
Clock-RSM: Low-Latency Inter-Datacenter State Machine Replication
Using Loosely Synchronized Physical Clocks

Jiaqing Du∗, Daniele Sciascia†, Sameh Elnikety‡, Willy Zwaenepoel∗, and Fernando Pedone†
∗EPFL, Lausanne, Switzerland

†University of Lugano (USI), Lugano, Switzerland
‡Microsoft Research, Redmond, WA, USA

Abstract—This paper proposes Clock-RSM, a new state
machine replication protocol that uses loosely synchronized
physical clocks to totally order commands for geo-replicated
services. Clock-RSM assumes realistic non-uniform latencies
among replicas located at different data centers. It provides
low-latency linearizable replication by overlapping 1) logging
a command at a majority of replicas, 2) determining the
stable order of the command from the farthest replica, and
3) notifying the commit of the command to all replicas.
We evaluate Clock-RSM analytically and derive the expected
command replication latency. We also evaluate the protocol
experimentally using a geo-replicated key-value store deployed
across multiple Amazon EC2 data centers.

I. INTRODUCTION

Many online services replicate their data at multiple
geographic locations to improve locality and availability
[2, 5, 6]. User requests can be served at nearby replicas,
thus reducing latency. By deploying replicas at multiple data
centers, a system can tolerate the failure of some replicas
due to server, network, and data center outage.

The state machine approach [20] is often used to replicate
services consistently. All replicas execute the same set of
commands in the same order deterministically. If replicas
start from the same initial state, their states are consistent
after executing the same sequence of commands.

Although many protocols have been proposed to imple-
ment the state machine approach, they are not well suited for
geo-replicated systems because of high replication latency.
The latency of a protocol in this environment is dominated
by message transmission, rather than message processing
and logging. A round trip between two data centers can take
hundreds of milliseconds. In contrast, message processing
and logging to stable storage takes much less time, from
microseconds to a few milliseconds. In addition, the laten-
cies among data centers are not uniform and vary depending
on the physical distance as well as the wide-area network
infrastructure.

Multi-Paxos [13, 14] is one of the most widely used state
machine replication protocols. One replica is designated as
the leader, which orders commands by contacting a majority
of replicas in one round trip of messages. A non-leader
replica forwards its command to the leader and later receives
the commit notification, adding the latency of another round
trip, which is significant in a wide-area setting. Mencius [17]

addresses this problem by avoiding a single leader. It rotates
the leader role among the replicas according to a predefined
order. Committing a command in Mencius takes one round
trip of messages. However, Mencius suffers from the delayed
commit problem: A command can be delayed by another
concurrent command from a different replica by up to one
round-trip latency. In addition, in some cases a replica needs
to contact the farthest replica to commit a command while
Multi-Paxos only requires the leader plus a majority. With
realistic non-uniform inter-data center latencies, Mencius
provides higher latency than Multi-Paxos in many cases.

We propose Clock-RSM, a state machine replication pro-
tocol that provides low latency for consistent replication
across data centers. Clock-RSM uses loosely synchronized
physical clocks at each replica to totally order commands.
It avoids both the single leader required in Multi-Paxos
and the delayed commit problem in Mencius. Clock-RSM
requires three steps to commit a command: 1) logging the
command at a majority of replicas, 2) determining the stable
order of the command from the farthest replica, and 3)
notifying the commit of the command to all replicas. It
overlaps these steps to reduce replication latency. For many
real world replica placements across data centers, Clock-
RSM needs only one round-trip latency to a majority of
replicas to commit a command. As Clock-RSM does not
mask replica failures as in Paxos, we also introduce a
reconfiguration protocol that removes failed replicas and
reintegrates recovered replicas to the system.

We evaluate Clock-RSM analytically and experimentally,
and compare it with Paxos-bcast and Mencius-bcast, variants
of Multi-Paxos and Mencius with latency optimizations.
We derive latency equations for these protocols. We also
implement these protocols in a replicated key-value store
and deploy it arcoss three and five Amazon EC2 data
centers. We find that Clock-RSM has lower latency than
Paxos-bcast at the non-leader replicas and similar or slightly
higher latency at the leader replicas. In addition, Clock-RSM
always provides lower latency than Mencius-bcast.

The key contributions of this paper are the following:
• We describe Clock-RSM, a state machine replication

protocol using loosely synchronized physical clocks
(Section III).

• We derive the commit latency of Clock-RSM, Multi-
Paxos, Paxos-bcast, and Mencius-bcast analytically as-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148003929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

suming non-uniform latencies (Section IV).
• We present a reconfiguration protocol for Clock-RSM

that automatically removes failed replicas and reinte-
grates recovered ones (Section V).

• We evaluate Clock-RSM on Amazon EC2 and demon-
strate its latency benefits by comparison with other
protocols (Section VI).

II. MODEL AND DEFINITIONS

In this section we describe our system model and define
the properties that Clock-RSM guarantees.

A. System Model

We assume a standard asynchronous system that consists
of a set of interconnected processes (clients and replicas).
Processes communicate through message passing. We as-
sume that messages are eventually delivered by their re-
ceivers, and that there is no bound on the time to deliver
a message. To simplify the presentation of the protocols, we
assume that messages are delivered in FIFO order.

Processes may fail by crashing and can later recover. We
assume no byzantine failures. Processes have access to stable
storage, which survives failures. Processes are equipped with
a failure detector. We use failure detectors to ensure liveness.
Failure detectors may provide wrong results, but eventually
all faulty processes are suspected and at least one non-faulty
process is not suspected. In practice, such a failure detector
can be implemented by timeouts.

We assume the server where a replica runs is equipped
with a physical clock. Clocks are loosely synchronized by
a time synchronization protocol, such as NTP [1]. A clock
provides monotonically increasing timestamps. The correct-
ness of Clock-RSM does not depend on the synchronization
precision.

B. State Machine Replication

State machine replication is a technique for implementing
fault-tolerant services [20]. It replicates a state machine
over a set of replicas. A state machine consists of a set of
commands that may read and/or write the current state and
produce an output. Replicas coordinate to execute commands
issued by clients to achieve the desired consistency criteria.

Clients observe linearizable executions [8]. An execution
σ is linearizable if there exists a permutation of all com-
mands in σ such that: 1) it respects the semantics of the
commands, as defined in their sequential specification; and
2) it respects the real-time ordering of commands across all
clients. Linearizability can be achieved by ensuring that each
replica executes commands in the same order. This, together
with the assumption that commands are deterministic and
executed atomically, ensures that replicas transit through the
same states and produce the same output for each command.

Symbols Definitions
Spec all replicas, active or failed, in the system

specified by the system administrator
Config current configuration that includes all active

replicas in Spec
Log command log on stable storage
Clock latest time of the physical clock

PendingCmds commands pending to commit
LatestTV latest clock timestamps from all replicas of

Config, |LatestTV | = |Config|
RepCounter command replication counter

Table I Definition of symbols used in Algorithm 1.
C. Geo-Replication

For a geo-replicated service, such as a data store, each
replica is placed in a distinct data center. Users issue requests
to their nearest data center, and the requests are handled
by application servers, which contact the local replica of
the service. Hence, from this point of view, clients are the
application servers and they are local (within the same data
center) to a replica of the geo-replicated service.

