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ABSTRACT
Peak demand is a major challenge for power utilities across
the world. Demand Response (DR) is considered to be ef-
fective in addressing peak demand by altering consumption
of end consumers, so as to match supply capability. How-
ever, an efficient DR system needs to respect end consumer
convenience and understand their propensity of participat-
ing in a particular DR event, while altering the consumer
demand. Understanding such preferences is non-trivial due
to the large-scale and variability of consumers and the in-
frastructure changes required for collecting essential (smart
meter and/or appliance specific) data.
In this paper, we propose an inclusive DR system, iDR,

that helps an electricity provider to design an effective de-
mand response event by analyzing its consumers’ house-
level consumption (smart meter) data and external context
(weather conditions, seasonality etc.) data. iDR combines
analytics and optimization to determine optimal power con-
sumption schedules that satisfy an electricity provider’s DR
objectives - such as reduction in peak load - while mini-
mizing the inconvenience caused to consumers associated
with alteration in their consumption patterns. iDR uses
a novel context-specific approach for determining end con-
sumer baseline consumptions and user convenience models.
Using these consumer specific models and past DR experi-
ence, iDR optimization engine identifies -(i) when to execute
a DR event, (ii) who are the consumers to be targeted for
the DR, and (iii) what signals to be sent. Some of iDR’s ca-
pabilities are demonstrated using real-world house-level as
well as appliance-level data.
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1. INTRODUCTION
Demand Response (DR) programs aim to alleviate the

peak demand problem and provide higher system reliability
by altering consumer demand in response to the power grid’s
supply and economic conditions. Various evaluation studies
indicate that DR can be an effective mechanism for address-
ing the challenges of growing energy demand and related
supply-demand imbalances [1–3]. A staff report by Federal
Energy Regulatory Commission [4] estimates that the feasi-
bility of peak demand reduction in the United States can be
up to 20% by using DR technologies with full participation.
As per another study [5], DR programs alone could achieve
up to half of the European Union’s 2020 targets concern-
ing energy savings and CO2 emissions. Additionally, many
electricity suppliers around the world are deploying smart
meters to gather fine-grained spatio-temporal consumption
data, and to provide a bi-directional communication mech-
anism [6]. This infrastructural enhancement is a significant
enabler for bringing DR vision to reality.

However, the success of DR programs essentially depends
upon the end consumers’ participation. Various evaluation
studies [7, 8] based on results of DR pilots and surveys of
participants indicate that discomfort/inconvenience caused
during a DR event is a key factor that adversely affects DR
participation. Additionally, it was found that demographic
attributes such as family size, income level, participants’ ac-
tivity structure, etc. are relevant factors for DR participa-
tion. Hence, any effective DR system needs to understand
the end consumers’ electricity usage preferences and their
demographic attributes while choosing the right set of con-
sumers for a DR contract and/or for a particular DR event.

Energy suppliers/aggregators offer various types of DR
contracts to the end consumers, such as Time of Use (ToU)
Rates, Capacity Biding Programs (CBP), Demand Biding
Programs (DBP) and Peak Day Pricing (PDP) [9]. Any
particular DR program needs to confer fairness amongst
consumers under the same DR contract. Additionally, it
should also take into account adverse side-effects of DR, such
as rebound effect [10]. Considering above mentioned chal-
lenges, it is non-trivial to determine - (i) the time window
for executing a DR event, considering supply conditions and
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predicted consumer demand, (ii) the right set of consumers
to be targeted for a particular DR event considering factors
such as end consumers’ preferences, DR contracts and DR
participation history, (iii) target reduction per consumer and
expected DR outcome.
To address the afore-mentioned challenges, in this paper,

we present iDR, an inclusive DR planning system, that helps
energy suppliers design effective DR events, while taking into
account consumers’ preferences and fairness of the system
with respect to the DR contracts. The key contributions of
this paper are:

1. A novel context-based method to determine baseline
consumption and quantify inconvenience caused to con-
sumers (in the form of utility functions), using smart
meter data.

2. A novel and simple context-based approach to deter-
mine inconvenience (in the form of utility functions)
using appliance-level data, if available.

3. A stochastic optimization framework that uses the above
utility functions to determine when to execute DR
events, which consumers to target, and what signals
to send.

4. A mechanism to ensure fairness amongst multiple con-
sumers with same type of DR contract while planning
DR events.

The remainder of this paper is organized as follows. In
Section II, we provide an overview of the related work. In
Section III, we describe our context based approaches for
determining end consumers’ preferences of electricity usage.
In Section IV, we define an optimization framework for op-
timal and fair DR scheduling. We showcase the evaluation
of iDR on a real-world dataset in Section V, and finally, in
Section VI, we conclude our work and discuss avenues for
future work.

2. RELATED WORK
Determining consumer preferences for individual appli-

ance usage and using these preferences for optimal appli-
ance scheduling is well studied in literature. In [11], the au-
thors consider optimal household appliance scheduling for
dynamic pricing. They propose a system, Yupik that de-
termines preferred time of use for individual appliances and
generates appliance usage schedules to minimize both a house-
hold’s energy costs and potential lifestyle disruptions. [12]
presents a methodology to schedule appliances taking into
account cost, scheduling preferences and climactic comfort
requirements. In [13], authors propose an approach for de-
termining consumer preferences for appliance use by cate-
gorizing household appliances into four types and deriving
different utility functions for each of these types. Further,
they propose an optimal DR strategy based on utility maxi-
mization, where dual objectives are formulated for cost min-
imization from the utility provider’s perspective, and social
welfare maximization from the consumers’ perspective. [14]
extends this work for computation time reduction by propos-
ing load consolidation and a LP framework.
Though the existing literature provides various approaches

for modeling and determining consumer preferences and op-
timal scheduling for demand response events or dynamic

pricing, their practical usefulness is somewhat limited be-
cause of the underlying complexity associated with the use
of appliance level utility models only. For example, a utility
provider might not have access to appliance level consump-
tion information for all its consumers. This motivates the
need for a DR planning methodology which is not depen-
dent on fine-grained appliance-level information, but works
well with house-level (smart meter) consumption data only.
In this paper, we present a novel approach for determining
consumer preferences using smart meter data only, and/or
appliance level data, if available. Additionally, the existing
work mainly considers automatic demand response scenar-
ios and hence proposes the direct control or scheduling of
individual home appliances. On the contrary, we consider a
more practical and widely prevalent demand response sce-
nario wherein the utility provider sends DR signals to con-
sumers, and thereafter consumers can accept or decline the
signals and determine appliance schedules as per their con-
venience. In this context, this paper presents astochastic
optimization approach to determine when to send DR sig-
nal (optimal DR timeslots), whom to send it (selecting the
right set of consumers) and how much reduction to target.

