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Figure 1. Triangle network

I. MAIN RESULT

a) Model and definitions: We consider the network in

Fig. 1 where a source S has a message W to send to a

destination D, such that it remains secret from an eavesdropper

Eve. The eavesdropper arbitrarily selects one of the three

channels to wiretap.

All three channels are erasure channels with erasure proba-

bilities δk and δkE , denoting the erasure probabilities toward

the network node (U or D) and toward Eve (in case she

is present on the given channel). All three channels are

independent (e.g. operate in different frequency bands) and

D can receive simultaneously over both S −D and U −D.

The channel inputs are length L vectors of Fq symbols,

which we call packets. To simplify notation, throughout the

paper we express entropy and rate in terms of packets. We

denote by Xk,i the inputs of channel k in the ith transmission,

while Yk,i, Zk,i are the corresponding output at the network

node and Eve respectively.

After each transmission, U and D causally send a public ac-

knowledgment revealing the state of each channel, i.e. whether

or not an erasure occurred (⊥ is the symbol of erasure). This

feedback, after the ith transmission, is Fi and it is assumed to

be publicly available to all network nodes as well as to Eve.

Formally, we have that:

Pr {Y1,i, Y2,i, Y3,i, Z1,i, Z2,i, Z3,i|X1,i, X2,i, X3,i}

=

3
∏

k=1

Pr {Yk,i|Xk,i}Pr {Zk,i|Xk,i}

Pr {Yk,i|Xk,i} =

{

1− δk, Yk,i = Xk,i

δk, Yk,i =⊥,
, k ∈ {1, 2, 3}

Pr {Zk,i|Xk,i} =

{

1− δkE , Zk,i = Xk,i

δkE , Zk,i =⊥,
, k ∈ {1, 2, 3}

We assume that S and U can generate private randomness ΘS ,

ΘU of unlimited rate, independently of each other and from

any other randomness in the system.

Message W consists of N packets. A secure communication

scheme has parameters (N, ǫ, n) and satisfies the following

reliability and security conditions:

Definition 1. An (N, ǫ, n)–scheme has three sets of encoding

functions fk,i, k ∈ {1, 2, 3} as well as a decoding map φ. The

channel inputs are computed as

Xk,i = fk,i(W,ΘS , F
i−1), k ∈ {1, 2}

X3,i = f3,i(Y
i−1
2 , F i−1,ΘU ).

D can decode the message with high probability:

Pr {φ(Y n
1 , Y n

2 ) 6= W} < ǫ. Furthermore, W remains

secret from each eavesdropper:

I(W ;Zn
k ) < ǫ, k ∈ {1, 2, 3}.

Definition 2. A rate R ∈ R is securely achievable if for any

ǫ > 0 there exists a (N, ǫ, n)–scheme for which R− ǫ < 1
n
N.

In this paper, we characterize the secret message capacity of

the triangle network, i.e. the largest securely achievable rate.

Theorem 1. The secret message capacity of the triangle
network is the solution of the following linear program (LP1).
All parameters are nonnegative: mi, ki, c, ci, ri, R ≥ 0.

maxR

s.t.: R ≤ (1− δ1)m1 + (1− δ3)m3 (1)

m1(1− δ1)
1− δ1E

1− δ1δ1E
≤ (k1 + c1)δ1E(1− δ1) + r3 + c3(1− δ3)

(2)

m2(1− δ2)
1− δ2E

1− δ2δ2E
≤ k2δ2E(1− δ2) + k1(1− δ1) (3)

m3(1− δ3)
1− δ3E

1− δ3δ3E
≤ (k1 + c1)(1− δ1) + r3δ3E

1− δ3

1− δ3δ3E

+ (k3 + c3)δ3E(1− δ3) (4)

k2(1− δ2) ≥ c+ r3 (5)

c ≥ c1(1− δ1δ1E) + c3(1− δ3) (6)

c ≥ c3(1− δ3δ3E) + c1(1− δ1) (7)

(1− δ3)m3 ≤ (1− δ2)m2 + c1(1− δ1) (8)

k1 +m1 + c1 ≤ 1 (9)

k2 +m2 ≤ 1 (10)

k3 +m3 + c3 +
r3

1− δ3
≤ 1 (11)

The role of constraints (1)-(11) are explained in the next

section. The matching outer bound and the detailed technical

derivations are provided in [1].
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Figure 2. Comparison of secret message rates with/without exploiting
erasures and with/without feedback. In all cases δiE = δi + 0.2.
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Secret message capacity with intermediate randomness

Secret message capacity without intermediate randomness

Figure 3. Secret message rates with/without randomness at U . δ1 = δ2E =

0.8, δ1E = 0.5, δ3 = δ3E = 0.3 .