III. CLOCK-RSM

In this section we describe Clock-RSM in detail.
Clock-RSM is a multi-leader protocol. A client connects

to its nearby replica within the same data center, and each
replica coordinates commands of its own clients. A replica
assigns a unique timestamp to a client command, broadcasts
it, and waits for the acknowledgements broadcast by other
replicas once logging it on their stable storage. Every replica
executes commands serially in the timestamp order after
they are committed. A replica knows that a command has
committed if all the following three conditions hold:

1) Majority replication. A majority of replicas have
logged the command;

2) Stable order. The replica has received all commands
with a smaller timestamp;

3) Prefix replication. All commands with a smaller times-
tamp have been replicated by a majority.

Algorithm 1 gives the pseudocode of the Clock-RSM
replication protocol. Table I defines the symbols used in the
protocol.

A. Protocol States

Each replica maintains three hard states: 1) Spec, the
specification of all replicas in the system; 2) Config, the
current configuration that includes all active replicas in
Spec, Config ⊆ Spec; 3) Log, the command log.

The system administrator specifies Spec before the system
starts, and we assume the specification of replicas is fixed
during the life time of the system. Clock-RSM requires a
majority of replicas in the specification to be non-faulty,
which means Config should contain at least a majority
subset of Spec. The failure or recovery of a replica triggers
changes in Config. A reconfiguration protocol removes
failed replicas from and adds recovered replicas to Config

Algorithm 1 Replication Protocol at Replica rm
1: upon receive 〈REQUEST cmd〉 from client
2: ts← Clock
3: send 〈PREPARE cmd, ts〉 to replicas in Config

4: upon receive 〈PREPARE cmd, ts〉 from rk
5: PendingCmds← PendingCmds ∪ {〈cmd, ts, k〉}
6: LatestTV [k]← ts
7: append 〈PREPARE cmd, ts〉 to Log
8: wait until ts < Clock
9: clockTs← Clock

10: send 〈PREPAREOK ts, clockTs〉 to replicas in Config

11: upon receive 〈PREPAREOK ts, clockTs〉 from rk
12: LatestTV [k]← clockTs
13: RepCounter[ts]← RepCounter[ts] + 1

14: upon ∃〈cmd, ts, k〉 ∈ PendingCmds, s.t. COMMITTED(ts)
15: append 〈COMMIT ts〉 to Log
16: result← execute cmd
17: if k = m then
18: send 〈REPLY result〉 to client
19: remove ts from PendingCmds, RepCounter

20: function COMMITTED(ts)
21: return RepCounter[ts] ≥ b|Spec|/2c+ 1 ∧
22: ts ≤ min(LatestTV) ∧
23: @ts′ ∈ PendingCmds, s.t. ts′ < ts

(Section V). Without loss of generality, our explanation and
analysis of Clock-RSM assume that a failed replica recovers
and joins the replication fast, i.e., Spec = Config.

Each replica also maintains some soft states when ex-
ecuting the protocol: 1) PendingCmds, a set containing
timestamps of commands that have not been committed
yet; 2) RepCounter, a dictionary that stores the number
of replicas that have logged a command; 3) LatestTV ,
a vector of timestamps with the same size as Config.
LatestTV [k], the kth element of LatestTV , contains the
latest known timestamp from replica rk. It indicates that all
commands originated from rk with timestamp smaller than
LatestTV [k] have been received.

B. Protocol Execution

Clock-RSM is given in Algorithm 1. We explain how it
totally orders and executes client commands.

1. When a replica receives 〈REQUEST cmd〉 from a client,
where cmd is the requested command to execute, it assigns
to the command its latest clock time. We call this replica the
originating replica of the command. The replica then sends
a prepare message, 〈PREPARE cmd, ts〉, to all replicas to
replicate cmd. ts is the assigned timestamp that uniquely
identifies and orders cmd. Ties are resolved by using the id
of the command’s originating replica. (lines 1-3)

2. When a replica receives 〈PREPARE cmd, ts〉, the log-
ging request, from replica rk, it adds the command to
PendingCmds, the set of pending commands not commit-
ted yet. It updates the kth element of LatestTV with ts,
reflecting the latest time it knows of rk. (lines 4-6)

Algorithm 2 Periodic clock time broadcast at replica rm
1: upon Clock ≥ LatestTV [m] + ∆
2: ts← Clock
3: send 〈CLOCKTIME ts〉 to all replicas in Config

4: upon receive 〈CLOCKTIME ts〉 from replica rk
5: Latest[k]← ts

It appends the message to its log on stable storage
and acknowledges that it has logged the command with
〈PREPAREOK ts, clockTs〉, where clockTs is the replica’s
clock time. Notice that before acknowledging the command,
the replica waits until its local clock time is greater than the
timestamp of the command. That is, it promises not to send
any message with a timestamp smaller than ts afterwards.
To reduce the total commit latency, the acknowledgment is
sent to all replicas. (lines 7-10)

The wait (at line 8) is highly unlikely with reasonably
synchronized clocks, which normally provide much smaller
clock skew than one-way message latency between data
centers. Replicas send both PREPARE and PREPAREOK
messages in timestamp order (ts in PREPARE and clockTs in
PREPAREOK). This guarantees replicas send monotonically
increasing timestamps carried by the two types of messages.

3. When a replica receives 〈PREPAREOK ts, clockTs〉
from replica rk, it learns its latest timestamp and updates
LatestTV with clockTs accordingly. The replica then in-
crements the replication counter RepCounter[ts] to record
the number of replicas that have logged the command with
ts. RepCounter[ts] has a default value of 0. (lines 11-13)

4. A replica knows that a command has committed when
the following three conditions hold: 1) It receives replication
acknowledgements from a majority of replicas. 2) It will
not receive any message with a smaller timestamp from
any replica. 3) It has executed all commands with a smaller
timestamp. (lines 20-23)

When a replica learns the commit of a command with
timestamp ts, it appends 〈COMMIT ts〉, the commit mark,
to its log and executes the command. Commit marks are
appended to the log in timestamp order. This helps a replica
replay the log in the correct order during recovery, as
we show in Section V. If the command is from one of
the replica’s clients, it sends the execution result back to
the client. Finally, the replica removes the command from
PendingCmds and RepCounter. (lines 14-19)

We prove Clock-RSM (Algorithm 1) and its reconfigura-
tion protocol (Algorithm 3, Section V) in a technical report
[7]. Due to space limitations, we skip the proof in this paper.

C. Extension

We present an extension to Algorithm 1 that further
improves its latency. Algorithm 2 gives the pseudocode.
Each replica periodically broadcasts its latest clock time
if it does not receive frequent enough client requests. ∆
is the minimum interval at which a replica broadcasts

its latest clock time. If there are frequent enough client
requests, a replica does not need to broadcast CLOCKTIME
messages. When a replica receives a CLOCKTIME message
from replica rk, it updates LatestTV [k] accordingly. This
extension requires a replica to send PREPARE, PREPAREOK,
and CLOCKTIME messages in timestamp order.