There is also an increasing interest in obtaining useful DR
related insights from smart meter data such as application
specific consumer segmentation or baseline load forecasting
for individual consumers. For example, smart meter data
has been used for consumer segmentation in [15] and [16].
A body of literature also exists on baseline consumption es-
timation. KEMA Inc. [17] and EnerNOC [18] provide excel-
lent overviews of the baseline estimation methods employed
by utilities in the United States. The above-mentioned ref-
erences serve as enablers or background for our approach
of optimal DR using smart meter data. However, existing
work has not used smart meter data for understanding con-
sumer preferences and subsequent DR planning. The pro-
posed work addresses these gaps by providing a methodology
to plan and schedule DR events based on smart meter data
alone as well as combining appliance-level data, if available.

3. DETERMINING CONSUMER PREFER-
ENCES

In this section, we present methodologies to model the
utility (benefit) derived by a consumer as a function of her
consumption. These models form the basis of the optimiza-
tion framework presented in section 4. We propose two util-
ity modeling frameworks - one at the aggregate house level
(using smart meter data), and another which uses appliance
level consumption data if such high resolution sensing in-
frastructure is available. The common nomenclature used
in this paper is shown in Table 1.

3.1 Preference mining using smart meter data
Analysis of historical consumption data for a consumer

over time can provide information on her consumption pref-
erences. We use two quantities - baseline and utility - to
quantify such preferences. Baseline is defined as an estimate
of the electrical load drawn by a consumer in the absence
of any DR related curtailment actions. Utility is defined
as the ‘benefit’ obtained by a consumer corresponding to a
given amount of consumption. The objective of preference
mining in this work using smart meter data is to determine
baselines and utilities for each consumer. The underlying
methods are explained below.



Symbol Description

d General notation to represent a day

i General notation to represent a consumer

t General notation to represent a timeslot

T Number of timeslots in a day d

N Number of consumers served by a utility com-
pany

Qi,t,d Consumption in kWh by consumer i during
timelot t in day d

Qb
i,t,d Baseline consumption in kWh by consumer i dur-

ing timelot t in day d

Ui,t,d(.) Utility function associated with consumer i dur-
ing timelot t in day d

Qs
t,d Maximum amount of energy in kWh that the

utility can supply during timelot t in day d

nt Maximum number of consumers that the utility
decides to target for DR during timelot t

ηt
max Maximum reduction in consumption as a fraction

of baseline consumption

νi,t,d Boolean variable representing whether consumer
i should be targeted for DR during timelot t in
day d

∆Qi,t,d Reduction in consumption (kWh) from baseline
by consumer i during timelot t in day d

Table 1: Nomenclature of common symbols

3.1.1 Baseline estimation
Existing methods for baseline estimation involve averag-

ing [17], regression [19] and time series analysis [20]. In this
work, we obtain baselines by first identifying appropriate
consumer contexts. A context is defined as a combination
of external and internal factors that influence a consumer’s
consumption decisions. For instance, at a month level, influ-
encing contexts could be season of a year (summer, autumn,
winter or spring) or at a finer resolution month of the year
(January, February, etc.). Similarly, at a day level, possible
contexts are weekday/weekend or day of the week(Monday,
Tuesday, etc.).
Multiple contexts may be associated with a particular day.

As an example, October 17th, 2013 can be represented by
contexts such as {Autumn}, {Autumn, weekday}, {Octo-
ber, Thursday}, etc. To choose the most appropriate con-
text, and obtain the corresponding baseline consumptions,
we proceed as follows:

1. We denote the day for which baselines are to be esti-
mated by d. We assume that this day is divided into
T discrete timeslots. We first identify the set C(d)
consisting of all contexts and their combinations that
explains the day d.

2. Based on the historical data, we find the context C∗ ∈
C(d), whose consumption has lowest dispersion. Here
dispersion can be quantified using statistical measures
such as standard deviation or inter-quartile range.

3. The baseline consumption for each timeslot t ∈ {1, 2, ..., T}
is then determined by a measure of central tendency
- such as mean or median - applied to historical con-
sumption data at timeslot t on previous days in the
context C∗.

In obtaining the baseline consumption as described above,
historical data can be used in several different ways. The
simplest method is to use a static time window, where con-
sumption data from all previous days in the context are used,

irrespective of how far in the past these days are from the
day d. On the other hand, a moving window approach only
uses consumption data from Nprev most recent days. An
exponentially moving average approach is a variation of the
moving window approach, where a weighted average is per-
formed with more importance (higher weights) being given
to the more recent days.

Figure 1 provides an evaluation of the proposed context
based baseline estimation method with respect to existing
approaches based on average mean absolute error (MAE)
across consumers for residential consumer [21] and commer-
cial consumer [22] datasets. Our proposed approach per-
forms better than existing approaches on both datasets. For
a more detailed comparative analysis of various methods for
baseline prediction, the user is directed to the study [17].
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Figure 1: Evaluation of the proposed baseline estimation
method with respect to existing approaches based on av-
erage mean absolute error (MAE) across all consumers
for Residential consumers [21] and Commercial Consumers
[22] datasets. Approaches A and B present our proposed
context-based baselining method with (A) using Enlarged
window with exponentially moving average and (B) using
Enlarged window. Approaches C to F present existing meth-
ods [17] - (C) CAISO, (D) ISONE, (E) Low5Of10 and (F)
NYISO.

3.1.2 Utility quantification
To express the utility derived by a consumer as a function

of her consumption, we make the following assumptions:

1. A consumer derives maximum utility when her con-
sumption equals baseline, since by definition the base-
line represents the preferred level of consumption.

2. Any deviation from baseline - either above or below -
results in a reduction of utility.

In order to satisfy the above assumptions, we propose the
use of probability distribution of consumption during the



specific timeslot (on the past consumption data filtered by
optimal context C∗) to quantify utilities. However, it should
be noted that the use of probability distribution reflects a
specific choice, among several candidate methods for quanti-
fying utilities that can potentially satisfy the above assump-
tions.
The probability associated with a consumption of q kWh,

reflects the consumer’s preference for consuming an amount
of energy q KWh during the specified slot and under the
context C∗. To make this setting more formal, we introduce
the concept of utility functions.
The utility function is defined as follows:

Consider a consumer i, and a timeslot t in the day, where
i ∈ {1, 2, ..., N}, and t ∈ {1, 2, ..., T} and d is the day in
consideration for DR planning. Let C∗ be the optimal con-
text for the triplet {i, t, d} based on the method discussed in
Section 3.1.1 andQb

i,t,d be the corresponding estimated base-
line consumption. For any particular consumption Qi,t,d by
the consumer at this time slot of the day, associated utility
function Ui,t,d(.) is expressed as:

Ui,t,d(Qi,t,d) =
pC

∗
(Qi,t,d)

pC∗(Qb
i,t,d)

(1)

where pC
∗
(q) gives the probability of consumption q in the

past data under optimal context C∗. The consumer pref-
erences - captured via baselines and utility functions as de-
scribed above - are inputs that are used to set up the opti-
mization frameworks presented in Section 4.

