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A Splitting Method for Optimal Control
Brendan O’Donoghue, Giorgos Stathopoulos, and Stephen Boyd

Abstract— We apply an operator splitting technique to a
generic linear-convex optimal control problem, which results in
an algorithm that alternates between solving a quadratic control
problem, for which there are efficient methods, and solving a
set of single-period optimization problems, which can be done
in parallel, and often have analytical solutions. In many cases,
the resulting algorithm is division-free (after some off-line pre-
computations) and can be implemented in fixed-point arithmetic,
for example on a field-programmable gate array (FPGA). We
demonstrate the method on several examples from different
application areas.

Index Terms— Alternating directions method of multipliers
(ADMM), convex optimization, embedded control, fixed point
algorithms for control, model predictive control (MPC), operator
splitting, optimal control.

I. INTRODUCTION

WE CONSIDER a linear-convex optimal control prob-
lem, i.e., the problem of finding a trajectory of state-

control pairs that satisfy a set of linear dynamics, and minimize
a sum of convex stage-cost functions. This problem arises
naturally in many application areas, including model predictive
control (MPC), moving horizon estimation, and trajectory
planning. Finding an optimal trajectory involves solving a
convex optimization problem, which can, in principle, be done
efficiently, using generic techniques for convex optimization,
or methods developed specifically for the linear-convex opti-
mal control problem, such as custom interior-point methods.
We are interested here in real-time applications, which require
very high execution speed and simplicity of the algorithm.
On the other hand, most real-time applications do not require
the solution to be computed to high accuracy; assuming
the variables have been appropriately scaled, three digits of
accuracy is usually more than adequate.

In this brief, we describe yet another method to solve linear-
convex optimal control problems quickly. The algorithm we
present relies on an operator splitting technique, referred to
as the alternating direction method of multipliers (ADMM),
or as Douglas–Rachford (D-R) splitting. Operator splitting
breaks the problem into two parts, a quadratic optimal control
problem (which can be solved very efficiently) and a set of
single period optimization problems (which can be solved
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in parallel, often, analytically). An iteration that alternates
these two steps then converges to a solution. We demonstrate
that our method can solve optimal control problems to an
acceptable accuracy very rapidly, indicating that it is suitable
for use in, e.g., high-frequency control applications. Another
advantage of our method is that in many cases, after some
off-line pre-computation, the algorithm requires no division
operations. In these cases, it can be implemented in fixed-
point arithmetic, for example on a field-programmable gate
array (FPGA) for high-speed embedded control.

II. CONVEX OPTIMAL CONTROL PROBLEM

A. Problem Description

We consider the (deterministic, discrete-time, finite-horizon)
linear-convex optimal control problem

minimize
T∑

t=0

(φt (xt , ut )+ ψt (xt , ut ))

subject to xt+1 = At xt + Bt ut + ct , t = 0, . . . , T − 1

x0 = xinit (1)

with variables (states) xt ∈ Rn and (controls) ut ∈ Rm ,
t = 0, . . . , T. The stage cost function is split into a convex
quadratic part φt and a convex non-quadratic part ψt . The
convex quadratic terms φt : Rn × Rm → R have the form

φt (x, u) = (1/2)

⎡

⎣
x
u
1

⎤

⎦
T ⎡

⎣
Qt St qt

ST
t Rt rt

qT
t r T

t 0

⎤

⎦

⎡

⎣
x
u
1

⎤

⎦

where [
Qt St

ST
t Rt

]
� 0

(i.e., is symmetric positive semidefinite). The non-quadratic
terms, ψt : Rn × Rm → R ∪ {∞}, are closed proper convex
functions (see, e.g., [1]). Infinite values in the functions ψt

encode convex constraints on the states and controls. For
example, when ψt is the indicator function of a closed convex
set Ct ⊂ Rn+m

ψt (xt , ut ) = ICt (xt , ut ) =
{

0, (xt , ut ) ∈ Ct

∞, otherwise

the stage cost term ψt (xt , ut ) in (1) simply imposes the state-
control constraint (xt , ut ) ∈ Ct .

The problem data are the initial state xinit ∈ Rn , the
dynamics matrices At , Bt , and ct , for t = 0, . . . , T − 1,
the quadratic cost term coefficients Qt , Rt , St , qt , and rt ,
for t = 0, . . . , T , and the non-quadratic cost functions ψt ,
t = 0, . . . , T . The decomposition of the stage cost into the
quadratic part φt and the non-quadratic part ψt is, in general,

1063-6536 © 2013 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148003941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


O’DONOGHUE et al.: A SPLITTING METHOD FOR OPTIMAL CONTROL 2433

not unique, since a quadratic stage cost term can be included
in the non-quadratic term.

Problem (1) is a convex optimization problem and as such
it can be solved efficiently by a variety of generic methods,
including, e.g., interior point methods [2], [3]. Here, “effi-
ciently” means that the computational effort required to obtain
a solution grows no faster than a polynomial of the problem
size. This brief is about solving the linear-convex optimal
control problem (1) very quickly, even by comparison to these
generic methods.

B. Usage Scenarios

We list here some ways in which a solver for (1) can be
used.

1) Cold Start: Here, we solve (1) just once, or many times,
but with very different (unrelated) data each time.

2) Warm Start: Here, we solve (1) many times sequentially,
where the data in each problem is similar to the data for
the previously solved problem. In this case, we initialize the
algorithm with the solution from the previous problem to
obtain a speed-up over the cold start scenario; the speed-up
will depend on how similar the data are from one iteration to
the next.