Solving the LP in Theorem 1 allows to evaluate 1) the

benefit of exploiting erasures 2) the benefit of exploiting

feedback 3) how much private randomness at the relay U can

help. Fig. 2 compares four schemes: secret message capacity

refers to our scheme in Theorem 1; we plot secret message

capacity without feedback to show the benefits of exploiting

erasures for secrecy yet without using feedback [2], [3];

and finally FEC+SNC refers to applying a link-by-link error

correction coding (FEC) and then using the secure network

coding scheme [4], [5].

It is clear that private randomness at the intermediate node

can only help, but it is not obvious how significant the benefit

is. Depending on the erasure probabilities, the benefit varies

a lot. In some cases, there is no use of it at all (e.g. lossless

channels), in other cases it can go up to more than 40 % gain

in capacity. Fig. 3 gives a numerical example for illustration.

II. BACKGROUND AND PREVIOUS WORK

In this section we summarize the former results that we

build on when designing our scheme for the triangle network.

A. Principle of key generation

It was shown that the erasure channel can be utilized for

generating a shared key between the sender and the receiver

in the presence of an eavesdropping adversary [2], [6]–[8]. We

use the following result:

Theorem 2. Consider an erasure channel with state-feedback

and with parameters δ, δE . If the source sends n i.i.d. uniform

random packets, then secret key of rate

δE(1− δ)

can be generated, while if the source sends i.i.d. uniform

random packets using ARQ through n transmissions, then a

secret key of rate

(1− δ)
δE(1 − δ)

1− δδE

can be generated. In both cases the resulting key K is

uniformly distributed and is produced as linear combinations

of packets that the destination receives. Further, for any ǫ > 0

I(K;Zn) < ǫ (12)

is satisfied if n is large enough.

Proof: Theorem 2 is a reformulation of Corollary 2 from

[7] and Lemma 1 from [8].

In other words, if a source sends nk all different key

generation packets it can generate a key of size k′ such

that limn→∞

1
n
k′ = kδE(1 − δ). While if it sends nk

packets using ARQ a key of size k′ can be generated and

limn→∞

1
n
k′ = k

δE(1−δ)
1−δδE

. Having these asymptotic results in

mind, in our description of the scheme we will assume that

sending nk random key generation packets result nkδE(1−δ)
key packets, while in case of ARQ nk(1− δ) key generation

packets result a key of size nk
δE(1−δ)
1−δδE

after nk transmissions.

B. Principle of encryption

Once a key is set up between the source and the destination,

a message sending phase follows. Using the key, the message

packets are first encrypted.

Theorem 3. Consider an erasure channel with state-feedback

and with parameters δ, δE . Assume the source and the desti-

nation have access to a uniform random key K of rate κ such

that

I(K;E|W ) < ǫ,

where W denotes the message to be sent and E denotes all the

random variables the eavesdropper observes before starting

transmissions. Then a message W of rate min{1−δ, κ 1−δδE
1−δE

}
can be transmitted such that for any ǫ > 0 and a large enough

n

I(W ;Zn, E) < ǫ

holds and the destination can decode W with probability at

least 1−ǫ. Further, this rate is achievable by a strategy where

the source sends encrypted message packets W ′ using ARQ,

such that

W ′ = W ⊕KG,

where G is the generator matrix of an MDS code.

Proof: Theorem 3 is a reformulation of Theorem 2 from

[9].



Using the above theorem, a message sending phase of length

nm needs a rate m(1 − δ) 1−δE
1−δδE

rate key and delivers a

message of size m′ such that limn→∞

1
n
m′ = m(1 − δ).

To ease the description of our scheme we will assume

that a message sending phase of nm transmissions requires

nm(1−δ) 1−δE
1−δδE

key packets and delivers securely nm(1−δ)
encrypted message packets.