This extension improves latency only in one case: Among
all replicas, only one replica serves very infrequent client
requests while the other replicas do not serve client requests
at all. We explain why this is the case in Section IV.
Notice that this extension makes Clock-RSM non-quiescent,
although it improves latency.

IV. LATENCY ANALYSIS

In this section we analyze the latency of Clock-RSM
(Algorithm 1) and its extension (Algorithm 2). We also
compare Clock-RSM with Paxos and Mencius analytically.

We assume N replicas deployed in different data centers,
and denote the set of all replicas by R, which is {rk | 0 ≤
k ≤ N − 1}. We assume that latencies between replicas are
non-uniform, and define d(ri, rj) as the one-way message
latency between replica ri and rj . We assume symmetric
network latency between two replicas: d(ri, rj) = d(rj , ri).
Given high network latencies in a WAN, we ignore the
latency introduced by local computation and disk I/O, as
well as clock skew.

A. Clock-RSM

Assume that ri is the originating replica of command cmd
and assigns timestamp ts to it. As described in Section III, a
replica in Clock-RSM knows a command committed if three
conditions hold. We analyze the latency requirement of each
condition and derive the latency required to commit cmd at
ri below.

1) Majority replication requires cmd to be logged by
a majority of replicas. To satisfy this condition, ri needs
to receive PREPAREOKs for cmd from a majority. The
required latency is one round trip from ri to a majority:
2 ∗ median({d(ri, rk) | ∀rk ∈ R}). We denote lc1 the
latency required to satisfy majority replication.

2) Stable order requires that cmd has the smallest times-
tamp among all commands that have not committed.

In the worst case, if no replica sends a message to ri
between the time that ri assigns cmd a timestamp and cmd
is logged at all replicas, ri has to rely on the PREPAREOKs
of cmd from all replicas to determine its stable order. The
latency is 2 ∗max({d(ri, rk) | ∀rk ∈ R}). We denote this
latency by lcworst

2 .
In the best case, when ri assigns cmd a timestamp, around

the same time, if every replica sends a message with a
timestamp greater than ts to ri, then ri knows that cmd
is stable once all these messages arrive at ri. The message
can be either PREPARE or PREPAREOK. The latency is

max({d(ri, rk) | ∀rk ∈ R}). We denote this latency by
lcbest2 .

If the extension in Algorithm 2 is enabled, replicas
broadcast their clock time every ∆ time units. Therefore
ri determines the stable order of cmd after lcbest2 + ∆ time
units, regardless of commands being submitted concurrently.
In practice, we expect ∆ to be a small value. Hence lcworst

2

is roughly the same as lcbest2 with this extension enabled.
3) Prefix replication is satisfied when all commands with

a smaller timestamp than ts are replicated by a majority.
In the worst case, when ri assigns cmd a timestamp,

around the same time, if every other replica also assigns
to its own command a slightly smaller timestamp than
ts, then ri needs to know that all of these commands
are replicated by a majority, after the command becomes
stable. That is, for each of these commands, ri waits for
its PREPAREOK message from a majority. The latency is
max({median({d(rj , rk) + d(rk, ri) | ∀rk ∈ R}) | ∀rj ∈
R}). We denote this latency by lcworst

3 .
In the best case, when cmd becomes stable at ri, if

all commands with a smaller timestamp than ts have
committed, this condition holds immediately. Hence it is
dominated by the previous two conditions, and its latency
can be ignored when computing the final commit latency.
We denote by lcbest3 the latency in this case. We explain
how this case happens later in the section.

We now derive the overall latency of committing a com-
mand under two different workloads.

Balanced workloads. Each replica serves client requests
at moderate or heavy load. That is, every replica sends and
receives PREPARE and PREPAREOK frequently.

This is the best case for condition 2 and the worst
case for condition 3. For ri, the latency of commit-
ting a command is max(lc1, lc

best
2 , lcworst

3) = max(2 ∗
median({d(ri, rk) | ∀rk ∈ R}),max({d(ri, rk) | ∀rk ∈
R}),max({median({d(rj , rk) + d(rk, ri) | ∀rk ∈ R}) |
∀rj ∈ R})).

Imbalanced workloads. Only one replica serves client
requests. If the workload is moderate or heavy, the replica
sends PREPARE messages frequently. Since every replica
broadcasts PREPAREOK, these messages of previous com-
mands carry back the latest clock time of other replicas and
help reduce the stable order duration of the current one. This
is the best case for condition 2. As only one replica proposes
commands, when the replica knows the current command is
replicated by a majority and is stable, all previous com-
mands must have committed. Hence it is also the best case
for condition 3. The latency is max(lc1, lc

best
2 , lcbest3) =

max(2 ∗median({d(ri, rk) | ∀rk ∈ R}),max({d(ri, rk) |
∀rk ∈ R})).

If the workload is light and the replica sends PREPARE
messages infrequently, the PREPAREOK messages of previ-
ous commands do not help the stable order condition any
more. This is the worst case for condition 2 and the best

case for condition 3. The latency is max(lc1, lc
worst
2 , lcbest3)

= 2 ∗ max({d(ri, rk) | ∀rk ∈ R}). With the extension in
Algorithm 2 enabled, lcworst

2 is roughly the same as lcbest2 .
Hence the latency becomes max(lc1, lc

best
2 + ∆, lcbest3) =

max(2 ∗median({d(ri, rk) | ∀rk ∈ R}),max({d(ri, rk) |
∀rk ∈ R}) + ∆). This is the only case where enabling the
extension given in Algorithm 2 helps latency.

In summary, the latency of Clock-RSM depends on the
locations of the replicas and the workloads. lc1 is the round-
trip latency between the originating replica and a majority
of all replicas. lc2 is bounded by the maximum one-way
latency between the originating replica and other replicas.
lc3 is bounded by the maximum two-hop latency between
the originating replica and other replicas via a majority.
The message complexity of Clock-RSM is O(N2) as every
replica broadcasts PREPAREOK messages.

B. Paxos

Multi-Paxos [13, 14] is the most widely used Paxos
variant. We use Paxos to refer to Multi-Paxos in the rest of
the paper. With Paxos, one replica is designated as the leader,
which coordinates replication and totally orders commands.
We denote the leader in Paxos by rl .

A non-leader replica ri in Paxos experiences the following
latency to commit a command. ri needs d(ri, rl) time to
forward the command it proposes to leader rl. rl sends
phase 2a messages to all replicas. All replicas reply to the
leader with phase 2b messages. In order for rl to learn that a
command is committed, it waits for phase 2b messages from
a majority. This takes 2 ∗ median({d(rl, rk) | ∀rk ∈ R})
time. Finally, the leader needs d(rl, ri) time to notify ri
the commit of its command. Thus, the overall latency is
2 ∗ d(ri, rl) + 2 ∗ median({d(rl, rk) | ∀rk ∈ R}). If
the leader proposes a command, the latency reduces to
2 ∗median({d(rl, rk) | ∀rk ∈ R}).