3) Constant Quadratic Case: Here, we solve (1) many
times, where the quantities Qt , Rt , St , t = 0, . . . , T , and
At , Bt , t = 0, . . . , T −1, do not change. (The initial state and
non-quadratic stage cost terms can change in each instance.)
In this case, we can cache some quantities that are pre-
computed, allowing us to reduce the computation required
to solve instances of the problem. Depending on the non-
quadratic stage cost terms, our algorithm can be division-free;
as a result it can be implemented in fixed-point arithmetic on,
e.g., an FPGA.

4) Warm Start Constant Quadratic: Here, we have both the
warm start and constant quadratic cases, in which case the
computational savings stack.

C. Notation

We use x = (x0, . . . , xT ) and u = (u0, . . . , uT ) to denote
the concatenated states and controls (i.e., their trajectories),
and (x, u) ∈ R(n+m)(T +1) to denote the whole state-control
trajectory. We define

D={(x, u) | x0=xinit, xt+1= At xt+Bt ut +ct , t =0, . . . , T −1}
which is the set of state-control pairs that satisfy the dynamics
of (1), and we use ID to denote the indicator function of the
set D, which is a closed proper convex function. We define

φ(x, u) =
T∑

t=0

φt (xt , ut ), ψ(x, u) =
T∑

t=0

ψt (xt , ut )

which are the quadratic and non-quadratic costs over the whole
trajectory (x, u). With this notation, the convex optimal control
problem can be expressed as

minimize ID(x, u)+ φ(x, u)+ ψ(x, u)

with variables (x, u) ∈ R(n+m)(T +1).

D. Prior and Related Work

In this section, we give a brief overview of some of the
important prior work in several related areas.

1) Interior-Point Methods: A generic interior-point solver
for (1) that does not exploit the problem structure would scale
in complexity with the cube of the time-horizon [4]. If the
structure of the problem is exploited, however, the complexity
only grows linearly. In [5], the authors developed a custom
interior-point method that can solve quadratic optimal control
problems with box constraints very rapidly by exploiting
problem structure. A similar approach was taken in [6]. For
work detailing efficient primal-dual interior-point methods to
solve the quadratic programs (QPs) that arise in optimal
control, see [7]–[9].

2) Automatic Code Generation: Typically, creating a cus-
tom interior-point solver is a very labor-intensive exercise.
In [10], the authors described the automatic generation of
high speed custom solvers directly from high level descrip-
tions of the problem. These automatically generated custom
solvers are tailored to the problem at hand, providing dramatic
speed-ups over generic solvers. For work detailing custom
code generation specifically for optimal control problems, see
[11]–[15].

3) Explicit MPC: Explicit model predictive control is a
technique for solving quadratic optimal control problems with
polyhedral constraints [16], [17], with all data fixed except
the initial state. In this case, the solution is a piecewise affine
function of the initial state. The polyhedra that define the
regions and the associated coefficients in the affine function,
can be computed off-line. Solving the problem then reduces
to searching in a lookup table, and then evaluating the affine
function (which is division-free). Due to the exponential
growth in the number of regions, explicit MPC can realistically
only be applied to systems with very modest numbers of
states and constraints. For an extension that can handle larger
problems by using partial enumeration, see [18].

4) Active Set Methods: Active set methods are a set of
techniques for solving QPs that are closely related to the
simplex method for linear programming. They rely on identi-
fying the set of constraints that are active at the optimum and
then solving a simpler problem using just these constraints
[19]–[23]. The use of active set methods to solve the QPs
that arise in control has been explored by Ferreau et al.
in [24] and [25].

5) Fast Gradient Methods: Fast gradient methods, inspired
by Nesterov’s accelerated first order methods [26], [27], have
been applied to the optimal control problem [28]–[32]. These
techniques typically require only the evaluation of a gradient
and a projection at each iteration. Thus, they generally require
less computation than, say, interior-point methods, at the
expense of high accuracy.

6) Embedded Control: There has been much recent interest
in using MPC in an embedded control setting, for example
in autonomous or miniature devices. The challenge is to
develop algorithms that can solve (1) quickly, robustly, and
within the limitations of on-board chip architectures. Many
techniques have been investigated, including interior-point
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methods, active set methods, and others; see [33]–[36]. In
this brief, we develop an algorithm that (in some cases) can
be implemented without division, which allows us to use
fixed point arithmetic. For other work exploring the use of
fixed point arithmetic in control, see [29], [37], [38]. For
other work on implementing control algorithms on FPGAs,
see [39]–[43].

7) Operator Splitting: The technique we employ in this
brief relies on the work done on monotone operators and
operator splitting methods. The history of operator splitting
goes back to the 1950s; ADMM itself was introduced in the
mid-1970s by Glowinski and Marrocco [44] and Gabay and
Mercier [45]. It was shown in [46] that ADMM is a special
case of a splitting technique known as Douglas–Rachford
splitting, and Eckstein and Bertsekas [47] showed in turn that
Douglas–Rachford splitting is a special case of the proximal
point algorithm. For convergence, results for operator splitting
methods, see [46]–[49]. For (much) more detail about operator
splitting algorithms and example applications, see [50] and the
references therein. Operator splitting has seen use in many
application areas, see [51]–[53]. In [54], the authors used
operator splitting to develop sparse feedback gain matrices
for linear-quadratic control problems.

Recently, accelerated variants of operator splitting methods
have been proposed. Although we do not use these variants in
this brief, we mention them here for completeness. These tech-
niques apply a Nesterov-type acceleration to the iterates [26],
which under certain conditions can dramatically improve the
rate of convergence [55]–[57].