3.2 Preference mining using appliance data
So far, we have presented an approach for quantifying con-

sumer preferences using aggregated, household level, con-
sumption data. Nevertheless, assuming that appliance level
data is available, for example where AMIs are in place, there
is an evident potential to leverage this information in order
to form a more detailed and accurate depiction of user’s pref-
erences. This section presents a methodology for achieving
that. The proposed methodology is based on mining util-
ity (benefit) derived from each monitored appliance. More
specifically, it estimates the importance that each consumer
places on a specific appliance via calculating a corresponding
“weight”. These weights constitute a measure of how flexible
(elastic) the consumers are in altering the typical use of each
appliance, for example in the case of a DR event.
Our methodology follows three distinct phases. At first,

by using statistical analysis, we derive the utility values of
each appliance in order to formulate the consumption pro-
file of each household. Next, we fit the derived utility values
from phase 1 to those resulting from the utility functions
of [13], thus also validating the results from our approach
against a more theoretic one that assumes the knowledge of
utility functions. Finally, exploiting the fitted utility func-
tions we mine the weights that reflect consumer’s preferences
regarding the usage of appliances, under specific realistic as-
sumptions.
As a prerequisite, our work adopts the categorisation of

household devices that is proposed in the widely cited work
[13]. According to this reference, the typical household ap-
pliances can be classified into four types. The first type
includes appliances such as refrigerator and air-conditioner
which control temperature. The second type includes ap-
pliances such as washing machine where the consumer only
cares about whether a task is completed before a certain

time. The third category includes appliances such as light-
ing that must be ON for a certain period of time. The fourth
type includes appliances such as TV or computer that the
consumer uses for entertainment. Each type is character-
ized by a utility function Ui,α(qi,α) that models how much
consumer i values the consumption vector qi,α and a set of
linear constraints on qi,α.

To experimentally evaluate our approach, we use real con-
sumption data from 6 households in India. The available
data comprises of sensor readings at a granularity of ten
seconds for four different appliances: air-conditioner, fridge,
washing machine and television (TV). These readings are
extracted for a given context C, that is weekdays in July
and correspond to three of the four appliance categories
proposed by [13] (Type 1, 2 and 4), as the fridge and the
air-conditioner both belong to the same, Type 1 category.
This is because sensor readings for Type 3 appliances (e.g.
lighting) were not available.

For conciseness, we present application details of our pro-
posed methodology to only one of the three categories of
devices (Type 4). However, the same approach was used for
the other three devices.

3.2.1 Phase 1: Derivation of utility values from ap-
pliance level data

In Phase 1, the utility values for the respective devices
are empirically estimated using statistical analysis. We now
explain this process for Type 4 devices. Type 4 category
includes appliances such as TV, video games, and comput-
ers that a consumer uses for entertainment. In this case,
the consumer’s utility depends on two factors: how much
power is consumed at each time she wants to use them, and
how much total power is consumed over the entire day. At
each time, t ∈ {1, 2, ..., T}, we assume that the consumer i
attains a utility Ui,t,α(qi,t,α) from energy consumption qi,t,a
on appliance α.
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Figure 2: Hourly consumption of TV operation of House 1
during weekdays in July in Chennai, India. The figure shows
the behavior of a specific consumer (House 1) over a specific
appliance under specific context (weekdays in July).

By constructing the histograms of the consumption vec-
tor Qi,d,α := {qi,t,α, t ∈ {1, 2, ..., T}}, over all timeslots, as
shown in Figure 2, we can analyse the consumer behavior
i.e. the timeslots when their appliances are operated and the
associated consumption level. For this type of appliances we
can assume that higher the consumption, the greater the sat-



isfaction experienced by the consumers, which in economic
theory is expressed as a “utility value”. At this point, as we
do not have any knowledge of the function that expresses
the relationship between the consumption values and the
obtained utility values, the latter can be approximated by
the empirical cumulative distribution function for given con-
sumer i, appliance α, timeslot t and context, as follows:

Ui,t,α(qi,t,α) =


0, if qi,t,α < qmin

i,t,α

eCDFi,t,α(qi,t,α), if qi,t,α ∈ [qmin
i,t,α, q

max
i,t,α]

1, if qi,t,α > qmax
i,t,α

(2)
Here, qmin

i,t,α and qmax
i,t,α are minimum and maximum con-

sumption observed in timeslot t, respectively in the given
context, and eCDFi,t,α(x) represents the value of the em-
pirical cumulative distribution function for consumer i when
operating appliance α at power level x at timeslot t. In
particular, given the range of observed consumption values
[qmin

i,t,α, q
max
i,t,α], and by assuming that the utility is an increas-

ing function of consumption and thus monotonic, we define
the utility value associated with a consumption x as the cu-
mulative frequency of consumption values ≤ x in this range.
Note that, when calculating the probability of a consump-

tion value to be less than a certain value, the eCDF takes
into consideration situations of zero consumption, i.e. when
no utility is gained. Therefore, we do not explicitly take
such situations into account in deriving the utility values.
Next, to define the utility value Ui,d,α(Qi,d,α) for a specific

day d, a given consumer i, and a given appliance α, where

Qi,d,α = [qi,1,α, qi,2,α, ..., qi,T,α]
T ,

we estimate it as the median - weighted sum:

Ui,d,α(Qi,d,α) =

∑t=T
t=1 (mediani,t,α × Ui,t,α(qi,t,α))∑t=T

t=1 mediani,t,α

, (3)

where, mediani,t,α is the median of consumption data of
appliance α in timeslot t for a consumer i and given context,
and it is used in order to avoid the analysis to be skewed in
favour of very high or very low consumption values.