C. Secrecy over a point-to-point erasure channel

The secrecy capacity of a point-to-point erasure channel

with state-feedback was characterized in [9]. A two-phase

approach was introduced. In the first phase secret keys shared

between the sender and the receiver are generated. These

keys are used for encryption in the second phase, where the

encrypted message is sent to the receiver. The second phase

itself implements a capacity achieving strategy, namely ARQ,

for reliable transmission of the encrypted packets. We refer

to these phases as key generation and message sending phase

respectively. It was shown that it is possible to securely send a

message at rate R if a secret key of rate R 1−δE
1−δδE

is available.

A key generation rate δE(1− δ) was shown to be achievable.

In the key generation phase independently generated uniform

random packets are transmitted. Given these two components,

the key generation rate and the key requirement of the second

phase, a straightforward calculation gives that the secrecy

capacity of the erasure channel with state-feedback is

CS = δE(1 − δ)
1− δδE

1− δδ2E
. (13)

We can rewrite this result in the form of a linear program,

which will be helpful in the sequel. Let k+m ≤ 1 such that nk

is the length of the key generation phase (expressed in number

of transmissions) and nm is the length of the message sending

phase of the scheme. Then the secrecy capacity is the value

of the following linear program (LP2):

maxR such that:

R ≤ (1 − δ)m (14)

m(1− δ)
1− δE

1− δδE
≤ kδE(1− δ) (15)

1 ≥ m+ k. (16)

Here, (14) expresses that the message rate cannot be higher

than the message rate we can achieve in the second phase.

Constraint (15) ensures the security of the message. The LHS

of (15) is the secret key rate we need to secure a message

of rate (1 − δ)m, while the RHS expresses the rate of secret

key we can create with a length nk key generation phase. The

last inequality ensures that the two phases use no more than n

transmissions. In this case the solution of the linear program is

trivial, and it might seem to be an unnecessarily complicated

way of description, but at the same time it captures more

explicitly the components the scheme is built of than the pure

formula (13).
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Figure 4. Two parallel channels

D. Secrecy over two parallel channels

Consider the setting displayed in Figure4 where there are

two parallel independent erasure channels with erasure param-

eters δ1, δ1E , δ2, δ2E . We assume that there is one eavesdrop-

per who might select any one of the channels to eavesdrop on.

Equivalently we can consider two eavesdroppers, on on each

channel, who do not cooperate. The secrecy capacity of this

setting was characterized in [8]. The following linear program

(LP3) characterizes the secrecy capacity:

maxR such that: (17)

R ≤ (1− δ1)m1 + (1− δ2)m2 (18)

m1
(1− δ1E)(1 − δ1)

1− δ1δ1E
≤ k2(1 − δ2) + k1δ1E(1− δ1) (19)

m2
(1− δ2E)(1 − δ2)

1− δ2δ2E
≤ k1(1 − δ1) + k2δ2E(1− δ2) (20)

1 ≥ m1 + k1 (21)

1 ≥ m2 + k2. (22)

This linear program follows the structure of LP2. In (19)-(20)

besides the key generation terms as seen for the point-to-point

channel, terms k2(1 − δ2) and k1(1 − δ1) also appear. These

terms capture the fact that key generation packets received

through the second (first) channel can be used as secret keys

on the other channel. Indeed, these packets remain secret from

the eavesdropper who eavesdrops only the other channel.

It should be noted that the solution of this linear program is

not trivial any more. Given (13), it is clear that if we knew that

the eavesdropper eavesdrops on the first channel the secrecy

capacity would be

(1 − δ2) + δ1E(1− δ1)
1− δ1δ1E

1− δ1δ
2
1E

,

whereas if we knew that she selects the second channel it

would be

(1 − δ1) + δ2E(1− δ2)
1− δ2δ2E

1− δ2δ
2
2E

.

One might expect that if her selection is not known we can

possibly achieve

min

{

(1− δ2) + δ1E(1 − δ1)
1− δ1δ1E

1− δ1δ
2
1E

, (1− δ1)

+ δ2E(1− δ2)
1− δ2δ2E

1− δ2δ
2
2E

}

. (23)

The formula (23) gives a trivial upper bound, however – as

was shown in [8] – it is not achievable in general. In some

cases the solution of LP3 is strictly smaller than (23).
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E. Secrecy in the V-network