III. SPLITTING METHOD

A. Consensus Form

We can write the optimal control problem (1) in the follow-
ing form:

minimize (ID(x, u)+ φ(x, u))+ ψ(x̃ , ũ)
subject to (x, u) = (x̃, ũ)

(2)

with variables (x, u) ∈ R(n+m)(T +1), (x̃, ũ) ∈ R(n+m)(T +1).
This form is referred to as consensus; see [50] and [57]. Here,
we split the objective into two separate parts, with different
variables. The first term contains the quadratic objective and
the dynamic constraints; the second term is separable across
time, and encodes the constraints and non-quadratic objective
terms on the states and control in each period. The equality
constraint requires that they be in consensus.

B. Operator Splitting for Control

The consensus form of operator splitting is the following
algorithm. Starting from any initial (x̃0, ũ0) and (z0, y0), for
k = 0, 1, . . .

(xk+1, uk+1) : = argmin
(x,u)

(
ID(x, u)+ φ(x, u)+ (ρ/2)

‖(x, u)− (x̃ k, ũk)− (zk, yk)‖2
2

)

(3)

(x̃ k+1, ũk+1) : = argmin
(x̃,ũ)

(
ψ(x̃, ũ)+ (ρ/2)

‖(x̃, ũ)− (xk+1, uk+1)+ (zk, yk)‖2
2

)
(4)

(zk+1, yk+1) := (zk, yk)+(x̃ k+1, ũk+1)−(xk+1, uk+1). (5)

Here, ρ > 0 is an algorithm parameter, k is the iter-
ation counter, and (zk, yk) ∈ R(n+m)(T +1) is a (scaled)
dual variable associated with the consensus constraint. We
shall refer to this technique as operator splitting for control
(OSC).

The first step entails minimizing a sum of convex quadratic
functions of the state and control, subject to the dynamics,
i.e., a convex quadratic control problem. The objective in the
second step is separable across time, so the minimization for
each time period can be carried out separately, as

(
x̃ k+1

t , ũk+1
t

)
:= argmin

(x̃t ,ũt )

(
ψt (x̃t , ũt )+ (ρ/2)‖(x̃t , ũt )

−
(

xk+1
t , uk+1

t

)
+

(
zk

t , yk
t

)
‖2

2

)

for t = 0, . . . , T . The right-hand side is the proximal (or prox)
operator of ψt , evaluated at

(xk+1
t − zk

t , uk+1
t − yk

t ).

For more details about prox operators and derivations of prox
operators for some common functions, see [58], [59].

1) Convergence and Stopping Criteria: Under some mild
conditions, the splitting algorithm converges to the solution
(assuming there is one); see [50, Sec. III. B]. The primal
residual for (2) is given by

rk = (xk, uk)− (x̃ k, ũk)

and the dual residual is

sk = ρ((x̃ k, ũk)− (x̃ k−1, ũk−1)).

It can be shown that rk and sk converge to zero under OSC.
A suitable stopping criterion is when the residuals are smaller
than some threshold

‖rk‖2 ≤ εpri, ‖sk‖2 ≤ εdual

where εpri > 0 and εdual > 0 are tolerances for primal and dual
feasibility, respectively. One way to assign these tolerances is
the following [50, Sec. III.C]:

εpri = εabs
√
(T + 1)(n + m)

+εrel max{‖(xk, uk)‖2, ‖(x̃ k , ũk)‖2}
εdual = εabs

√
(T + 1)(n + m)+ εrel‖(zk, yk)‖2 (6)

where εabs > 0 and εrel > 0 are absolute and relative
tolerances, respectively. This choice ensures that the primal
and dual tolerances scale with the size of the problem and
the scale of the typical variable values. In any particular
application, however, it can be simpler to choose fixed values
for the primal and dual tolerances εpri and εdual.

Douglas–Rachford splitting can take many iterations to con-
verge to high accuracy. However, modest accuracy is typically
achieved within a few tens of iterations. This is in contrast
to, e.g., interior-point methods, which can converge to high
accuracy in a few tens of iterations, but the per iteration cost
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is generally much higher. In many practical cases, including
much of control, extremely high accuracy is not required and
the moderate accuracy provided by the splitting technique is
sufficient.

The best known theoretical guarantees of Douglas–Rachford
splitting are rather weak: to achieve an error of less than ε,
D-R splitting requires at most O(1/ε2) steps [50, Sec. III].
However, typically, the empirical convergence rate is much
faster than this worst-case estimate.

2) Relaxation: In some cases, we can improve the conver-
gence rate of OSC by applying relaxation. Here, we replace
(xk+1, uk+1) in (4) and (5) with

α(xk+1, uk+1)+ (1 − α)(x̃ k, ũk)

where α ∈ (0, 2) is a relaxation parameter; when α < 1 this
is referred to as under-relaxation, when α > 1 it is referred
to as over-relaxation. This scheme is analyzed in [47], and
experiments in [60] and [61] show that values of α ∈ [1.5, 1.8]
can improve empirical convergence.

C. Quadratic Control Step

The first step in the splitting algorithm can be expressed as
a linearly constrained quadratic minimization problem

minimize (1/2)wT Ew + f Tw
subject to Gw = h

over variable w ∈ R(T +1)(n+m), where

w =

⎡
⎢⎢⎢⎢⎢⎣

x0
u0
...

xT

uT

⎤
⎥⎥⎥⎥⎥⎦
, f =

⎡
⎢⎢⎢⎢⎢⎣

q0 − ρ(x̃ k
0 + zk

0))

r0 − ρ(ũk
0 + yk

0 )
...

qT − ρ(x̃ k
T + zk

T )

rT − ρ(ũk
T + yk

T )

⎤
⎥⎥⎥⎥⎥⎦
, h =

⎡

⎢⎢⎢⎣

xinit
c0
...

cT −1

⎤

⎥⎥⎥⎦

E =

⎡
⎢⎢⎢⎢⎢⎣

Q0 + ρ I S0 · · · 0 0
ST

0 R0 + ρ I · · · 0 0
...

...
. . .

