∈ Rd is computed as the smoothed version
of a steerable gradient filter bank.

Other remarkable properties of the Riesz transform are
shift and scale invariances, and inner-product preservation.
The latter implies that, for f, g ∈ L2(Rd), the Riesz trans-
form satisfies the Parseval-like identity

〈Rf,Rg〉Ld
2

=
d∑

n=1

〈Rnf,Rng〉L2 = 〈f, g〉L2 . (6)

The essential consequence of (3)-(6) is that the Riesz trans-
form maps any tight wavelet frame of L2(Rd) into another
one.

Finally, one obtains higher-order Riesz transforms by per-
forming iterations of the first-order Riesz transform (details
are explained in [9]). It is noteworthy that the higher-order
Riesz transform also satisfies shift and scale invariances, and
inner-product preservation.

3.2. Isotropic Mother-Wavelet Pyramid

A primary isotropic wavelet pyramid is required to pre-
serve the relevance of the directional analysis performed
by the Riesz transform. Moreover, the bandlimitedness of the
wavelet bands must be enforced to ensure the isotropy of the
primary together with the possibility of downsampling. At
this point, we remind that a conventional orthogonal and sep-
arable wavelet transform does not meet these conditions. One
of the popular wavelet designs that satisfy these constraints is
the Simoncelli’s wavelet

ψ̂Sim(ω) =

{
cos
(
π
2 log2

(
2‖ω‖
π

))
, π

4 ≤ ‖ω‖ ≤ π
0, otherwise.

(7)
Therefore, we build a steerable wavelet pyramid by apply-
ing the Riesz transform to the mother wavelet. For instance,
one constructs steerable gradient-like wavelets by applying
the first-order Riesz transform to an isotropic pyramid. Since
the primary wavelet is isotropic, the directionality informa-
tion at each scale is conveyed only by the Riesz transform.

4. CONSISTENT WAVELET DENOISING

In this section, we develop a simple extension to conventional
wavelet denoising with regularized least-squares. In particu-
lar, we are interested in applying the method to the steerable
wavelet transform to improve its performance.

4.1. Constrained Formulation

As mentioned in Section 2, the tightness of the frame implies
that (1) always holds. However, since m > n, there exist
w ∈ Rm for which WWTw 6= w. This in turn implies
that the solution obtained by solving (2) in the tight wavelet-
frame domain is not consistent, in the sense that the wavelet
transform of the final solution x̂ = WT ŵ is not necessar-
ily equal to ŵ obtained from (2). However, since the de-
sired solution always lives in the image domain, it makes
sense to constrain the wavelet-domain estimate to be con-
sistent, which also enforces the perfect invertibility of the
transform. Such estimation can be performed by solving the
constrained-optimization problem

ŵ = arg min
w∈Rm

J (u,w) s.t. WWTw = w, (8a)

with
J (u,w) =

1
2
‖w − u‖22 + λΦ(w). (8b)



For the case of Φ(·) = ‖ · ‖1, the optimization admits a sim-
ple interpretation as the estimation of a sparse and consistent
wavelet-domain solution. In our recent work [10], a similar
estimation procedure was used to improve the performance of
cycle spinning, which works by considering different shifts of
the signal to make the wavelet basis shift-invariant [11].

4.2. Algorithm

A practical implementation of the method can be obtained
with the help of the augmented-Lagrangian approach [12],
which casts the constrained-optimization (8) as a sequence of
unconstrained problems. The idea is to replace the objective
function J with the new penalty function defined as

L(w,x) = J (u,w)+
τ

2
‖w−Wx‖22−µT (w−Wx), (9)

where τ > 0 is the penalty parameter and µ ∈ Rm is the
vector of Lagrange multipliers. The condition w = Wx
asserted by the penalty constrains w to live in the column
space of W, which is equivalent to the consistency condi-
tion w = WWTw. To minimize the objective (9), we alter-
nate between solving the problem for w with x fixed and vice
versa. For simplicity, we now assume Φ(·) = ‖ · ‖1; however,
the method can be readily extended to other regularizers as
demonstrated in [10, 13].

Given the noisy wavelet-domain measurements u ∈ Rm,
regularization parameter λ > 0, penalty parameter τ > 0, and
initial solution x̂0, the estimation proceeds as follows:

1. Initialize: Set t = 0 and µ0 = 0.

2. Update ŵ: Minimize L with respect to w with x fixed

ŵt+1 = arg min
w∈Rm

L(w, x̂t)

= arg min
w∈Rm

{
1
2
‖w − ũ‖22 + λ̃‖w‖1

}
= η(ũ, λ̃), (10)

where ũ = (u+τWx̂t+µt)/(1+τ) and λ̃ = λ/(1+
τ).