In [8] the role of common randomness in secrecy capacity

was investigated in the setting depicted in Figure 5. The two

sources S1 and S2 are connected to a common destination D

through independent erasure channels out of which any one

is eavesdropped. S1 and S2 can generate unlimited amount

of private randomness, but they have access to only a rate

limited common random source Ψ. The rate of common

randomness plays a crucial role in key generation and hence

in the achievable secret message rate, since it limits the use

of key generation packets sent through the other channel. For

the optimal use of the common randomness new methods for

key generation were introduced. The secrecy capacity is again

characterized by a linear program (LP4):

maxR such that:

R ≤ (1− δ1)m1 + (1 − δ2)m2 (24)

H(Ψ) ≥ c+ r1 + r2 (25)

m1
(1− δ1E)(1− δ1)

1− δ1δ1E
≤ r2 + r1

δ1E(1− δ1)

1− δ1δ1E
+ c2(1 − δ2)

+ (c1 + k1)δ1E(1− δ1) (26)

m2
(1− δ2E)(1− δ2)

1− δ2δ2E
≤ r1 + r2

δ2E(1− δ2)

1− δ2δ2E
+ c1(1 − δ1)

+ (c2 + k2)δ2E(1− δ2) (27)

c ≥ (1− δ1δ1E)c1 + (1− δ2)c2 (28)

c ≥ (1− δ2δ2E)c2 + (1− δ1)c1 (29)

1 ≥ k1 +m1 + c1 +
r1

1− δ1
(30)

1 ≥ k2 +m2 + c2 +
r2

1− δ2
(31)

A brief summary of the different key generation techniques is

as follows. The common randomness Ψ is divided into three

independent parts: c, r1, r2. S1 sends nr1 independent random

packets using ARQ. These packets contribute to the key of S1

with rate r1
δ1E(1−δ1)
1−δ1δ1E

. These packets are known by S2, but not

the eavesdropper on the second channel, so they also contribute

to the key of S2 with rate r1. source S2 uses the nr2 packets

from the common randomness is the same way.

From the remaining part c of the common randomness S1

sends nc1 packets while S2 sends nc2 packets. These packets

are not necessarily independent, but they are always innovative

for D and the eavesdropper (taken together). Constraints (28)-

(29) ensure this property of these packets. These packets act

like the key generation packets in the two parallel channel’s

case enabling a key rate c1δ1E(1 − δ1) + c2(1 − δ2) for S1

and c2δ2E(1− δ2) + c1(1 − δ1) for S2.

The third kind of key generation packets are generated from

private randomness. S1 sends nk1 of those and S2 sends nk2.

These packets contribute to only to the key of the given source

as seen in the case of a point-to-point erasure channel.

III. TRIANGLE NETWORK

In this paper we consider the setting in Figure 1.

There are three nodes in this network: a source S, a

destination D and an intermediate node U . All the three

channels are independent erasure channels with parameters

δi, δiE . We assume that state-feedback from each channel is

publicly available. We consider the case where there is one

eavesdropper Eve in the network, who arbitrarily selects one

of the three channels to eavesdrop on. Or equivalently we can

think of three noncolluding eavesdroppers, one on each link.

Our scheme builds on the techniques developed for the

network in Section II-E with sources accessing limited rate

common randomness. S and U can be considered as the two

sources, however, there are two key differences:

• There is no common random source that S and U shares,

what they have in common has to be transmitted by S

through the S − U channel. New randomness, which is

independent from the message arrives to U during the key

generation phase that takes place on the S − U channel.

So the rate of common randomness is limited by the

length of key generation on the S−U channel. Despite of

the source common randomness, the same key generation

techniques are applicable.

• U does not have direct access to the message W , so even

if it had a perfect channel (δ3 = 0, δ3E = 1) it might

not be able to utilize all transmissions for the message

sending phase.

Beside the known techniques for key generation we also

utilize new algorithms to process packets at the intermediate

node. We give intuition in the following subsections.

A. Recombination of encrypted packets

The key generation packets received through the direct S−
D channel can be used on the S−U channel as keys. Notice,

that we do not require U to be able to decode the message

packets that it receives in the message sending phase that takes

place on the S − U channel. Although the key generation

packets received by D through the S − D channel do not

form a shared key between S and U , they can be used as keys

for encryption the S − U channel.

The message packets that U receives are already encrypted,

thus U can utilize the random components in these packets

against the eavesdropper on the U −D channel. Still, D has

to be able to decrypt the packets it receives, so U first needs to

remove those packets from the linear combinations that only S

and U knows. These are keys generated on the S−U channel.