...
...

0 0 · · · QT + ρ I ST

0 0 · · · ST
T RT + ρ I

⎤
⎥⎥⎥⎥⎥⎦

G =

⎡
⎢⎢⎢⎢⎢⎣

I 0 · · · 0 0 0 0
−A0 −B0 · · · 0 0 0 0
...

...
. . .

...
...

...
0 0 · · · I 0 0 0
0 0 · · · −AT −1 −BT−1 I 0

⎤
⎥⎥⎥⎥⎥⎦
.

The matrix E is block diagonal with T + 1 blocks of size
(n + m) × (n + m); it is positive definite since ρ > 0.
The matrix G has full (row) rank (i.e., (T + 1)n), due to the
identity blocks.

Necessary and sufficient optimality conditions are (the KKT
equations) [

E GT

G 0

] [
w
λ

]
=

[ − f
h

]
(7)

where λ ∈ R(T +1)n are dual variables associated with the
equality constraints. This is a set of (T +1)(2n+m) equations
in (T + 1)(2n + m) variables; the coefficient matrix (which

is called the KKT matrix) is invertible since E is positive
definite and G is full rank. We must solve (7) multiple times,
once per iteration of the splitting algorithm, using the same
KKT matrix, but with different values of f .

The traditional approach to solving (7) is to eliminate the
variable w using

w = −E−1GT λ− E−1 f (8)

which results in the reduced equation

G E−1GT λ = −h − G E−1 f

for the dual variable λ. The matrix G E−1GT is block tri-
diagonal, and can therefore be solved by a Riccati-like recur-
sion in order T n3 floating-point operations (flops) [2, Sec. X].
The variable w is then reconstructed from (8). The overall
complexity (including forming G E−1GT and computing z) is
order T (n+m)3 flops. Careful analysis of the Riccati algorithm
reveals that if we cache or pre-compute various matrices that
arise in solving (7), we can solve subsequent instances, with
the same KKT matrix but different values of f , in order
T (m + n)2 flops.

A modern approach to solving (7) is to use a sparse LDLT

decomposition. We factor the KKT matrix as
[

E GT

G 0

]
= PLDLT PT

where P is a permutation matrix, L is lower triangular with
diagonal entries one, and D is block diagonal with 1 × 1 or
2×2 blocks. The permutation matrix P is chosen based on the
sparsity pattern of the KKT matrix, in order to yield a factor
L with few nonzeros and a factorization that is stable [62],
[63]. We then solve (7) using

[
w
λ

]
= P

(
L−T

(
D−1

(
L−1

(
PT

[ − f
h

]))))
.

Multiplication by L−1 is carried out by forward substitution,
and multiplication by L−T is carried out by backward substi-
tution; these operations do not require division. The forward
and backward substitution steps require a number of flops on
the order of the number of nonzero entries in L. Inverting D
amounts to inverting 2 × 2 matrices; if we pre-compute the
inverse of D, which is block diagonal with the same structure
as D, the solve step above requires no division; it relies on
addition and multiplication. To solve the KKT system many
times, with the same KKT matrix but different values of f ,
we compute and cache P , L, and D−1; subsequently we only
carry out the solve step above.

It can be shown that the Riccati recursion is equivalent to
the factor-solve method for a particular choice of P [2, Sec.
X-D]. When the blocks in E and G are all dense, the factor-
solve method has the same complexity: order T (m +n)3 flops
to carry out the initial factorization, and order T (m +n)2 flops
to carry out subsequent solves. But the general LDLT method
can allow us to exploit additional sparsity within the matrices
to reduce the complexity of both the factor and solve steps.
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1) Regularization: To ensure that the factorization always
exists and that the factorization algorithm is stable, we can
regularize the system (for discussion on the stability of fac-
torization algorithms, see [63]–[65]). Instead of the original
KKT matrix, we factor the regularized KKT matrix

[
E GT

G −ε I

]

where ε > 0 is a small constant. The regularized matrix is
quasi-definite [66], which implies that for any permutation P
the factorization exists, with D diagonal, and is numerically
stable. It is suggested in [67] that a value as small as ε = 10−8

gives stability without seriously altering the problem. It was
shown in [47] that the operator splitting method still converges
to a solution when the subproblems are not solved exactly, as
long as certain conditions on the solutions are met; for exam-
ple, we can reduce the regularization parameter ε as iteration
proceeds. The effects of the regularization can also be removed
or reduced using iterative refinement [68, Sec. IV], [10]. In
practice we find that a fixed and small regularization parameter
value works very well, and that iterative refinement is not
needed.

D. Single Period Proximal Step

The second step of the splitting algorithm involves solving
T problems of the form

minimize ψt (xt , ut )+ (ρ/2)‖(xt , ut )− (vt , wt )‖2
2 (9)

over xt ∈ Rn and ut ∈ Rm , where vt ∈ Rn and wt ∈ Rm

are data. When the non-quadratic cost term ψt is separable
across the state and control, it splits further into a proxi-
mal optimization for the state and one for the control. In
the extreme case when ψt is fully separable (down to the
individual scalar entries), (9) reduces to solving m + n scalar
proximal minimization problems.

When ψt is a indicator function of a set, the proximal
optimization step reduces to a projection of (vt , wt ) onto
the set. For example, suppose the non-quadratic terms ψt

are used to enforce state and control constraints of the form
‖xt‖∞ ≤ 1, ‖ut‖∞ ≤ 1, so ψt is the indicator function of
the unit box (and is separable to the components). Then the
proximal minimization has the simple solution

xt = sat[−1,1](vt ), ut = sat[−1,1](wt )

where sat is the standard saturation function. The examples
below will show other cases where we can solve the single
period proximal minimizations analytically.