3.2.2 Phase 2: Fitting the estimated utility values to
the utility functions of [13]

In the next step, our approach uses the utility functions
of the different types of appliances from [13] represented
as continuously differentiable concave functions of the total
consumption in timeslot t and day d. Our objective is to
approximate these coefficients such that the resulting utility
values match those statistically estimated in Phase 1. This
can be achieved by minimizing the distance of the curve
formed from the utility values, i.e. the eCDF curve at the
points of evaluation, from the curve of the utility functions
in [13].
We adopt the utility functions as well as the initialization

data defined in the experimental section of [13]. In partic-
ular, for Type 4 appliances, the utility function takes the
form of:

Ui,t,α(qi,t,α) = Cα − (bα − qi,t,α
qα

)−1.5 (4)

where Cα ≥ 0, bα ≥ 0 and qα > 0 are the variables to be
fitted. In this case, the fitting is executed at each timeslot t
due to the nature of the appliance and corresponds to a non
linear regression problem.
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Figure 3: TV - Fitting the derived utility values to utility
values based on [13] for Monday - Jul 15, 2013

Figure 3 presents the results for a particular consumer and
a particular day, while the notation follows the nomenclature
in Table 2. The day was divided into 4 timeslots, that is
T = 4. The coefficients obtained using least squares fit are
CTV = 2.2953, bTV = 0.5786 and qTV = 7.5397 × 103.
From Fig. 3, we observe that the normalized utility values
(UTV,fit,t), after fitting are close to the normalized values of
UTV,t from the utility functions.

Symbol Description

eUα,t Estimated utility values derived in Phase 1 for
appliance α during timeslot t

Uα,t Utility values resulting from utility functions in
[13] for appliance α during timeslot t

Uα,fit,t Utility values resulting from applying fitted co-
efficient values to the utility functions for appli-
ance α during timeslot t

normalized
eUα,t

is calculated as
eUα,t

max(eUα,t)

normalized
Uα,t

is calculated as
Uα,t

max(Uα,t)

normalized
eUα,fit,t

is calculated as
Uα,fit,t

max
(
Uα,fit,t

)

Table 2: Nomenclature of symbols used in Figure 3

In general, the results from the fitting methodology for all
appliances imply that our approach of statistically deriving
the consumers preferences, in terms of utility values, with
use of detailed consumption data and without any knowl-
edge about the utility functions has small deviations from
the case where full knowledge is available, as in [13].

3.2.3 Phase 3: Mining the weights of each appliance
To derive the weights of each appliance that reflect the

consumer’s preferences, we use the assumption that given
two different days of the same context, e.g. two weekdays,
the consumption profile might vary, but the total Net Ben-
efit (NB) obtained (i.e. the utility gained minus the mon-
etary cost) is the same. This implies that for both days if
the energy tariff scheme is known - a valid assumption in
our case - each consumer chooses that consumption, which
maximizes her total NB. To apply this assumption to our
methodology, we calculate one respective weight per times-
lot for the TV (type 4 appliance), fridge (type 1 appliance)
and air-conditioner (type 1 appliance) and one per day for



the washing machine (type 2 appliance). We use only one
weight for the washing machine as we are interested only
in the total consumption of the appliance after each oper-
ation, since the respective load (in one washing cycle) can
be interrupted by the consumer and shifted to subsequent
timeslots, which cannot be the case, for example, in the use
of an air-conditioning device.
Thereby, given a set of appliances α ∈ A,A :=

{AC,FR,WM,TV }, the weights wi,α, α ∈ A and the same
context for each day d, d ∈ C, the NB is of the following
form:

NBi,d =
∑
α∈A

wi,αUi,d,α(Qi,d,α)− Ci,d(
∑
α∈A

Qi,d,α), (5)

where Qi,d,α = [qi,1,α, qi,2,α, qi,3,α, qi,4,α], and
Ci,d(

∑
α∈A Qi,d,α) are the cost functions based on which

the consumer is charged for electricity consumption. Note
that in this phase we consider all type 1 appliances of
consumer i as a single appliance for simplicity. Thus, by
equating the NB formulas for all the combinations of days
from the available set of days C and applying linear least
squares optimization, we derive the weights presented in
Table 3.

Timeslot wi,Type4 wi,Type1

1 0.0004 29.7085
2 0.0013 0.4750
3 4.6355 0.6577
4 0.5947 0.0007

wi,Type2

7.0732

Table 3: Values of appliances’ weights using NB

The results indicate that consumers are rather inelastic to
changes in the consumption of type 1 appliances (i.e. their
corresponding weights exhibit the greatest values amongst
all), which is rational due to the fact that the use of such
appliances (for e.g. cooling devices) in the given context
of July weekdays is of paramount importance to them. We
also observe that the weights that correspond to type 4 ap-
pliances can take mostly smaller values than those of type
1 and type 2 appliances respectively. This implies that this
type of load can be curtailed at a specific time period or
shifted to another time period, without causing significant
inconvenience to consumers.
On the other hand, we observe that type 2 appliances

are more elastic in terms of the time of their operation.
This means that their load cannot be curtailed or shifted
before a specific task is finished but they can operate at
anytime during the day, which explains why the resulting
value shown in Table 3 is greater than the values of type 4.
Generally, the conclusions one can deduce about the impor-
tance of the appliances in the consumers’ everyday life are
consistent with the respective bibliography about the cate-
gorization of appliances in terms of shiftable and curtailment
load. An energy provider can therefore leverage our method-
ology to quantify each consumer’s personal preferences, and
use them in order to predict their behaviour in the case of
a DR signal being sent to them.
To conclude, although we have presented two frameworks

for understanding and quantifying consumers’ preferences,
in the remainder of this paper we use the framework based
on smart meter data alone (Section 3.1) for further develop-
ment of iDR. This is because the rapid penetration of smart

meters in today’s grids have allowed utility companies access
to consumers’ aggregate consumption data at the household
level. Therefore, we believe that at the current state of
metering infrastructure, the framework based on smart me-
ter data is more universally applicable than that based on
appliance level data. However, we recommend the use of
appliance level preference mining, wherever possible, as we
believe it is a more accurate representation of consumers’
consumption patterns.

4. OPTIMIZATION FRAMEWORK
In this section, we present a methodology that can be

used by the utility provider for planning DR events. In par-
ticular, for a given day, we seek to determine the following
in advance: (i) when should DR events be conducted, (ii)
which consumers should be targeted, and (iii) what DR sig-
nals should be sent to each such consumer. Our approach
involves solving an optimization problem, which uses con-
sumers’ preferences quantified in Section 3.1. The goal of
the optimization is to plan DR response events such that
the inconvenience caused to consumers is minimized while
the utility provider’s targets with regard to reduction in con-
sumption are achieved. In the presentation of this method-
ology, we do not make any specific assumption on the form
of the utility function. Therefore, it can be applied to any
candidate utility function deemed appropriate by the reader.
An example of such a utility function was provided in (1).

Before a formal presentation of the framework, we first de-
fine the underlying nomenclature. The number of consumers
served by the utility is denoted by N . The day for which DR
planning is to be performed is denoted by d. It is divided
into T timeslots. Consider a consumer i, and a timeslot
t in the day, where i ∈ {1, 2, ..., N}, and t ∈ {1, 2, ..., T}.
For the triplet {i, t, d}, the best matching context C∗ can
be obtained using the methodology described in Section 2.
Using this context, a baseline consumption Qb

i,t,d and the
corresponding utility function Ui,t,d(.) are determined.