A well-known optimization allows Paxos replicas to
broadcast phase 2b messages, thus saving the last message
from the leader to the originating replica of a command.
Replicas learn the outcome of a command without the
assistance of the leader. In this case, ri waits for phase 2b
messages from a majority. The overall latency is d(ri, rl) +
median({d(rl, rk) + d(rk, ri) | ∀rk ∈ R}). For the leader
replica, the latency is still 2 ∗ median({d(rl, rk) | ∀rk ∈
R}). We use Paxos-bcast to refer to the Paxos variant that
broadcasts its phase 2b message.

Although Paxos-bcast improves latency, it increases the
message complexity of Paxos from O(N) to O(N2).

C. Mencius

Mencius [17] rotates the leader role among all the replicas
based on a predefined order. Each replica serves client
requests at the rounds it coordinates. Mencius can also save
the last step message, which is used to notify the commit of a
command, by broadcasting the replication acknowledgement

message. We use Mencius-bcast to refer to Mencius with this
latency optimization.

Under imbalanced workloads when only one replica pro-
poses commands, regardless of light or heavy load, Mencius-
bcast always needs one round-trip message from the replica
to all replicas to commit a command. Hence it takes
2∗max({d(ri, rk) | ∀rk ∈ R}) time to commit a command
at replica ri.

Under balanced workloads, due to the delayed commit
problem, the commit latency at ri is between q and q +
max({d(ri, rk) | ∀rk ∈ R}), where q is the latency of
Clock-RSM with the same workloads. Clock-RSM does not
suffer from the delayed commit problem because it uses
physical clocks to assign command timestamps1.

Therefore, compared with Clock-RSM, Mencius-bcast al-
ways requires higher latency or at most the same in “lucky”
cases. Similar to Paxos-bcast, Mencius-bcast increases the
message complexity of Mencius from O(N) to O(N2).

D. Intuition and Comparison

We summarize our latency analysis of the four protocols
in Table II, and compare Clock-RSM and Paxos-bcast be-
low. We do not discuss Mencius-bcast and Paxos because
they have higher latency than Clock-RSM and Paxos-bcast,
respectively.

At non-leader replicas, Paxos-bcast requires more mes-
sage steps than Clock-RSM. If we assume that the latencies
between any two replicas are the same, Clock-RSM provides
lower latency. In practice latencies among data centers are
not uniform. Simply counting message steps is not sufficient
to determine how a protocol performs.

For both protocols, a replica needs to log a command
at a majority. The replica that sends the logging requests,
the replica that receives the logging confirmations, and the
majority replicas that log the commands may be different.
However, communicating with a majority means median
latency, which avoids the paths of high latency between
far away replicas. For Clock-RSM, the prefix replication
condition also requires a majority and it overlaps with
majority replication, hence it does not increase the overall
commit latency much. As a result, as long as replicas are not
too far apart, such as one replica is far away from the rest,
logging a command at a majority replicas does not differ
much in these two protocols.

The two protocols differ mainly in command ordering.
For Paxos-bcast, a non-leader replica needs one additional
message to forward a command to the leader. We denote the
forwarding latency by dfwd. For Clock-RSM, the originating
replica of a command requires a message from every other
replica to determine the stable order of the command. Only
a message with a greater timestamp than the command
timestamp helps the stable order process. In the best case,

1This can be easily verified in Figure 3 in [17].

Protocol Steps Complexity Latency

Paxos 4 / 2 O(N)
Leader: 2 ∗median({d(rl, rk) | ∀rk ∈ R})
Non-leader: 2 ∗ d(ri, rl) + 2 ∗median({d(rl, rk) | ∀rk ∈ R})

Paxos-bcast 3 / 2 O(N2)
Leader: 2 ∗median({d(rl, rk) | ∀rk ∈ R})
Non-leader: d(ri, rl) + 2 ∗median({d(rl, rk) | ∀rk ∈ R})

Mencius-bcast 2 O(N2)
Imbalanced: 2 ∗max({d(ri, rk) | ∀rk ∈ R})
Balanced: [q, q +max({d(ri, rk) | ∀rk ∈ R})], q is latency of Clock-RSM

Clock-RSM 2 O(N2)
Imbalanced: max(2 ∗median({d(ri, rk) | ∀rk ∈ R}),max({d(ri, rk) | ∀rk ∈ R}))
Balanced: max(2 ∗median({d(ri, rk) | ∀rk ∈ R}),max({d(ri, rk) | ∀rk ∈ R}),
max({median({d(rj , rk) + d(rk, ri) | ∀rk ∈ R}) | ∀rj ∈ R}))

Table II Number of message steps, message complexity, and command commit latency of Paxos, Paxos-bcast, Mencius-
bcast, and Clock-RSM.

this message is sent out roughly at the same time when the
command is sent out for majority replication. Receiving the
message from the farthest replica, taking dmax = lcbest2 time,
overlaps with the round-trip latency of majority replication,
taking 2∗dmedian = lc1 time. Hence, dmax−2∗dmedian is
the latency introduced by command ordering in Clock-RSM.

Combining the above analysis, Clock-RSM provides
lower latency than Paxos-bcast at a non-leader replica as
long as dmax−2∗dmedian < dfwd, which means the highest
latency is smaller than the sum of twice median latency and
one forwarding latency. This condition is not demanding.
Our measurements of latencies among Amazon EC2 data
centers in Section VI show that it holds in most cases. At
the leader replica, Clock-RSM provides the same latency if
dmax−2∗dmedian ≤ 0, which means the highest latency is
smaller than or equal to twice of median latency. In this case,
majority replication dominates the overall commit latency.
Our measurements show that this condition does not hold
all the time. However, even when it does not hold, dmax is
not much greater than 2∗dmedian, meaning that Clock-RSM
does not lose much in those cases.

In summary, Clock-RSM provides lower latency than
Paxos-bcast under conditions that are easy to satisfy in
practice. In general, the more uniform the latencies among
replicas are, the more likely Clock-RSM provides lower
latency.

V. FAILURE HANDLING

To order commands, replicas rely on knowing the latest
clock time of every replica in the current configuration. As
a consequence, Clock-RSM may stall in case of failure of
a replica or network partitions in the current configuration.
In this section, we describe a reconfiguration protocol for
Clock-RSM, which removes failed replicas and reintegrates
recovered ones.

A. Reconfiguration

The reconfiguration protocol is given in Algorithm 3. It
exposes a RECONFIGURE function that is triggered when
a failure detector suspects that a replica has failed, or a
recovered replica asks to rejoin. RECONFIGURE takes a

new configuration as the argument, which specifies the new
membership of the system after reconfiguration. The pro-
tocol uses primitives PROPOSE(k,mp) and DECIDE(k,md)
of consensus. In practice one can use a protocol like Paxos
[13, 14] to implement the primitives. A replica proposes
value mp as kth consensus instance. Eventually, all correct
processes decide on the same final value md, among the ones
proposed. We use consensus because two or more replicas
may trigger RECONFIGURE with a different configuration.
The protocol also introduces a new hard state: a monoton-
ically increasing Epoch number. Epoch is initially 0, and
is incremented after each reconfiguration. This allows us to
ignore messages from older epochs, issued by replicas which
have not reconfigured yet. Notice that we do not assume
Config = Spec in this section, because reconfiguration
changes Config. The protocol works as follows.