We can always solve the single period proximal problems
using a general numerical method, such as an interior-point
method. Assuming the dominant cost is solving for the search
step in each interior-point iteration, the cost is order (n + m)3

flops. Therefore, the total cost of finding the proximal step
is no more than order T (n + m)3 flops, executed on a
single processor; we can reduce this by employing multiple
processors and carrying out the proximal optimizations in
parallel.

E. Robust Control

Here, we mention briefly how our algorithm generalizes to
the robust control case. In robust control we typically have
uncertainty in the dynamics, initial state, or both. One common
technique to deal with this uncertainty is to generate a set of
candidate dynamics equations and initial states and to find a
single sequence of control inputs that minimizes the expected
costs over these possibilities.

In other words, our system has N possible dynamics equa-
tions

x (i)t = A(i)t x (i)t + B(i)t ut + c(i)t , t = 0, . . . , T − 1,

from initial state x (i)0 , for i = 1, . . . , N . We assume that
the probability of the system being in state x (i)0 and being
subject to the i th set of dynamics equations is given by pi .
These candidates could have been generated, for example, by
sampling from a distribution over the parameters and initial
states. The goal is to find a single sequence of inputs, ut for
t = 0, . . . , T , that minimizes the expected cost.

This problem fits our problem description if we make the
following substitutions: The state is constructed by stacking
the candidate states

xt =

⎡
⎢⎢⎢⎢⎣

x (1)t

x (2)t
...

x (N)t

⎤
⎥⎥⎥⎥⎦

and the dynamics of our stacked system is

xt+1 = At xt + Bt ut + ct

where

At =

⎡
⎢⎢⎢⎢⎣

A(1)t 0 · · · 0
0 A(2)t · · · 0
...

...
. . .

...

0 0 · · · A(N)t

⎤
⎥⎥⎥⎥⎦
, Bt =

⎡
⎢⎢⎢⎢⎣

B(1)t

B(2)t
...

B(N)t

⎤
⎥⎥⎥⎥⎦
, ct =

⎡
⎢⎢⎢⎢⎣

c(1)t

c(2)t
...

c(N)t

⎤
⎥⎥⎥⎥⎦
.

The stage cost at time t is written

N∑

i=1

pi

(
φt (x

(i)
t , ut )+ ψt (x

(i)
t , ut )

)

which is a sum of convex quadratics and convex non-quadratic
terms and so it matches our framework.

Note that this problem has additional structure that can
be exploited. In particular, the KKT matrix in the quadratic
control step has significant extra sparsity from the dynamics
equations. This will be exploited by the permuted LDLT

algorithm. Similarly for the proximal step: if the ψt terms
in the objective are separable into terms involving only the
state and only the input, then the proximal step problem
will decompose over the N state trajectories (in addition to
decomposing across time periods), which can then be solved
in parallel.
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IV. EXAMPLES

In this section, we illustrate OSC on four examples, and
report on numerical results. For each example we explain the
details of the splitting technique, explain how we generated
the data for the problem instances, and compare the OSC
solution time with CVX [69], [70], a parser-solver that uses
SDPT3 [71]. When we report CVX times we report the solve
time only, and not the time required to parse and transform the
problem. For each example, we present three instances with
different problem dimensions.

All computation, with the exception of the results presented
in § IV-E, was carried out on a system with a quad-core Intel
Xeon processor, with clock speed 3.4 GHz and 16 GB of
RAM, running Linux. All examples were implemented in C,
and all but one example was implemented in single thread.
Note that SDPT3 is able to exploit the structure inherent in
the problem and is automatically multithreaded over the four
cores using hyperthreads.

When running OSC, we report the time and number of
iterations required to reach an accuracy corresponding to
εabs and εrel in (6) both set to 10−3. With these tolerances,
the objective value obtained by (x̃, ũ) at termination was
never more than 1% suboptimal, as judged by the objective
value obtained by CVX. [Note that (x̃, ũ) at termination may
very slightly violate the equality constraints in (1), but are
guaranteed to satisfy any constraints embedded in the non-
quadratic cost function terms.]

In each case, we give the time required for the factorization
of the KKT matrix, cold start solve, and warm start solve.
We break down the cost of each iteration into solving the
linear quadratic system and solving the single period proximal
problems. The results for each example are presented in a
table; all reported times are in milliseconds to an accuracy of
0.1 ms. In certain cases the reported time is 0.0 ms, which
indicates that the time required for this step was less than
0.05 ms. In the case where we parallelized the single period
proximal problems across multiple cores, we mention the
single thread and multithread solve times.

When forming the KKT system, we added regularization
of ε = 10−6 to all examples to ensure existence of the
LDLT factorization. We found that iterative refinement was
not needed in any of the examples. To solve the KKT system,
we used the sparse LDL and AMD packages written by Tim
Davis et al. [72]–[74].

For the cold start case, we initialize variables (x̃0, ũ0) and
(z0, y0) to zero for all examples and solve the problem. The
time required to solve the problem under a cold start can vary
by a small amount, so we report the average solve time over
100 runs (the number of iterations is always the same). The
worst-case times were never more than 5% more than the
average times.