3. Update x̂: Minimize L with respect to x with w fixed

x̂t+1 = arg min
x∈Rn

L(wt+1,x)

= WT

(
ŵt+1 − µ

t

τ

)
. (11)

4. Updateµ: Lagrange multipliers are updated according
to the simple rule

µt+1 = µt − τ(ŵt+1 −Wx̂t+1). (12)

5. Set t = t+ 1 and proceed to Step 2.

(d) bladder

(a) original & noisy image (b) TV denoising

(c) BLS-GSM (d) ConSteer

Fig. 1: Comparison of denoising results for wood: (a)
original and noisy image (SNR=15 dB); b) TV denoising
(SNR=19.12 dB); (c) BLS-GSM denoising (SNR=22.46 dB);
(d) ConSteer denoising (SNR=23.05 dB).

For each iteration t = 1, 2, 3, . . . , the proposed rules
produce estimates x̂t of the true signal x. All updates are
easy to compute since they reduce to evaluation of a wavelet-
transform, pointwise soft-thresholding, and inverse wavelet-
transform. Finally, note that, our method is minimizing a
strictly convex function under linear constraints, which im-
plies that the algorithm converges to the global minimum.

5. NUMERICAL EXAMPLES

We consider a simple simulation that illustrates the perfor-
mance of our consistent steerable-wavelet shrinkage (Con-
Steer) algorithm. Specifically, we evaluate our method on
three test images corrupted by additive white Gaussian noise.
The denoising performance is compared in terms of the
signal-to-noise ratio (SNR). Denoising results on the wood
image for an input SNR value of 15 dB are shown in Figure 1.

We present in Table 1 the performance of five standard
denoising algorithms: Haar-wavelet shrinkage, total varia-
tion (TV) denoising, traditional steerable-wavelet shrinkage,
Bayesian least squares Gaussian scale mixture (BLS-GSM),
and ConSteer. Each regularization parameter λ is optimized
for the best SNR performance for each scale and orientata-
tion of the image representation. Three orientation bands have
been chosen for the steerable pyramid used in BLS-GSM de-
noising as well as for the steerable-wavelet transform used
in steerable-wavelet shrinkage and the ConSteer algorithms.
For the ConSteer algorithm, tensor-based steering [9] proved
to be more robust and computationally cheaper. It was car-
ried out on the noisy data. The results presented in Table 1



Table 1: Evaluation and comparison of ConSteer.

Input SNR (dB) 10 15 20
zoneplate

Haar-wavelet shrink 11.68 15.85 20.55
TV denoising 13.38 17.12 21.35
Steerable-wavelet shrink 20.53 23.03 27.12
BLS-GSM 21.59 25.23 29.32
ConSteer 22.07 26.38 30.13

wood
Haar-wavelet shrink 14.68 17.98 21.71
TV denoising 16.30 19.12 22.54
Steerable-wavelet shrink 17.04 20.69 23.99
BLS-GSM 19.9 22.46 25.54
ConSteer 18.82 23.05 26.17

barbara
Haar-wavelet shrink 14.01 17.49 21.78
TV denoising 15.86 18.78 23.61
Steerable-wavelet shrink 17.31 20.03 22.68
BLS-GSM 19.55 22.73 26.02
ConSteer 18.67 21.54 24.73

lead to three conclusions. First, imposing consistency al-
ways improves the quality of denoising. This has already
been observed in [10], where it is shown that consistent cycle
spinning with Haar-wavelets is equivalent to TV denoising.
Here, we see that the same observation is valid in the case
of steerable wavelets, where ConSteer outperforms standard
steerable-wavelet shrinkage for all input SNRs. Second, for
certain images that are rich in directional cues, our simple `1-
based ConSteer yields competitive performance with state-of-
the-art methods like TV denoising and BLS-GSM. Third and
last, our simulations indicate that the performance of Con-
Steer can be further improved by finding suitable strategies
for steering. For example, we observed an additional 1-2 dB
gain over the results in Table 1 when the steering direction
was estimated on the original noiseless image.

6. CONCLUSION

We have presented a method that improves the performance
of `1-based image denoising with steerable wavelets. The
method is computationally simple and attains high-quality re-
sults that are competitive with other similar techniques. We
believe that the ideas presented in this work are applicable
to other state-of-the-art wavelet-domain algorithms. Future
work will include possible extensions to other statistical pri-
ors and applications to extended inverse problems of the type
y = Ax + n.

7. RELATION TO PRIOR WORK

The literature on image denoising is vast [5,8–11]. Neverthe-
less, one may single out two classes of methods, such as total-

variation [10, 14] and wavelet-domain approaches [5, 11]. In
this paper, we have focused on wavelets, with a particular em-
phasis on Riesz-transform-based steerable wavelets [9]. The
improved performance of our approach is due to consistency,
which was introduced in [10] for cycle spinning. Our work
thus extends and improves upon [9, 10] by considering direc-
tional wavelets with consistent denoising.
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