After that, U needs to produce linear combinations such that

the remaining random components are sufficient to secure the

resulting message packets. The resulting packets can be sent



without using additional keys. After all it is the key generation

packets that D receives through the S−D channel that secure

these packets, hence U can secure as many message packets

using this technique as if U had direct access to both the key

packets and the message packets. We give details and formal

description about how to compute these linear combinations

later.

B. Keys used as message packets

In this section we make the observation that certain key

packets can be treated as if they were encrypted message pack-

ets. One should notice that using a one-time-pad encryption

the interpretation of packets as keys or as encrypted packets is

arbitrary. Consider the following example. Let K be a secret

key and let K+W be the encrypted message. We can equally

say that let K ′ = K + W be the shared secret and then

K = K ′ +W is interpreted as the encrypted message.

The possibility of different interpretation of packets leads

to a nontrivial observation: the number of different message

packets that U can send in the message sending phase on the

U −D channel is not restricted by the number of packets U

receives in the message sending phase on the S −U channel.

Consider the following scenario. Assume S and U can both

generate a random packet C, which is not yet known to D.

If S sends C + W to D, while U sends C, with a different

interpretation of the packets we can equally say that U sends

C′ + W , where C′ = C + W . Hence, although U does not

know W , it can send an encrypted packet of the form C′+W .

The above observation is counter intuitive for our usual

flow-based interpretation of network traffic. For D it is not

always possible to tell through which path a certain message

packet has arrived, because it depends on the interpretation

of the packet. This gives us some flexibility and it overrules

the common sense that it should not be possible to send more

message packets on the U−D channel than what was received

by U in the message sending phase on the S − U channel.

This reveals that in some cases the two phase interpretation

of the scheme leaves a choice on where we separate the phases.

We follow the convention that we call a key generation packet

that appears as a random packet to the receiver upon reception

and call an encrypted message packet that enables immediately

the decryption of a message packet or a linear combination of

message packets with the help of previously received packets.

IV. SCHEME

In this section we show the direct part of Theorem 1.

We need to prove that whenever the above linear program

is feasible there exists a scheme that achieves rate R.

A. Key generation phase

1) S − U channel: S sends nk2 i.i.d. uniform random

packets.

2) S−D channel: S first sends nk1 i.i.d. uniform random

packets. From the k2(1 − δ2) packets that U receives in the

key generation phase two disjoint set of nc and nr3 packets

C and R3 are selected. Further, let G be an nc× n(c1 + c3)

matrix such that G is the generator of an MDS code. Then

compute

CG =
[

C1 C3

]

,

where C1 is a matrix of nc1 packets and C3 is a matrix of

nc3 packets. S sends the nc1 packets from C1 XOR-ed with a

message packet. All the nc1 such transmissions use a different

packet from C1, but the same message packet is used again

in the next transmission to form the XOR-ed packet in case

D does not receive a transmission.

3) U −D channel: U first sends nk3 i.i.d. uniform random

packets. Then, U sends the nc3 packets from matrix C3.

Following this U sends the nr3 packets in R3 using ARQ.

B. Key rates

Using Theorem 2 we can calculate the key rates these key

generation strategies allow. We have to note that the key

generation packets received by U give rise to a common

randomness of rate k2(1 − δ2) between S and U . Packets

C1, C3 and R3 generated from this common randomness can

be used as if they were i.i.d. uniform random key generation

packets. This follows from the MDS property of G as well as

from constraints (5)-(7). This property was shown by Lemma 3

in [8].

1) S − U channel: The nk2 key generation packets allow

a key rate k2δ2E(1− δ2). Beside this, the nk1 key generation

packets sent through the S − D channel can be used for

encryption resulting an overall key rate

k2δ2E(1− δ2) + k1(1− δ1). (32)

2) S −D channel: From the S −D channel’s perspective

there is no difference between the nk1 i.i.d. random packets

and the nc1 packets formed by XOR-ing packets from C1 and

W . Indeed, these packets are i.i.d. random packets and they

are independent of the message packets that are to be sent in

the message sending phase of this channel. This property is

ensured by constraint (6). Beside these keys S can also use

packets that D receives from U . There are nr3 + nc3(1− δ3)
such packets that S can also generate. This results an overall

key rate

(k1 + c1)δ1E(1− δ1) + r3 + c3(1− δ3). (33)