For warm start, we initialize variables (x̃0, ũ0) and (z0, y0)
to those returned at the termination of the algorithm with
unperturbed data. When warm starting we consider pertur-
bations to the initial state, i.e., we replace xinit with some
x̂init; this type of perturbation is common in, e.g., MPC.
Since no other data are perturbed the matrix does not have to

TABLE I

OSC RESULTS FOR THE BOX CONSTRAINED OPTIMAL

CONTROL EXAMPLE

Small Medium Large

State dimension n 5 20 50

Input dimension m 2 5 20

Horizon length T 10 20 30

Total variables 77 525 2170

CVX solve time (ms) 400 500 3400

Fast_MPC solve time (ms) 1.5 14.2 2710

Factorization time (ms) 0.1 1.3 16.8

KKT solve time (ms) 0.0 0.1 0.9

Cold start OSC iterations 92 46 68

Cold start OSC solve time (ms) 0.4 4.4 60.5

Warm start OSC iterations 72.6 35.1 39.5

Warm start OSC solve time (ms) 0.3 3.4 35.2

be re-factorized; this corresponds to the warm start constant
quadratic usage scenario. For each example, we run 100 warm
starts and report average numbers. Across all examples, we
found that the worst-case solve time out of the 100 warm
starts was no more than 20% longer than the average time.

A. Box Constrained Quadratic Optimal Control

We consider a quadratic optimal control problem with box
constraints on the input,

minimize (1/2)
∑T

t=0(x
T
t Qt xt + uT

t Rt ut )
subject to xt+1 = At xt + Bt ut , t = 0, . . . , T − 1

x0 = xinit
‖ut‖∞ ≤ 1

where Qt � 0 and Rt 
 0. We encode the constraints
on the action by setting ψt (xt , ut ) = I‖ut ‖∞≤1, so proximal
minimization is just saturation.

1) Numerical Instances: For simplicity, we consider the
time-invariant case, i.e., At = A, Bt = B , Qt = Q, and
Rt = R for all t . The data were all generated randomly; the
matrix A was scaled to be marginally stable, i.e., have a largest
eigenvalue magnitude of one. The initial state xinit was scaled
so that at least one input was saturated for at least the first
2/3 of the horizon. For all instances below we chose ρ = 50
and relaxation parameter α = 1.8. In this example, the time
required to take the proximal step was negligible (less than
0.05 ms for the largest instance), as such there was no benefit
to parallelization and all computations were performed serially
on a single core. For the warm start, we perturbed each entry
of the initial vector by a random proportion sampled from a
uniform distribution on [−0.1, 0.1].

For this example, we can compare the performance of OSC
to FAST_MPC [5]. CVXGEN [10] can solve the smallest
problem instance in about 0.1 ms, but the current version of
CVXGEN cannot scale to the larger problems. The results are
summarized in Table I.

B. Multiperiod Portfolio Optimization

In this example, we consider the problem of managing a
portfolio of n assets over a finite time horizon, as described
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in [75]. In this case, our state xt ∈ Rn is the dollar amount
invested in each asset; the control ut ∈ Rn is the amount
of each asset we buy (or sell, when negative) at time t . The
dynamics is given by

xt+1 = diag(rt )(xt + ut ), t = 0, . . . , T − 1,

where rt > 0 is the vector of (estimated) returns in period
t . This has our form, with At = Bt = diag(rt ) and ct = 0.
The stage cost has form

1T ut + κT
t |ut | + uT

t diag(st )ut + λt (xt + ut )
T	t (xt + ut ),

where κt ≥ 0, st ≥ 0, 	t 
 0, and λt > 0 are data; the
absolute value is elementwise. These terms are, respectively,
gross cash in for sales and purchases, a bid-ask spread trans-
action fee, a quadratic price impact transaction cost, and a
quadratic risk penalty. We are subject to the constraints that
xinit = xT + uT = 0, i.e., the trading starts and ends with no
holdings, and a long-only constraint, i.e., xt +ut ≥ 0 for all t .

We split the stage cost as

φt (xt , ut )=1T ut + uT
t diag(st )ut + λt (xt + ut )

T	t (xt + ut )

t = 0, . . . , T,

ψt (xt , ut ) = κT
t |ut | + Ixt +ut≥0, t = 0, . . . , T − 1 and

φT (xT , uT ) = κT
T |uT | + IxT +uT =0.

In this example, ψt is not state-control separable, but it is
separable across assets; that is, it is a sum of terms involving
(xt )i and (ut )i . To evaluate the proximal operator for t < T ,
we need to solve a set of problems of the form (using the
subscript to denote the component, not time period)

minimize κi |u|i + (ρ/2)
(
(xi − vi )

2 + (ui − wi )
2
)

subject to xi + ui ≥ 0,

with (scalar) variables xi and ui . The solution relies on the
proximal operator for the absolute value, which is given by
soft-thresholding:

Sγ (z) = argmin
y

(
γ |y| + (1/2)(y − z)2

)
= z

(
1 − γ

|z|
)

+
.

The solution to the above problem is as follows. If vi +
Sκi /ρ(wi ) ≥ 0 then xi = vi and ui = Sκi /ρ(wi ), otherwise
ui = Sκi /2ρ((wi − vi )/2) and xi = −ui . For t = T , the
solution is simply ui = Sκi /2ρ((wi − vi )/2) and xi = −ui .

1) Numerical Instances: For simplicity, we consider the
time-invariant case, that is, the data are constant over time.
For more details about how the data were generated, see, [75].
The correlations between assets were selected to be between
−0.4 and 0.6. The expected returns were chosen so that all
the assets made returns from 0.01% to 3% per period. For all
instances below we chose ρ = 0.1 and relaxation parameter
α = 1.8. Again in this case, the time required to calculate
the proximal step was negligible (less than 0.05 ms for the
largest instance) and thus all computation was performed on a
single core. For the warm start, we replaced the initial portfolio
with a random portfolio sampled from N (0, I ); this produced
initial portfolios with a norm of roughly 20% the norm of
the maximum position taken in the unperturbed solution. The
results are summarized in Table II.