We assume that for each timeslot t in the day d under
consideration, the utility provider determines, in advance,
the maximum amount of energy, Qs

t,d to be supplied. Such
a determination can be made based on a combination of the
provider’s power procurement schedule from power generat-
ing companies for that day, and economics associated with
power purchase. For instance, if it is known that buying
electricity during certain time periods (e.g. peak demand
periods) would be more expensive than during other peri-
ods, the utility provider may choose to limit the amount of
energy procured during those time periods.

Given the above setting, we first determine the set TDR

of timeslots when DR events should be conducted. This set
consists of timeslots when the expected (baseline) consump-
tion, added across consumers exceeds the desired supply,
and is more formally expressed as:

TDR =

{
t :

N∑
i=1

Qb
i,t,d ≥ Qs

t,d, t ∈ {1, 2, ...T}

}
. (6)

Next, to determine the consumers to be targeted for DR
and the DR signals to be sent, we propose the following op-
timization frameworks. The first framework assumes that
the targeted consumers would always participate in the DR
event. The second framework assumes that these consumers
would participate only with some pre-determined probabil-
ity. Two design variables - nt and ηt

max - are used in these



frameworks. The former represents the maximum number
of consumers that the utility would like to target during
timeslot t for participation in a DR event, whereas the lat-
ter represents the maximum reduction in consumption, ex-
pressed as a fraction of the baseline consumption Qb

i,t,d for
each consumer, that the utility provider can request during
a DR event at timeslot t. The use of nt as a design variable
is motivated by the need to reduce the computational re-
quirements associated with the optimization. For example,
in a realistic scenario, a utility provider can cater to millions
of consumers, but might like to involve only a few thousand
consumers at any given time for DR.

4.1 Deterministic framework
For all t ∈ TDR, the following optimization problem is

solved:{
ν∗
i,t,d,∆Q∗

i,t,d

}
=

argmax
{νi,t,d,∆Qi,t,d}

Jd :=
N∑
i=1

Ui,t,d

(
Qb

i,t,d − νi,t,d∆Qi,t,d

)
(7)

Subject to:

N∑
i=1

(
Qb

i,t,d − νi,t,d∆Qi,t,d

)
≤ Qs

t,d, (8)

νi,t ∈ {0, 1} for all i ∈ {1, 2, ..., N}, (9)

N∑
i=1

νi,t ≤ nt, and (10)

0 ≤ ∆Qi,t,d ≤ ηt
maxQ

b
i,t,d for all i ∈ {1, 2, ..., N}. (11)

The objective of the above optimization, expressed by (7)
is to maximize the aggregated utility obtained by the con-
sumers during a DR event. In other words, we seek to min-
imize the inconvenience caused to the consumers resulting
from reduction in consumption. The decision variables in
the framework are as follows: (i) for each i ∈ {1, 2, ..., N},
the Boolean variable νi,t,d represents whether consumer i
should be targeted for DR during timeslot t, indicated by a
value of 1, and 0 otherwise; (ii) for each i ∈ {1, 2, ..., N}, the
variable ∆Qi,t,d ≥ 0 represents the target reduction in con-
sumption for consumer i during the DR timeslot t. The con-
straint (8) restricts the aggregate consumption during each
DR timeslot t ∈ TDR to be within the consumption bound
Qs

t,d imposed by the utility provider. The DR design vari-

ables nt and ηt
max, explained earlier, appear in constraints

(10) and (11), respectively.

4.2 Stochastic framework
We denote the probability of user i responding to a DR

event at timeslot t in day d by pi,t,d. This probability can
be determined, for instance, by analyzing the user’s response
history to previous DR signals sent to her on days and times-
lots which correspond to the context C∗.
Next, we introduce a random boolean variable αi,t,d, which

indicates the ith consumer’s decision to participate, when
the utility provider targets that consumer for a DR event.
This setting can be mathematically expressed using the fol-
lowing equations:

αi,t,d ∈ {0, 1} for all i ∈ {1, 2, ..., N}, and (12)

P (αi,t,d = 1|νi,t,d = 1) = pi,t,d. (13)

A modified objective function Js is defined as shown below,
where E(.) is the expected value operator.

Js := E

(
N∑
i=1

Ui,t,d

(
Qb

i,t,d − αi,t,dνi,t,d∆Qi,t,d

))
. (14)

The stochastic version of the constraint (8) is given by

E

(
N∑
i=1

(
Qb

i,t,d − αi,t,dνi,t,d∆Qi,t,d

))
≤ Qs

t,d (15)

The stochastic optimization framework, therefore seeks to
maximize Js given by (14), subject to the constraints (9)
to (11), and the constraints (12), (13) and (15). Hence it
represents a chance-constrained mixed integer program. The
expected values appearing in equations (14) and (15) can
be evaluated using (13), resulting in deterministic versions
of these equations given by (16) and (17), respectively. It
should be noted that by setting pi,t,d to 1, we recover the
deterministic framework presented in Section 4.1.

Js =

N∑
i=1

[
Ui,t,d

(
Qb

i,t,d

)
− νi,t,dpi,t,dX

]
where X =

{
Ui,t,d

(
Qb

i,t,d

)
− Ui,t,d

(
Qb

i,t,d −∆Qi,t,d

)}
.

(16)

N∑
i=1

(
Qb

i,t,d − νi,t,dpi,t,d∆Qi,t,d

)
≤ Qs

t,d. (17)

The use of a stochastic framework can also allow the utility
provider to ensure fairness on the basis of DR contract. For
example, if the contract specifies a maximum number of DR
signals Nmax

DR,i to be sent to a consumer i in a given time slot
t, the probabilities pi,t,d can be iteratively adjusted (e.g.
once every day) as shown below:

pi,t,d = 1−
Ncurr

DR,i

Nmax
DR,i

(18)

Here, Ncurr
DR,i denotes the total number of times the consumer

i has been selected at time slot t since the beginning of the
contract upto the current iteration. We observe that (18)
results in probabilities of participation which are monoton-
ically decreasing functions of the number of times the con-
sumer has been targeted for DR. When the consumer has
been selected Nmax

DR,i number of times, pi,t,d becomes zero,
which ensures that she would not be targeted for DR any
further.

4.3 Feasibility condition
In this section, we prove a necessary and sufficient condi-

tion for feasibility of the afore-mentioned optimization frame-
work, and determine a feasible point that can be used as a
candidate initial point to solve it.