1. A replica rk that triggers RECONFIGURE sends a
〈SUSPEND e, cts〉 message to all replicas in Spec. e is the
next epoch number and cts is the timestamp of the last
commit mark in rk’s Log. rk then waits for SUSPENDOK
replies from a majority in Spec. The purpose of this phase
is two-fold. First, replicas that receive a SUSPEND message
stop handling PREPARE requests from other replicas and
REQUEST messages from clients, essentially freezing their
logs. Second, rk collects all logged commands with a
timestamp greater than cts, from a majority in Spec. This
includes all commands that could have been committed by a
failed replica. Finally, rk invokes the eth consensus instance
over all replicas in Spec by proposing confignew, the next
configuration to use, timestamp cts, and the above set of
commands.

2. Eventually all non-faulty replicas learn about the deci-
sion for the eth consensus instance. The decision includes
enough information to start a new epoch such that all replicas
in confignew start from the same state. To do so, replicas
remove all entries with timestamp greater than ts from their
Log, where ts is the timestamp in the consensus decision
and apply all commands that could have been committed
in timestamp order. Replicas then install the new epoch
number and configuration. They also resize LatestTV based
on the new configuration and update its elements. Finally,

Algorithm 3 Reconfiguration protocol at Replica rm
1: function RECONFIGURE(confignew)
2: e← Epoch + 1
3: cts← timestamp of the last commit mark in Log
4: send 〈SUSPEND e, cts〉 to all replicas in Spec
5: wait for 〈SUSPENDOK e, cmdsk〉 from a majority of Spec
6: PROPOSE(e, confignew, cts,

⋃
k cmdsk)

7: upon receive 〈SUSPEND e, cts〉 from rk
8: stop processing REQUEST and PREPARE messages
9: cmds← {∀〈cmd, ts〉 ∈ Log | ts > cts}

10: send 〈SUSPENDOK e, cmds〉 to rk

11: upon DECIDE(e, confignew, ts, cmds)
12: cts← timestamp of the last commit mark in Log
13: if ts > cts then
14: cmds← cmds ∪ STATETRANSFER(cts, ts)

15: remove all 〈PREPARE c, t〉 from Log, s.t. t > ts and c is
not executed yet

16: for all 〈cmd, ts〉 ∈ cmds do . in order of ts
17: if 〈PREPARE cmd, ts, k〉 /∈ Log then
18: append 〈PREPARE cmd, ts〉 to Log
19: append 〈COMMIT ts〉 to Log
20: execute cmd
21: Epoch← e
22: Config ← confignew

23: resize and update LatestTV
24: resume processing REQUEST and PREPARE messages

25: function STATETRANSFER(from, to)
26: send 〈RETRIEVECMDS from, to〉 to all replicas in Spec
27: wait for 〈RETRIEVEREPLY cmdsk〉 from majority of Spec
28: return

⋃
k cmdsk

29: upon receive 〈RETRIEVECMDS from, to〉 from rk
30: cmds← {∀〈cmd, ts〉 ∈ Log | from < ts ≤ to}
31: send 〈RETRIEVEREPLY cmds〉 to rk

the normal case replication protocol can resume. Notice
that some replicas may lag behind when the last commit
mark in their Log is smaller than the decided timestamp. In
such a case, a replica initiates a state transfer to fetch all
commands up to ts, before applying the commands decided
by consensus.

B. Recovery and reintegration

We next discuss how a replica recovers from its Log
and is reintegrated to the existing active replicas. A replica
may fail and recover in a short time, without triggering
the reconfiguration process. The Epoch number is used to
determine whether a reconfiguration has meantime happened
or not. Log is used to replay the history of commands up
to the point in which the replica failed. Recall that log
entries are of two types in Clock-RSM, either PREPARE or
COMMIT. A PREPARE entry contains a command with the
timestamp, but they do not necessarily appear in timestamp
order in Log. A COMMIT entry contains a timestamp only
and is logged in timestamp order. In addition, Clock-RSM
guarantees that a COMMIT entry is appended to Log after
the corresponding PREPARE.

Recovery from the log proceeds as follows. The failed

replica scans log entries serially, starting from the head
of the log. While scanning, each PREPARE entry in the
Log is inserted into a hash table, indexed by the entry’s
timestamp. Whenever a COMMIT entry with the timestamp is
encountered, the corresponding PREPARE entry is removed
from the hash table and executed. When the replica finishes
scanning the log, it has executed all committed commands
in timestamp order. However, towards the end of Log there
might be some PREPARE entries which do not have the
corresponding COMMIT in Log. To recover these entries,
a replica sends RETRIEVECMDS to a majority of replicas in
Spec, and only executes commands that have been logged by
a majority. Finally, the replica triggers reconfiguration to join
the current configuration, using Algorithm 3. Checkpointing
can be used to avoid replaying the whole log and speed up
the recovery process.

C. Discussion

The overall time to exclude a failed replica from the
current configuration is the time to detect the failure, plus
the time to reconfigure. Reconfiguration requires one initial
exchange with a majority for SUSPENDing the replicated
state machine, one exchange with a majority to agree on
a timestamp and the set of commands that could have
been committed. Some replicas might require an additional
exchange for STATETRANSFER. When replicas are deployed
at multiple data centers, the timeout for failure detection
normally dominates the reconfiguration duration, similar to
other existing protocols.

In practice failures within a replication group do not
happen often, because the replication degree of a service is
normally small, such as five or seven, and data centers have
redundant network connections to the Internet. Therefore,
we do not expect reconfiguration to be triggered frequently
and affect the availability of the replicated service.

Temporary latency variations due to network congestions
on the paths between data centers may affect the commit
latency of Clock-RSM. A managed WAN among data cen-
ters, which provides stable network latency, can solve this
problem [9].

VI. EVALUATION

We evaluate the latency of Clock-RSM and other pro-
tocols with experiments on Amazon EC2 and numerical
analysis. Our evaluation shows that: 1) Clock-RSM provides
lower latency than Mencius-bcast. 2) With five and seven
replicas, Clock-RSM provides lower latency than Paxos-
bcast at the non-leader replicas in most cases, and it provides
similar or slightly higher latency at the leader replicas. 3)
With three replicas, a special case for Paxos-bcast, Clock-
RSM provides similar or slightly higher (about 6% on
average) latency than Paxos-bcast at all replicas.

We also evaluate the throughput of the four protocols on
a local cluster. Our results show that: 1) Clock-RSM and

Mencius have similar throughput for all command sizes. 2)
They provide higher throughput than Paxos and Paxos-bcast
for commands of large size while their throughput is lower
for small and medium size commands.

A. Implementation

We implement Clock-RSM, Paxos, Paxos-bcast and
Mencius-bcast in C++, using Google’s Protocol Buffers
library for message serialization. The implementation is
event-driven and fully asynchronous. The protocol is divided
into steps and each step is executed by a different thread.
When a thread of one step finishes processing a command,
it pushes the command to the input queue of the next
step. The thread executing a step batches the same type of
messages being processed whenever possible. However, to
avoid increasing latency, it does not wait intentionally to
batch more messages.