TABLE II

OSC RESULTS FOR THE PORTFOLIO OPTIMIZATION PROBLEM

Small Medium Large

Number of assets n 10 30 50

Horizon length T 30 60 100

Total variables 620 3660 10100

CVX solve time (ms) 800 2100 10750

Factorization time (ms) 0.7 13.3 73.6

KKT solve time (ms) 0.1 0.7 3.2
Cold start OSC iterations 27 41 53

Cold start OSC solve time (ms) 1.5 30.8 177.7

Warm start OSC iterations 5.1 5.9 4.8

Warm start OSC solve time (ms) 0.3 4.4 16.1

C. Robust State Estimation

In this example, we use noisy state measurements to esti-
mate the state sequence for a dynamical system acted on by
a process noise. The system evolves according to

xt+1 = At xt + Bt ut , t = 0, . . . , T − 1

where here ut is a process noise. Our measurements are

yt = Ct xt + vt , t = 0, . . . , T

where vt ∈ Rp is a measurement noise. We assume the process
and measurement noises are independent. We know the initial
state of the system, xinit.

The maximum-likelihood estimate of the state sequence is
found by solving the problem

minimize
T∑

t=0

ht (ut )+ gt (yt − Ct xt )

subject to xt+1 = At xt + Bt ut , t = 0, . . . , T − 1

x0 = xinit.

where ht is the negative log density of ut , and gt is the negative
log density of vt . Assuming these are convex functions (i.e.,
ut and vt have log-concave distributions), this problem has
our form. The stage cost is state-control separable. If these
distributions are Gaussian, this problem is quadratic.

As a more specific example, we take vt to have a Gaussian
distribution, so gt is convex quadratic, but we take ht to be
the circular Huber function with half-width M

ht (ut ) =
{
(1/2)‖ut‖2

2, ‖ut‖2 ≤ M
M(‖ut‖2 − M/2), ‖ut‖2 > M.

This corresponds to a process noise that is Gaussian for
‖ut‖2 ≤ M , with fat (exponential) tails for ‖ut‖2 > M .

The proximal operator for the circular Huber function has
the simple expression

argmin
u

(ht (u) + (ρ/2)‖u − v‖2
2)

=
(

1− min

(
1

1 + ρ
,

M

ρ‖v‖2

))
v.
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TABLE III

OSC RESULTS FOR THE ROBUST STATE ESTIMATION PROBLEM

Small Medium Large

State dimension n 10 30 50

Input dimension m 10 30 50

Measurement dimension p 5 10 20

Horizon length T 30 60 100

Total variables 620 3660 10100

CVX solve time (ms) 700 1900 8000

Factorization time (ms) 0.5 8.7 48.3

KKT solve time (ms) 0.0 0.6 2.5

Cold start OSC iterations 21 25 29

Cold start OSC solve time (ms) 0.9 14.9 76.7

Warm start OSC iterations 7.5 8.0 7.7

Warm start OSC solve time (ms) 0.3 4.8 20.5

1) Numerical Instances: We consider the case where
At = A, Bt = I , and Ct = C for all t . All data were generated
randomly, and we scaled A so that the system was marginally
stable. The measurement noise was sampled from a standard
normal distribution, i.e., vt ∼ N (0, I ). The process noise was
generated as follows:

ut ∼
{N (0, I ) with probability 0.75
N (0, 10I ) with probability 0.25

so 25% of the noise samples were large outliers. We took
the half-width of the Huber function to be M = 1. For all
instances, we chose ρ = 0.1 and relaxation parameter α =
1.8. Again the time required to calculate the proximal step
was negligible (less than 0.05 ms for the largest instance) and
thus all computation was single threaded. For the warm start,
we perturbed each entry of the initial vector by a random
proportion sampled from a uniform distribution on [−0.1, 0.1].
The results are summarized in Table III.

D. Supply Chain Management

We consider a single commodity supply chain management
problem. The supply chain network is described by a directed
graph, with n nodes corresponding to warehouses or storage
locations, and the m edges corresponding to shipment links
between warehouses, as well as from sources and to sinks
(which supply or consume the good). The state xt ∈ Rn+ is the
amount of the commodity stored in each of the n warehouses,
and the control ut ∈ Rm+ is the amount of the commodity
shipped along each of the m edges. The dynamics is

xt+1 = xt + (B+ − B−)ut

where B+
i j = 1 if edge j enters node i , B−

i j = 1 if edge j leaves
node i . Each column of the matrix (B+−B−) corresponding to
an edge between warehouses has exactly one entry 1 and one
entry −1, and all other entries are zero. If the edge connects
to a source then that column has 1 and no other entries, if it
connects to a sink then that column has just a −1.

The warehouses have a capacity C ∈ Rn+, so 0 ≤ xt ≤ C .
We cannot ship out of any warehouse more than is on hand, so
we have the constraint B−ut ≤ xt , in addition to 0 ≤ ut ≤ U ,

where U gives the maximum possible shipping levels. (For
edges that come from sources, we interpret the corresponding
entry of U as a maximum possible supply rate; for edges that
go to sinks, we interpret the corresponding entry of U as a
maximum demand.)

The stage cost consists of quadratic storage charges, linear
transportation charges, the linear cost of acquiring the com-
modity, and the linear revenue we earn from sinks

qT
t x + q̃T

t x2 + r T
t ut

where qt > 0 and q̃t > 0 give the storage cost, and the
entries of the vector rt give the transportation cost, (for edges
between warehouses), the cost of acquisition (for sources), and
the revenue (for sinks).

We split the stage cost as

φt (xt , ut ) = qT
t xt + q̃T

t x2
t + r T

t ut

and ψt the indicator function of the constraints

B−ut ≤ xt ≤ C, 0 ≤ ut ≤ U.