Theorem 1: Without loss of generality, we assume that
for a given t ∈ TDR, the consumers indexed by i ∈ {1, 2, ..., N}
are arranged in the increasing order of pi,t,dQ

b
i,t,d. The prob-

lem of maximizing Js given by (16) subject to the constraints
(17) and (9) to (11) admits a feasible solution if and only if
the following inequality is satisfied:

N∑
i=1

Qb
i,t,d −Qs

t,d ≤ ηt
max

N∑
i=N−nt+1

pi,t,dQ
b
i,t,d. (19)



If the condition (19) is satisfied, decision variables obtained
by the assignments (20) and (21) are feasible.

If i ∈ {1, 2, ..., N − nt}, νi,t,d = 0, ∆Qi,t,d = 0, and (20)

If i ∈ {N − nt + 1, ..., N}, νi,t,d = 1, ∆Qi,t,d = ηt
maxQ

b
i,t,d.
(21)

Proof. We first prove the ‘necesssay’ part. If for all i ∈
{1, 2, ..., N}, νi,t,d and ∆Qi,t,d are such that they satisfy (17)
and (11), they also satisfy:

N∑
i=1

Qb
i,t,d −Qs

t,d ≤
N∑
i=1

νi,t,dpi,t,d∆Qi,t,d

≤ ηt
max

N∑
i=1

νi,t,dpi,t,dQ
b
i,t,d. (22)

Since the set {1, 2, ..., N} is sorted in the increasing order of
pi,t,dQ

b
i,t,d, the expression in the RHS of (22) attains a max-

imum value of ηt
max

∑N
i=N−nt+1 pi,t,dQ

b
i,t,d due to the re-

maining constraints (9) and (10). Therefore, (22) can be sat-

isfied only if:
∑N

i=1 Q
b
i,t,d−Qs

t,d ≤ ηt
max

∑N
i=N−nt+1 pi,t,dQ

b
i,t,d.

To prove the ‘sufficient’ part, we assume that the condition
(19) is satisfied. It can be easily verified that the decision
variables obtained by assignments (20) and (21) satisfy the
following relationship for all i ∈ {1, 2, ..., N}.

νi,t,dpi,t,d∆Qi,t,d = ηt
maxνi,t,dpi,t,dQ

b
i,t,d. (23)

Using (19) and (23), we establish that the above chosen de-
cision variables also satisfy the constraint (17). Since these
decision variables also satisfy (9), (10) and (11), we con-
clude that this choice of decision variables is feasible, that
is it satisfies all underlying constraints. Hence the condition
(19) leads to a feasible choice of decision variables, given by
(20) and (21).

Note that if the condition (19) is not satisfied for a partic-
ular choice of design parameters, either ηt

max or nt or both
might have to be increased until it is satisfied.

5. EXPERIMENTAL EVALUATION
In this section, we perform simulation experiments using

a real world consumption data set to evaluate the DR plan-
ning methodology presented in Section 4. We compare and
evaluate the performance of three approaches - (i) deter-
ministic optimization (Section 4.1), (ii) stochastic optimiza-
tion (Section 4.2), and (iii) a rule based approach presented
later in Section 5.5. The goal of these experiments is to un-
derstand and explain the results of the proposed optimiza-
tion frameworks using intuition, and to quantify the efficacy
of these frameworks by comparing with the rule-based ap-
proach. Each of these experiments is performed in two steps.
In the first step, only 10 consumers are included to facilitate
an easy understanding of the results. In the second step, the
optimization is repeated on the complete set of consumers
to demonstrate the scalability of iDR. Lastly, we also in-
clude an experiment, where we investigate the impact of the
fairness strategy proposed in (18).

5.1 Data collection and pre-processing
We use consumption data available in the CER Ireland

dataset [21]. This dataset contains approximately 5000 con-
sumers, both residential and small and medium enterprises.

Measurements were obtained using smart meters for a pe-
riod of 1.5 years, from July 2009 to December 2010. Since
the dataset was collected as a part of a dynamic pricing
trial, we select consumers who are in a single control group.
In addition, we choose residential consumers with no miss-
ing data, thereby resulting in N = 500 consumers. For
each day, and for each consumer, the recorded data is used
to obtain consumption in kWh for each one hour time slot
(t ∈ {1, 2, ..., 24}) during the day. In this way, we obtain
the consumptionQi,t,d corresponding to each triplet {i, t, d},
where i is the consumer index (i ∈ {1, 2, ..., N}), t represents
a slot in the day (t ∈ {1, 2, ..., 24}), and d refers to a day in
the dataset.

5.2 Parameters for optimization
In the simulation experiments reported in this section, we

choose the day dDR for DR planning as April 1, 2011, which
represents the first day of summer in 2011. We select the op-
timal context C∗, such that dDR ∈ C∗, for each consumer as
described in Section 3.1.1. Let dC be the set of days belong-
ing to context C∗ for the given consumer. For simplicity
and computational efficiency, we assume Gaussian distri-
bution of consumption over the set dC to calculate utility
functions using (1). Thus, on day dDR, for each pair {i, t},
where i ∈ {1, 2, ..., N} and t ∈ {1, 2, ..., 24}, we determine
the baseline consumption Qb

i,t,dDR
and the utility function

Ui,t,dDR(.) using equations (24) and (25).

Qb
i,t,dDR

= µi,t,dC , (24)

Ui,t,dDR (Qi,t,dDR) = exp

{
−
(
Qi,t,dDR −Qb

i,t,dDR

)2
2σi,t,dC

}
.

(25)
Here, µi,t,dC and σi,t,dC denote the mean and standard de-
viations, respectively, of the set {Qi,t,d : d ∈ dC}. Equation
(24) sets the baseline consumption for a consumer in any
timeslot to her mean consumption in that timeslot observed
on days which lie in the appropriate context C∗. Equation
(25) uses a Gaussian function to describe a utility value be-
tween 0 and 1 for consumption in each timeslot, ensuring
that the maximum utility of 1 is obtained when consump-
tion equals baseline consumption. Note that (25) satisfies
the assumptions in Section 3.1.2.

As the first step in DR planning, we determine the set of
timeslots in the day, TDR to be targeted for DR. The sum∑N

1=1 Q
b
i,t,dDR

of baseline consumptions for all consumers,
corresponding to each hourly timeslot in the day is plotted
in Figure 4. The utility provider’s assumed target energy
delivery schedule is also shown in Figure 4. From a compar-
ison of these plots, we determine, using (6) that the set of
timeslots to be targeted for DR is TDR = {13, 22}. To solve
the mixed integer nonlinear optimization problems (MINLP)
appearing in Sections 4.1 and 4.2, we use the NOMAD al-
gorithm [23] implemented in the OPTI toolbox in MAT-
LAB [24]. NOMAD is a mesh-adaptive direct search algo-
rithm with the potential to find global solutions to MINLPs.
It should be noted that the objective of this work is not to
determine the best available solution method for the MINLP
considered. Hence our use of NOMAD should be treated as
one of the choices among several possible solvers, and the
interested reader is free to use any other solver to perform
these experiments. To analyze and understand the results
of the optimization, the baseline consumptions Qb

i,t,dDR
and

the standard deviations σi,t,dC for each consumer for the DR



timeslots t = 13 and t = 22 are shown in Tables 4 and 5, re-
spectively. Given the aforementioned setup and parameters,
we now describe various simulation experiments to evaluate
the proposed DR planning methodology.
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Figure 4: Comparison of the sum of baseline consumptions
and the utility provider’s power delivery schedule over the
day dDR.