3) U −D channel: From the U −D channel’s perspective

there is no difference between the nk3 private random packets

and the nc3 packets generated from the common randomness

between S and U . Beside these we take into account the nr3
packets sent using ARQ which provides access to a secret key

at rate

(k3 + c3)δ3E(1− δ3) + r3
δ3E(1− δ3)

1− δ3δ3E
(34)

C. Encryption and message sending phase

The message packets are split into parts as follows. S

considers the nc1(1− δ) message packets that are sent XOR-

ed with the packets from C1 already delivered. The rest of the

message is divided into two parts: nm1(1− δ) packets W1 to



be sent through the S −D channel and nm2(1− δ2) packets

W2 to be sent through the S − U channel.

1) S − U channel: The encryption and message sending

phase is straightforward on the S−U channel. Let K2 denote

the matrix formed of the nk1(1−δ1) received by D through the

S−D channel in the first step of the key generation (denoted

by K
(1)
2 ), together with the nk2δ2E(1 − δ2) keys generated

on the S−U channel (denoted by K
(2)
2 ). Then, the encrypted

packets W ′

2 are calculated as

W ′

2 = W2 ⊕K2G2 = W2 ⊕
[

K
(1)
2 K

(2)
2

]

[

G
(1)
2

G
(2)
2

]

(35)

where G2 is a n(k1(1 − δ1) + k2δ2E(1 − δ2)) × nm2(1 −
δ2) matrix and is a generator of an MDS code. In notation

we distinguish the first nk1(1 − δ1) rows of G2 and the last

nk2δ2E(1−δ2) rows of it by G
(1)
2 , G

(2)
2 . The encrypted packets

are then sent using ARQ.

2) S − D channel: S forms a key K1 according to (33)

and encrypts the packets W1 as

W ′

1 = W1 ⊕K1G1, (36)

where G1 is a n(k1δ1E(1−δ1)+c3(1−δ3)+r3)×nm1(1−δ1)
matrix and is a generator of an MDS code. The encrypted

packets are then sent using ARQ.

3) U −D channel: We need to define the operations that

U performs on the packets it receives. U sends three set

of packets interpreted as encrypted message packets. It first

calculates

W ′′

2 = W ′

2 ⊕K
(2)
2 G

(2)
2 = W2 ⊕K

(1)
1 G

(1)
2 , (37)

The resulting packets W ′′

2 are linear combinations of the

message W and the key generation packets from the S −D

channel. U computes
[

W ′

3a W ′

3b

]

= W ′′

2 G3 = W ′′

2

[

G3a G3b

]

, (38)

where G3 is an nm2(1 − δ2) × nm2(1 − δ2) invertible

matrix such that G3a is of size nm2(1− δ2)×min{nk1(1−

δ1)
1−δ3δ3E
1−δ3E

, nm2(1− δ2)} such that G
(1)
2 G3a is the generator

of an MDS code. Encrypted packets W ′

3a are then sent using

ARQ. The remaining W ′

3b packets are considered as unen-

crypted message packets to be sent after further encryption.

The second set of packets U sends are the nc1(1 − δ1)
packets from C1 that were received by D XOR-ed with a

message packet. These packets are sent using ARQ. These

packets enable D to decode nc1(1 − δ1) message packets.

Also, for the eavesdropper on the U − D channel these are

random packets independent from the message, thus these

packets allow the generation of further nc1(1 − δ1)
δ3E(1−δ3)
1−δ3δ3E

key packets to be used by U . Thus besides the keys from the

key generation phase (34), U can use these additional secret

keys to from its key K3.

U uses K3 to encrypt the remaining part of the message

W ′

3b, which results the third set of message packets U sends:

W ′′

3b = W ′

3b ⊕K3G
′

3, (39)

where G′

3 is a |K3| × (nm2(1− δ2)− nk1(1− δ1)
1−δ3δ3E
1−δ3E

)+

matrix and is a generator of an MDS code. Packets W ′′

3b are

then sent using ARQ.

D. Analysis

1) Rate: Let

nm3 =
nc1(1− δ1)

1− δ3
+

nm2(1− δ2)

1− δ3
, (40)

i.e. the number of transmissions that U uses in the message

sending phase. Every received packet allows D to decode

a message packet. Besides, D receives nm1(1 − δ1) pack-

ets through the S − D channel. Clearly, a message rate

(1−δ1)m1+(1−δ3)m3 is achievable as long as m3(1−δ3) ≤
c1(1− δ1) +m2(1 − δ2), which is ensured by (8).