The proximal step can be found by first noting that the
problem can be decomposed across the n nodes, including all
outgoing edges from the node. (Edges coming in from sources
are readily handled separately, since their only constraint is
that they lie in the interval.) For each node, we solve a problem
of the form

minimize
k∑

j=1

(u j − w j )
2 + (x − v)2

subject to
k∑

j=1

u j ≤ x ≤ C

0 ≤ u j ≤ U j , j = 1, . . . , k

over x ∈ R and u ∈ Rk , where k is the out-degree of the
node. Introducing a Lagrange multiplier λ for the constraint∑k

j=1 u j ≤ x , we end up with

ui = sat[0,U ](wi − λ), x = sat[0,C](v + λ).

The solution is found as the smallest value of λ ≥ 0 for
which

∑k
j=1 u j ≤ x holds. This value can be found using,

for example, bisection.
1) Numerical Instances: To generate the graph, we distrib-

uted warehouses randomly on a unit square, and connected
warehouses together that were closer than a threshold, selected
so that the graph was fully connected. The cost to traverse an
edge was proportional to the distance between the warehouses
on the square, plus a small perturbation. We created dummy
warehouses to act as sources in one corner of the square and
others to act as sinks in the opposite corner, and connected
them to nearby warehouses. This ensured that to get from a
source to a sink required traversing through several intermedi-
ary warehouses. The warehouse capacities were all chosen to
be two, the edge limits were all chosen to be one. The revenues
from sinks were chosen to have a mean of −15 and the cost of
acquisition from sources was chosen to have a mean of five.

For all instances, we chose ρ = 2.5 and relaxation parame-
ter α = 1.8. In this case, the time required to calculate the
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TABLE IV

OSC RESULTS FOR THE SUPPLY CHAIN EXAMPLE

Small Medium Large

Warehouses n 10 20 40

Edges m 25 118 380

Horizon length T 20 20 20

Total variables 735 2898 8820

CVX solve time (ms) 500 1200 3300

Factorization time (ms) 0.3 1.3 4.7

KKT solve time (ms) 0.0 0.1 0.3

Single-thread prox step time (ms) 0.1 0.4 1.3

Multithread prox step time (ms) 0.0 0.1 0.4

Cold start OSC iterations 82 77 116

Cold start OSC solve time (ms) 4.6 19.1 88.1

Warm start OSC iterations 21.9 31.0 24.2

Warm start OSC solve time (ms) 1.2 7.5 18.5

TABLE V

EMBEDDED PROCESSOR TIMING RESULTS, COLD START

Small Medium Large

Box constrained quadratic (ms) 8.4 99.9 1750.3

Portfolio optimization (ms) 29.4 879.1 5036.0

Robust state estimation (ms) 17.7 430.3 2244.5

Supply chain management (ms) 125.9 595.9 2817.7

proximal step was not negligible, so we report times for both
single-threaded and multithreaded prox step calculation. For
the warm start, we perturbed each entry of the initial vector
by a random proportion sampled from a uniform distribution
on [−0.1, 0.1]. The results are summarized in Table IV.

E. Embedded Results

In this section, we present timing results for an embedded
processor running the same examples as above. For these
experiments, computation was carried out on a Raspberry Pi,
which is a credit-card sized, single-board computer costing
about $25 and capable of running Linux. The Raspberry Pi
has an ARM1176 core with clock speed 1 GHz, 256 MB
of RAM, and a floating point unit. It typically draws less
than 2 W of power. With the exception of the matrix fac-
torization, all computation was performed in single-precision.
Tables V and VI summarize the timing results for the cold start
and warm start cases, respectively. The embedded processor
requires roughly an order of magnitude more time to solve the
problems than the quad-core Intel Xeon machine, with larger
problems requiring greater factors. However, even examples
with more than 10 000 variables are solved in just a few
seconds, and in all cases the embedded processor solved
the problem quicker than CVX on the quad-core machine.
Typically, embedded applications do not require very high
accuracy solutions, and so, in practice, computation times
could be reduced by decreasing the termination tolerances.

V. CONCLUSION

In this brief, we demonstrated an operator splitting tech-
nique that can solve optimal control problems rapidly and

TABLE VI

EMBEDDED PROCESSOR TIMING RESULTS, WARM START

Small Medium Large

Box constrained quadratic (ms) 5.5 76.4 1019.9

Portfolio optimization (ms) 5.2 129.1 458.8

Robust state estimation (ms) 6.3 138.6 602.5

Supply chain management (ms) 34.0 245.3 592.8

robustly. Small problems were solved in a few milliseconds or
less; example problems with on the order of 10 000 variables
were solved in tens of milliseconds. The speedup of OSC over
other solvers, including fast and custom solvers specifically
for the particular problem type, range from tens to thousands.
When the dynamics data do not change, the splitting method
yields a division-free algorithm, which can be implemented in
fixed-point arithmetic.

We close with some comments about the applicability of
this technique to the case when the stage-cost functions ψt

are non-convex. This situation is not uncommon in practice.
One common example is when a device (say, an internal
combustion engine or turbine) can be operated over some
range, and in addition switched on or off; an extreme example
is where the control ut is restricted to a finite set of allowed
values. In this case, the optimal control problem (1) is non-
convex, and generally hard to solve (exactly). For many of
these cases, the proximal step can be carried out efficiently
(even though the problem that must be solved is non-convex),
so the operator splitting technique described in this brief can be
applied. In this case, though, we have no reason to believe that
the OSC method will converge, let alone to a solution of the
problem. On the other hand, when OSC is used on non-convex
problems, it is observed in practice that it typically does
converge to a good solution. For a more detailed discussion of
Douglas–Rachford splitting applied to non-convex problems,
see [50, Section IX].
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