Consumer
number

Qb
i,t,dDR

(kWh)
σi,t,dc

(kWh)
pi,t,dDR (for
experiment 2)

1 3.143 2.685 0.9
2 0.393 0.373 0.9
3 0.305 0.287 0.9
4 0.417 0.449 0.9
5 1.077 1.268 0.9
6 1.928 1.752 0.1
7 0.164 0.251 0.1
8 1.140 1.324 0.1
9 1.440 1.495 0.1
10 0.680 0.982 0.1

Table 4: Baseline consumptions (Qb
i,t,dDR

), standard devi-
ations (σi,t,dc) and probabilities of participation (pi,t,dDR)
chosen for timeslot t = 13. These parameters are used to
run the simulation experiments.

5.3 Approach 1: Deterministic case
In the first aprroach, we assume that each consumer’s

probability of participation in a DR event is unity, i.e. for
each t ∈ TDR, and for each i ∈ {1, 2, ...N}, pi,t,dDR = 1. The
DR design parameters nt and ηt

max which are required by
the optimization framework presented in Section 4.1 are set
to 3 and 0.25 respectively. It can be easily verified that this
choice of these parameters satisfies the feasibility criterion
(19) obtained earlier.

5.4 Approach 2: Stochastic case
In the second approach, we assign non-unity probabilities

of participation pi,t,dDR in a DR event for each consumer.
Since DR participation information was not reported in the
data set being used, we assign these probabilities as shown
in Tables 4 and 5. With this choice of probabilities, the
feasibility condition (19) is not satisfied. To address this,
we increase nt from 3 to 4.

5.5 Approach 3: Rule based strategy
In the third approach, we investigate a rule based strategy

(Algorithm 1) for determination of which consumers should

Consumer
number

Qb
i,t,dDR

(kWh)
σi,t,dc

(kWh)
pi,t,dDR (for
experiment 2)

1 0.675 0.357 0.9
2 0.988 0.626 0.9
3 0.729 0.491 0.9
4 1.060 0.962 0.9
5 3.116 2.261 0.9
6 1.079 1.062 0.1
7 0.388 0.594 0.1
8 1.701 1.304 0.1
9 1.723 0.966 0.1
10 1.275 1.153 0.1

Table 5: Baseline consumptions (Qb
i,t,dDR

), standard devi-
ations (σi,t,dc) and probabilities of participation (pi,t,dDR)
chosen for timeslot t = 22. These parameters are used to
run the simulation experiments

be targeted for DR and what DR signals should be sent. In
the absence of appropriate ground truth information, we use
results obtained from this rule based scheme as the reference
to test the value added by the DR planning methodology
presented in Section 4. It identifies a set of nt consumers
which achieve the targeted reduction in demand by navi-
gating through the set of consumers in the increasing order
of their reduction in utility (steps 2, 3 and 4). Once a set
of such consumers is obtained, it then assigns the demand
reduction target for each of those consumers in such a way
that their percentage reduction over their baseline consump-
tion is the same (step 5). Such an assignment is performed
to ensure a ‘fair’ DR strategy across the target consumers.

Algorithm 1: Rule based strategy for DR planning
at timeslot t ∈ TDR

STEP 1: For each consumer i, determine the reduction
in utility ∆Umax

i,t,dDR
and the absolute expected reduction in

consumption ∆Qmax
i,t,dDR

:= pi,t,dDRη
t
maxQ

b
i,t,dDR

from base-
line consumption corresponding to a percentage reduction
of ηt

max.
STEP 2: Sort consumers in ascending order of ∆Umax

i,t,dDR
.

We refer to this sorted set by St. Set m = 1.
STEP 3: Set the ‘current decision set’ Dt to consumers

{m,m+ 1, ...,m+ nt − 1} in St. Set m = m + 1.
STEP 4: Repeat step 3 until the total expected reduction

in consumption corresponding to Dt,
∑

i∈Dt
∆Qmax

i,t,dDR
is

greater than or equal to the targeted reduction
∑N

i=1 Q
b
i,t,d−

Qs
t,d.
STEP 5: The final set of consumers to be targeted is given

by Dt. The target reduction for each consumer i ∈ Dt, is

then set to: ∆Qi,t,dDR =

(∑N
j=1 Q

b
j,t,d −Qs

t,d

)
Qb

i,t,dDR∑
j∈Dt

pj,t,dDRQ
b
j,t,dDR

.

5.6 Results
The decision variables obtained using the three approaches

described above are presented and compared in Figures 5
and 6. The consumers selected for DR during timeslots
t = 13 and t = 22, are shown in Figure 5. The correspond-
ing DR signals (targeted consumptions in kWh) are shown
in Figures 6.

Due to the choice of the utility function in (25), for the
same reduction over baseline consumption, a consumer with
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Figure 5: Comparison of consumers selected for DR using three approaches during time slots t = 13 (left) and t = 22 (right).
Note that at t = 13, the stochastic case results in certain non-intuitive choice of consumers (e.g. 2 and 4 which have small
baselines, but higher participation probabilities.) Similarly, at t = 22, the stochastic case results in certain non-intuitive choice
of consumers (e.g. 2 and 3 which have small standard deviations)
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Figure 6: Comparison of DR target consumptions for consumers during time slots t = 13 (left) and t = 22 (right) using the
first three optimization approaches. The baseline and standard deviation based on historical data are also shown for reference.
Note that at t = 13, while consumers with small baseline and standard deviation (e.g. 2 and 4) are never targeted in the
deterministic case (approach 1), they can be targeted in the stochastic case (approach 2) due to their higher participation
probabilities.

larger standard deviation, σi,t,dC would be subjected to a
smaller reduction in utility than a consumer with smaller
standard deviation. Also, for the same percentage reduc-
tion over baseline consumption, consumers with higher base-
line consumption provide higher curtailment of demand than
consumers with lower baseline consumption. As a result
of these observations, we expect that consumers with large
standard deviation and high baseline consumption should
be chosen for DR in approach 1. From Figure 5, it can be
verified that the optimal choice of consumers for DR indeed
conforms to the above intuition.
The intuition stated above also holds for approach 2, af-

ter taking into account the probabilities of participation: we
expect that consumers with large standard deviation, high
baseline consumption and high probability of participation
should be targeted for DR. It is difficult to apply this in-
tuition directly, since a set of nt consumers satisfying all
the above 3 criterion does not exist. Therefore, in Figure
5, while we observe that some consumers satisfying these
criterion (consumers 1 and 5 at t = 13) are selected, the se-
lection of remaining consumers (2 and 4) is non-trivial. This
supports the use of a systematic optimization framework -
such as the one proposed in this work - since intuition might
be limited and inadequate.
Next, we compare the results of approach 1 and approach

2 to the results of the the rule based strategy (approach 3).
We first compare the expected reduction in aggregate con-

sumption
(
∆Qt

expected

)
obtained using these approaches,

which is computed using the following equation:

∆Qt

expected =
N∑
i=1

pi,t,dDR∆Qi,t,dDR (26)

The expected reduction in consumption in each of these
approaches during timeslot t = 13 is 1.069 kW which ex-
actly matches the desired reduction (

∑N
1=1 Q

b
i,t,dDR

−Qs
t,d).