Constraints (9)-(11) ensure that scheme described above is

feasible, i.e. no more than n transmissions are used on each

channel.

2) Security: We need to see if a sufficient key rate is

available against all eavesdroppers whenever we send en-

crypted packets. The security of the scheme then follows from

Theorem 3.

a) S − U channel: It is clear from (3) that the key rate

(32) available on this channel is sufficient to secure a message

sending phase of length nm2.

b) S −D channel: In the same way (2) ensures that the

key rate (33) is sufficient to secure the message sending phase

of length nm1.

c) U −D channel: Packets W ′

3a are of the form

W ′

3a = W2G3a ⊕K
(1)
1 G

(1)
2 G3a. (41)

We see the same form of encryption as in Theorem 3, applied

on the linear combination W2G3a as message packets and

matrix G
(1)
2 G3a for combining the keys K

(1)
1 . The key rate of

K
(1)
1 is k1(1 − δ1). While the rate of W ′

3a is

k1(1− δ1)
1− δ3δ3E

1− δ3E
, (42)

hence the rate of K
(1)
1 is sufficient to secure this message rate

by Theorem 3.

The second set of packets (a subset of C1) are random pack-

ets that are independent of the message, thus no encryption is

required and they cannot reveal any information to Eve about

the message.

Consider the message packets W ′

3b. The rate of W ′

3b is

(m2(1 − δ2) − k1(1 − δ1)
1−δ3δ3E
1−δ3E

)+, while |K3| has rate

(k3 + c3)δ3E(1 − δ3) + (r3 + c1(1 − δ1))
δ3E(1−δ3)
1−δ3δ3E

. Hence,

for security we need that

m2(1− δ2)− k1(1− δ1)
1− δ3δ3E

1− δ3E
≤

(k3+c3)δ3E(1−δ3)
1− δ3δ3E

1− δ3E
+(r3+c1(1−δ1))

δ3E(1− δ3)

1− δ3E
(43)



Using (40) we get:

m3(1− δ3)− c1(1 − δ1)− k1(1− δ1)
1− δ3δ3E

1− δ3E
≤

(k3+c3)δ3E(1−δ3)
1 − δ3δ3E

1− δ3E
+(r3+c1(1−δ1))

δ3E(1− δ3)

1− δ3E
(44)

After rearranging terms this condition becomes constraint (4),

hence the security of message packets W ′

3b is ensured by the

feasibility of LP1.

This concludes the proof of the direct part of Theorem 1. We

have seen that the scheme is feasible, it achieves the claimed

rate and it ensures security against each eavesdropper.

REFERENCES

[1] [Online]. Available: http://arni.epfl.ch/ czap/triangle.html
[2] A. D. Wyner, “The wire-tap channel,” The Bell system Technical Journal,

vol. 54, no. 8, pp. 1355–1387, 1975.
[3] T. Cui, “Coding for wireless broadcast and network secrecy,” Ph.D.

dissertation, California Institute of Technology, 2010.
[4] N. Cai and R. Yeung, “Secure network coding,” in International Sympo-

sium on Information Theory (ISIT). IEEE, 2005, p. 323.
[5] ——, “Secure network coding on a wiretap network,” IEEE Transactions

on Information Theory,, vol. 57, no. 1, pp. 424–435, 2011.
[6] U. Maurer, “Secret key agreement by public discussion from common

information,” IEEE Transactions on Information Theory, vol. 39, no. 3,
pp. 733–742, May 1993.

[7] M. Jafari Siavoshani, S. Diggavi, C. Fragouli, U. K. Pulleti, and K. Argy-
raki, “Group Secret Key Generation over Broadcast Erasure Channels,”
in Asilomar Conference on Signals, Systems, and Computers, 2010, pp.
719–723.

[8] L. Czap, V. Prabhakaran, S. Diggavi, and C. Fragouli, “Exploiting
common randomness: a resource for network secrecy,” in Information

Theory Workshop (ITW), 2013.
[9] L. Czap, V. Prabhakaran, C. Fragouli, and S. Diggavi, “Secret message

capacity of erasure broadcast channels with feedback,” in Information

Theory Workshop (ITW), 2011, pp. 65–69.