To evaluate the protocols, we also implement an in-
memory key-value store which we replicate using the above
protocols. In all experiments, clients send commands to
replicas of the key-value store to update the value of a
randomly selected key. Each protocol replicates the update
commands and executes them in total order.

For Clock-RSM, we run NTP to keep the physical clock at
each replica synchronized with a nearby public NTP server.
With the assistance of clock_gettime system call in
Linux, we obtain monotonically increasing timestamps.

B. Latency in wide area replication

We evaluate the latency of Clock-RSM and compare
it with other protocols with three and five replicas. We
place the replicas at Amazon EC2 data centers in California
(CA), Virginia (VA) and Ireland (IR), plus Japan (JP) and
Singapore (SG) for the five-replica experiments. To help
reason about experiment results and numerical analysis later,
we measure the round-trip latencies between data centers
using ping and report them in Table III.

We run both replicas and clients on large EC2 instances
that run Ubuntu 12.04. The typical RTT in an EC2 data
center is about 0.6ms. There are 40 clients issuing requests
of 64B to a replica at each data center. Clients send requests
in a closed loop with a think time selected uniformly
randomly between 0 and 80ms. We enable the extension
of Clock-RSM given in Algorithm 2 and set ∆ to 5ms. We
consider two types of workloads: With balanced workloads
all replicas serve client requests; with imbalanced workloads
only one replica serves client requests.

1) Balanced workloads: The first group of experiments
use balanced workloads, where clients of each replica si-
multaneously generate requests.

Figure 1 shows the average and 95%ile (percentile) la-
tency at each of five replicas. Designating the replica at
VA as the leader gives the best overall latency for Paxos

VA IR JP SG AU BR
CA 83 170 125 171 187 212
VA - 101 215 254 220 137
IR - - 280 216 305 216
JP - - - 77 129 368
SG - - - - 188 369
AU - - - - - 349

Table III Average round-trip latencies (ms) between EC2
data centers. CA, VA, EU, JP, SG, and BR correspond to
California, Virginia, Ireland, Japan (Tokyo), Singapore,
Australia, and Brazil (São Paulo), respectively.
and Paxos-bcast. Clock-RSM provides lower latency at all
replicas except the leader of Paxos and Paxos-bcast.

For Paxos and Paxos-bcast, a leader replica needs only
one round trip to a majority replicas to commit a command.
For Clock-RSM, a replica requires contacting a majority
plus the extra latency possibly introduced by the overlapping
stable order and prefix replication processes. In these two
experiments, the stable order process contributes to the
commit latency because the highest latencies between two
replicas are quite significant. The round-trip latency between
JP and IR is up to 280ms. This means the command latency
at JP and IR is at least 140ms. As a consequence, Clock-
RSM has higher latency at leader replicas. However, the
extra latency contributed by command ordering in Clock-
RSM is smaller than the latency of forwarding a command
from a non-leader replica to the leader in Paxos and Paxos-
bcast. Hence Clock-RSM provides lower latency at all non-
leader replicas.

We point out that the highest latency of Clock-RSM at all
replicas is lower than Paxos and Paxos-bcast. The latencies
of Clock-RSM at all replicas are more uniform. For the
average latency of all replicas, Clock-RSM is also better.

Clock-RSM provides lower latency than Mencius-bcast at
all replicas. The 95%ile latency of Mencius-bcast is much
higher than its average, because the commit of a command
may be delayed by another concurrent command from a
different replica. The delay varies from zero up to one-
way latency between two replicas. Paxos-bcast is also better
than Mencius-bcast in most cases. Mencius-bcast sometimes
provides lower latency than Paxos at non-leader replicas,
because it requires fewer steps and concurrent commands
from all replicas help the stable order process.

Figure 2 shows the average commit latency and 95%ile
latency at each of three replicas. Designating the replica at
VA as the leader gives the best overall latency for Paxos and
Paxos-bcast.

A three-replica setup is a special case for both Clock-
RSM and Paxos-bcast. For Paxos-bcast, the leader replica
commits a command after it receives the logging confirma-
tion from the nearest replica. For a non-leader replica, it
first forwards the command to the leader and then waits for
the logging confirmation from a majority. Most likely after

 0

 50

 100

 150

 200

 250

 300

 350

 400

CA (L) VA IR JP SG

L
a
te

n
c
y
 (

m
s
)

Replica Location

Paxos
Mencius-bcast
Paxos-bcast
Clock-RSM

(a) Leader at CA

 0

 50

 100

 150

 200

 250

 300

 350

 400

CA VA (L) IR JP SG

L
a
te

n
c
y
 (

m
s
)

Replica Location

Paxos
Mencius-bcast
Paxos-bcast
Clock-RSM

(b) Leader at VA

Figure 1 Average (bars) and 95%ile (lines atop bars) commit latency at each of five replicas. Workload is balanced.

 0

 50

 100

 150

 200

 250

 300

CA (L) VA IR

L
a
te

n
c
y
 (

m
s
)

Replica Location

Paxos
Mencius-bcast
Paxos-bcast
Clock-RSM

(a) Leader at CA

 0

 50

 100

 150

 200

 250

 300

CA VA (L) IR

L
a
te

n
c
y
 (

m
s
)

Replica Location

Paxos
Mencius-bcast
Paxos-bcast
Clock-RSM

(b) Leader at VA

Figure 2 Average (bars) and 95%ile (lines atop bars) commit latency at each of three replicas. Workload is balanced.

it logs its own command, the logging confirmation of the
leader arrives, if triangle inequality still holds with latencies.
Hence all replicas in Paxos-bcast require one round trip to
another replica to commit a command. When we designate
the replica with the smallest weighted degree as the leader,
Paxos-bcast always needs one round trip to the nearest
replica to commit a command.

For Clock-RSM, prefix replication does not affect latency
anymore because it is dominated by stable order. A replica
commits a command after it receives the corresponding
PREPAREOK from the nearest replica (majority replication)
and a greater timestamp from the farthest replica (stable
order). For the three locations in this experiment, the highest
latency (between VA and IR) is roughly twice of the lowest
(between CA and VA). Hence Clock-RSM also needs one
round trip to the nearest replica to commit a command.

In Figure 2(a), the Paxos-bcast leader (CA) and its nearest
non-leader replica (VA) have similar commit latency to
Clock-RSM since they both require one round-trip messages
to the nearest replica. For the other non-leader replica (IR),
it has to use the longest path. Hence, the commit latency
is much higher than Clock-RSM. In Figure 2(b), the Paxos-
bcast leader (VA) avoids the longest path. Both protocols

require one round trip to the nearest replica. Hence they
have similar latencies at all replicas.