The same observation was made for DR at timeslot t = 22.
Therefore, we conclude that the consumpting mitigation ob-
jective of DR is met in all these approaches. We also quantify
the inconvenience caused to consumers in each of these ap-
proaches. This is done by computing the expected reduction
in utility from the maximum value of 1 for each consumer
chosen to participate in DR, and adding it over all such con-
sumers. The inconvenience caused to consumers for each of
these approaches and during each DR timeslot, as obtained
using this methodology, is shown in Figure 7. We observe
that for DR during timeslot t = 13, approach 3 results in
almost twice as much inconvenience as that caused in ap-
proach 2. For timeslot t = 22, the inconvenience caused
is about 9% more in approach 3 than approach 2. From
these results, we conclude that the rule based strategy is
at best suboptimal and reinforces the importance of using
a systematic optimization framework, such as the one pro-
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Figure 7: Comparison of inconvenience caused (total reduction in utility over all consumers) using the three approaches, when
number of consumers is 10 (left) and when number of consumers is 500 (right). Note that for DR at timeslot t = 13, the
inconvenience caused using heuristic rule-based DR strategy (approach 3) is almost twice that of iDR (approach 2).

posed, over heuristic rule based strategies for DR planning.
Note that we do not perform a comparison of approaches 1
and 3 because they represent two different setups, the lat-
ter corresponds to a stochastic setting whereas the former is
deterministic.
Lastly, we re-run the afore-mentioned experiments for the

larger set of N = 500 consumers. The probabilities pi,t,dDR

were assigned arbitrarily, and we assume that the timeslots
corresponding to DR are still t = 13 and t = 22, when
the utility’s desired supply power Qs

t,dDR
falls short of the

expected demand
∑N

i=1 Q
b
i,t,DR by 10%. The DR design

variables ηt
max and nt are set to 0.25 and 167 respectively.

The observations made were similar to those reported above
for 10 consumers. The targeted DR reduction was achieved
in all these approaches and the inconvenience comparison is
presented in Figure 7.

5.7 Fairness assessment
The objective of this experiment is to evaluate the fair-

ness strategy proposed in (18). For simplicity, we create 10
identical clones of consumer 1 used in the previous three
experiments, resulting in a group of consumers with similar
consumption preferences. The parameters nt in (10) and
Nmax

DR,i in (18) are both set to 5, and the timeslot t = 13 is
chosen for simulations.
Figure 8 shows the number of times each consumer is tar-

geted, as DR iterations progress. It is observed that after
the end of a sufficiently large number of iterations (in this
case 10), all consumers have been chosen an equal number of
times. This verifies that the proposed DR planning strategy
is ‘fair’ across all consumers in the group.

6. DISCUSSIONS AND FUTURE WORK
In this paper, we presented iDR, a planning methodology

that helps electricity providers in designing effective demand
response events. In summary, iDR helps answer three im-
portant questions: (i) when to plan DR events, (ii) which
consumers to target, and (iii) what signals to send. The
proposed approach involved the estimation of baseline con-
sumptions using historical consumption data obtained from
smart meters, and then the development of utility functions
using smart meter data to gauge the inconvenience associ-
ated with consumers shifting their demand from baselines.
These utility functions were then used in the solution of a
chance constrained, mixed integer nonlinear program. The
approach was tested in simulation using data from a public
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Figure 8: Progression of consumer selection as a function of
DR iterations, shown as a box plot. Note that each consumer
has been selected equal number of times at the end of 10
iterations, ensuring fairness

data source. Results indicated that the DR objectives were
achieved, and iDR resulted in lower inconvenience than a
heuristic rule based approach.

Based on the work presented in this paper, we identify the
following avenues of future research involving iDR. The opti-
mization framework presented in Section 4 and evaluated in
Section 5 corresponds to the utility mining framework based
on aggregate consumption (Section 3.1). An important area
of investigation in future is the development of a DR plan-
ning methodology, analogous to that presented in Section 4,
but based on appliance level utility functions (Section 3.2), if
appliance level consumption information is available. Com-
parison of the results of these two optimization frameworks
is expected to provide deeper insights towards establishing
optimal consumption schedules for effective DR planning. A
Gaussian utility function was used in the simulation exper-
iments reported in Section 5. As an alternative, empirically
derived utility functions from the consumption dataset can
also be implemented. However, the potentially additional
computational overhead introduced would need to be bal-
anced against the value added by the use of such an empiri-
cal, purely data driven approach. The relationship between
DR participation probabilities and incentives also needs de-
tailed investigation. This can enable an augmentation of
the existing capabilities of iDR. For example, it can enable
the development of appropriate incentives in order to alter
the participation probabilities of a set of consumers, such as
those with poor DR participation history. In general, the



use of participation probabilities in the framework provides
a handle for the electricity providers to achieve other DR
objectives besides demand mitigation, such as the develop-
ment of effective DR contracts. The mitigation of unwanted
outcomes such as rebound effects [10] can be included in
the optimization framework to increase its practical value.
Also, extensions of the proposed approach to plan DR for
consumer groups instead of individual consumers can result
in potential advantages such as a reduction in computational
overhead. Previous work in the area of consumer segmenta-
tion such as [16] can be used in this context. Experimental
results were not reported in this paper. However, we identify
the real-world testing of iDR through pilot studies to gauge
its true potential as a DR planning tool as an important
final step in its development. Such pilot studies are being
planned as a part of the European Union funded WATTA-
LYST project [25], which would involve user studies to test
the accuracy of the utility models developed in Section 3,
effect of consumer participation in DR execution, as well
as the efficacy of the DR planning methodology proposed
in Section 4. Additionally, we plan to test iDR in simula-
tion on a larger dataset than the one currently used, for a
detailed scalability analysis.
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