To further clarify the latency characteristics of each pro-
tocol, we also present their latency distributions. Figure 3
shows the latency distribution at JP when there are five
replicas and the leader is at CA. Both Paxos and Paxos-
bcast have very predictable latency as the commit of a
command is not affected by other commands. The latency
of Mencius-bcast varies from 134ms to 230ms because of
the delayed commit problem. Clock-RSM has some variance
because, with this particular layout, the latency required by
prefix replication sometimes dominates. Figure 4 shows the
latency distribution at CA when there are three replicas and
the leader is at VA. The results are similar to the ones in
Figure 3 except that, with this replica layout, the latency of
Clock-RSM almost does not vary, because prefix replication
is dominated by the stable order process.

2) Imbalanced workloads: We next evaluate the latency
of the four protocols under imbalanced workloads. For each
run of the experiment, clients issue requests to only one
replica. Figure 5 shows the results for five replicas. This
experiment is the same as the one used in Figure 1(a) except
that the workload is imbalanced.

 0

 20

 40

 60

 80

 100

 120 140 160 180 200 220 240 260 280

C
D

F

Latency (ms)

Paxos
Mencius-bcast
Paxos-bcast
Clock-RSM

Figure 3 Latency distribution at JP with five replicas.
The leader is at CA. Workload is balanced.

 0

 20

 40

 60

 80

 100

 80 100 120 140 160

C
D

F

Latency (ms)

Paxos
Mencius-bcast
Paxos-bcast
Clock-RSM

Figure 4 Latency distribution at CA with three replicas.
The leader is at VA. Workload is balanced.

Paxos and Paxos-bcast provide the same latency for
both balanced and imbalanced workloads. Clock-RSM also
provides similar predictable latency to both imbalanced and
balanced workloads, because of the PREPAREOKs of pre-
vious commands and CLOCKTIMEs that carry latest clock
time of other replicas. The average latency of Mencius-bcast
becomes much higher when it has imbalanced workloads.
This is because Mencius-bcast needs to receive logging
acknowledgement with skipped rounds from every replica to
make sure that other replicas do not propose a command in
a previous round. The 95%ile latency is close to the average
because the delayed commit problem does not happen when
there is no concurrent command at any replica. Figure 6
shows the latency distribution.

In summary, with realistic latencies among data centers,
Clock-RSM provides lower latency in most cases. The exper-
iment results above also confirm our analysis in Section IV.

C. Numerical comparison of latency

Our above experiments on EC2 show that Clock-RSM
provides lower latency than others in most cases with two
groups of replicas of different sizes. To complete the evalua-
tion, we compare Clock-RSM with Paxos-bcast numerically
with all the possible data center combinations on EC2.

We use all the combinations of three, five, and seven
replicas located at different EC2 data centers from Table III.
We plug the measured latencies in Table III into the latency
formulas in Table II. Paxos-bcast always chooses the best
leader replica that provides the lowest average latency of all
replicas in the group.

Figure 7 shows the average latency of replicas from all
groups of the same size. We compute two types of average

 0

 50

 100

 150

 200

 250

 300

 350

CA (L) VA IR JP SG

L
a
te

n
c
y
 (

m
s
)

Replica Location

Paxos
Mencius-bcast
Paxos-bcast
Clock-RSM

Figure 5 Average (bars) and 95%ile (lines atop bars)
commit latency at each of five replicas. The leader of
Paxos and Paxos-bcast is at CA. Workload is imbalanced.

 0

 20

 40

 60

 80

 100

 150 200 250 300 350 400 450

C
D

F

Latency (ms)

Paxos
Mencius-bcast
Paxos-bcast
Clock-RSM

Figure 6 Latency distribution at SG with five replicas.
The leader of Paxos and Paxos-bcast is at CA. Workload
is imbalanced.
latency: average all latency includes latencies at all replicas
of a group while average highest latency only includes the
latency at one replica that provides the highest latency in
the group. As the figure shows, Clock-RSM provides lower
latency for both five and seven replicas. Its improvement for
the average highest latency is greater, because for Paxos-
bcast, latencies at different replicas are more spread. The
latency at a non-leader replica is much higher than the leader
replica, as it needs one extra message to forward a command
to the leader. In contrast, latencies in Clock-RSM are closer
to each other because every replica requires the same number
of steps to commit a command.

With three replicas, Paxos-bcast is slightly better than
Clock-RSM, because we always choose the best leader for
it, which leads to optimal commit latency at all replicas.
This also validates our previous analysis of the protocols
with three replicas.

Table IV shows the latency reduction of Clock-RSM over
Paxos-bcast at all replicas for different replication groups.
For instance, for all replicas in the groups with five replicas,
the latency of Clock-RSM at 68.6% of the replicas is lower
than Paxos-bcast. On average, it reduces the latency by
31.9ms, i.e., by 15.2%, at those replicas. For 31.4% of the
replicas, the latency of Clock-RSM is higher. On average,
it increases the latency by 30.6ms, i.e., by 14.3%, at those
replicas. We look into all these 31.4% replicas and find that

 0

 50

 100

 150

 200

 250

 300

 350

3 replicas 5 replicas 7 replicas

L
a
te

n
c
y
 (

m
s
)

Paxos-bcast all
Clock-RSM all
Paxos-bcast highest
Clock-RSM highest

Figure 7 Average commit latency. all includes latencies
at all replicas of a group while highest only includes the
latency at one replica that provides the highest latency.

Replica
Percentage

Absolute
Reduction

Relative
Reduction

3 replicas 0.0% 0.0ms 0.0%
100.0% -9.9ms -6.2%

5 replicas 68.6% 31.9ms 15.2%
31.4% -30.6ms -14.6%

7 replicas 85.7% 50.2ms 21.5%
14.3% -39.4ms -16.9%

Table IV Latency reduction of Clock-RSM over Paxos-
bcast. Negative latency reduction means Clock-RSM
provides higher latency.
most of them are the leader replica in their group and a few
are the non-leader replica that is very close to the leader.
For groups with seven replicas, we have similar results.
For groups with three replicas, the latency of Paxos-bcast
is slightly better, because it provides optimal latency in this
special case.

D. Throughput on a local cluster

Although the goal of Clock-RSM is to provide low
commit latency in a WAN environment, for completeness,
we also evaluate its throughput and compare it with other
protocols. Our experimental results show that Clock-RSM
has competitive throughput.

To avoid the network bandwidth limit on EC2 across data
centers, we run experiments on a local cluster. Each server
has two Intel Xeon processors with 4GB DDR2 memory. All
servers are connected to a single Gigabit Ethernet switch.
A replica runs on one server exclusively. Replicas log
commands to main memory to avoid the disk being the
bottleneck. Clients send frequent enough commands to all
replicas to saturate them.

Figure 8 reports the throughputs for five replicas and
command sizes of 10B, 100B, and 1000B. In all cases, CPU
is the bottleneck and message sending and receiving is the
major consumer of CPU cycles.

For 10B and 100B commands, Paxos and Paxos-bcast

 0

 20

 40

 60

 80

 100

10B 100B 1000B

T
h
ro

u
g
h
p
u
t
(k

o
p
/s

)

Command size

Clock-RSM
Mencius-bcast
Paxos
Paxos-bcast

Figure 8 Throughput for small (10B), medium (100B),
and large (1000B) commands with five replicas on a local
cluster.
have higher throughput than Mencius-bcast and Clock-
RSM. This is because all the non-leader replicas forward
commands to the leader in Paxos and Paxos-bcast, which
can batch more commands when sending and receiving
messages. For 1000B large commands, Paxos and Paxos-
bcast have lower throughput. The leader replica becomes the
performance bottleneck, because batching large messages
does not help throughput anymore.

Clock-RSM and Mencius have similar throughput as
they have the same communication pattern and message
complexity. Paxos provides better throughput than Paxos-
bcast because its message complexity is lower. But the
improvement is not significant since Paxos requires one
more message step.

Our measurements do not support the claim that a multi-
leader protocol always provides better throughput than Paxos
because the leader in Paxos is the performance bottleneck
[17, 18]. When replicas batch messages opportunistically,
without waiting intentionally, the leader replica of Paxos
has more chances to batch and hence increases throughput
in the case of small and medium commands. Prior work
evaluates throughput using different implementations or con-
figurations. For the evaluations in Mencius [17], replicas do
not batch messages. For the experiments in Egalitarian Paxos
[18], although replicas batch messages, the Paxos leader
handles all client messages while the other replicas only
process replication messages.

VII. RELATED WORK

In addition to Multi-Paxos [13, 14] and Mencius [17], we
compare Clock-RSM with other existing work.

Fast Paxos [16] allows clients to send commands directly
to all replicas to reduce commit latency. In good runs,
it requires two message delays to commit a command.
However, under collisions due to concurrent proposals, Fast
Paxos requires at least two additional messages for collision
recovery. Collisions are frequent in a geo-replicated environ-
ment with balanced workloads, and thus Fast Paxos results
in significantly higher latency than Clock-RSM.

Some protocols relax the total order property of state
machine replication. Generalized Paxos [15] and Generic
Broadcast [19] commits commands that do not interfere
out of order in one round trip. It requires a stable leader
to order interfering commands, which takes at least two
additional round trips. Egalitarian Paxos [18], also called
EPaxos, does not require a designated leader. Every replica
in EPaxos can serve client requests and submit commands.
EPaxos also commits non-interfering commands out of order
in two message delays, which is one round-trip latency
to (at least) a majority of replicas. The slow path, which
resolves conflicts, requires one additional round trip. EPaxos
provides linearizability. However, local reads in EPaxos
may see updates in different orders at different replicas. In
contrast, Clock-RSM provides linearizability and maintains
an explicit total order over updates. Database replication, one
of the most popular applications of state machine replication,
often requires total order replication to maintain strong
transaction isolation levels, such as serializability [4] and
snapshot isolation [3], as in a single-copy database [10].

MDCC [11] uses Generalized Paxos to build a replicated
partitioned key-value store across data centers. MDCC re-
duces replication latency by running one instance of Gen-
eralized Paxos per key. An update to a key commits in
one round trip using the fast path, under the assumption
that conflicting updates on the same key are rare. However,
MDCC provides “read committed” guarantee to transactions,
a weaker isolation level than both serializability and snap-
shot isolation. In contrast, Clock-RSM can be used for total
order replication across all keys while providing low latency
and strong transaction isolation.

Using physical clocks for state machine replication is dis-
cussed in [12] and [20]. However, neither of them provides a
complete solution. Clock-RSM is a clearly specified protocol
with reconfiguration for failure handling. It relies on physical
clocks to reduce replication latency across data centers.

Spanner [6] uses physical clocks to provide linearizable
transactions across replicated partitions. It relies on Multi-
Paxos to replicate each partition. Replica leaders order
transactions with physical timestamps. Clock-RSM is a new
state machine replication protocol and uses physical clocks
to improve latency. The correctness of Spanner depends on
synchronized clocks with bounded skew while Clock-RSM
requires clocks to be only loosely synchronized.

An atomic broadcast algorithm using physical clocks
is introduced in [21]. This algorithm relies on ordinary
broadcast and generic broadcast and delivers a message with
two message delays in good runs. Similar to Clock-RSM,
each replica coordinates its own commands and commands
are totally ordered by physical time intervals. In contrast,
Clock-RSM is a simpler and more efficient state machine
replication protocol that includes recovery and reconfigura-
tion and targets realistic geo-replication environments.

VIII. CONCLUSION

We introduce Clock-RSM, a state machine replication
protocol that pushes the latency limit of strongly consis-
tent replication. Clock-RSM relies on loosely synchronized
clocks to reduce latency. We evaluate our protocol exten-
sively with realistic workloads, where latencies among data
centers are non-uniform. We show that, compared with state
of the art protocols, Clock-RSM reduces latency in most
cases with real world replica placements.

REFERENCES
[1] The network time protocol. http://www.ntp.org, 2014.
[2] J Baker, C Bond, JC Corbett, et al. Megastore: Providing

scalable, highly available storage for interactive services. In
CIDR, 2011.

[3] H. Berenson, P. Bernstein, J. Gray, et al. A critique of ansi
sql isolation levels. In SIGMOD, 1995.

[4] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman.
Concurrency control and recovery in database systems. 1986.

[5] Brad Calder, Ju Wang, Aaron Ogus, et al. Windows azure
storage: a highly available cloud storage service with strong
consistency. In SOSP, 2011.

[6] James C Corbett, Jeffrey Dean, Michael Epstein, et al. Span-
ner: Googles globally-distributed database. In OSDI, 2012.

[7] Jiaqing Du, Daniele Sciascia, Sameh Elnikety, et al. Clock-
rsm: Low-latency inter-datacenter state machine replication
using loosely synchronized physical clocks. Technical report,
EPFL, April 2014.

[8] Maurice P Herlihy and Jeannette M Wing. Linearizability: A
correctness condition for concurrent objects. TOPLAS, 1990.

[9] Sushant Jain, Alok Kumar, Subhasree Mandal, et al. B4:
Experience with a globally-deployed software defined wan.
In SIGCOMM, 2013.

[10] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be
consistent: Postgres-r, a new way to implement database
replication. In VLDB, 2000.

[11] Tim Kraska, Gene Pang, Michael J Franklin, Samuel Madden,
and Alan Fekete. Mdcc: Multi-data center consistency. In
EuroSys, 2013.

[12] Leslie Lamport. Time, clocks, and the ordering of events in
a distributed system. CACM, 1978.

[13] Leslie Lamport. The part-time parliament. TOCS, 1998.
[14] Leslie Lamport. Paxos made simple. 2001.
[15] Leslie Lamport. Generalized consensus and paxos. 2004.
[16] Leslie Lamport. Fast paxos. In Distributed Computing. 2006.
[17] Yanhua Mao and Flavio P Junqueira. Mencius: Building

efficient replicated state machines for wans. In OSDI, 2008.
[18] Iulian Moraru, David G. Andersen, and Michael Kaminsky.

There is more consensus in egalitarian parliaments. In SOSP,
2013.

[19] Fernando Pedone and André Schiper. Generic broadcast. In
Distributed Computing. 1999.

[20] Fred B Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing
Surveys, 1990.

[21] Piotr Zieliński. Low-latency atomic broadcast in the presence
of contention. 2008.

