
Enabling Complexity-Performance Trade-Offs for
Successive Cancellation Decoding of Polar Codes

Alexios Balatsoukas-Stimming, Georgios Karakonstantis, and Andreas Burg

Telecommunications Circuits Laboratory, EPFL, Lausanne, Switzerland.
Email: {alexios.balatsoukas, georgios.karakonstantis, andreas.burg}@epfl.ch

Abstract—Polar codes are one of the most recent advancements
in coding theory and they have attracted significant interest.
While they are provably capacity achieving over various channels,
they have seen limited practical applications. Unfortunately, the
successive nature of successive cancellation based decoders hin-
ders fine-grained adaptation of the decoding complexity to design
constraints and operating conditions. In this paper, we propose
a systematic method for enabling complexity-performance trade-
offs by constructing polar codes based on an optimization
problem which minimizes the complexity under a suitably defined
mutual information based performance constraint. Moreover, a
low-complexity greedy algorithm is proposed in order to solve
the optimization problem efficiently for very large code lengths.

I. INTRODUCTION

Channel polarization gives rise to elegant and provably
optimal channel codes, called polar codes [1], whose decoding
complexity under successive cancellation (SC) decoding is
O(N logN), where N is the blocklength of the code. In
implementations of channel decoders it is often desirable to
trade performance for complexity in order to meet system
requirements at minimal cost. These trade-off decisions can
be offline, i.e., taken during the design phase of the system, or
online, i.e., taken by the system during its operation. A trivial
way to vary the decoding complexity is to alter the blocklength
of the code. This is usually an offline decision, although some
recent communications standards (e.g., IEEE 802.11n [2])
require the support of codes of various lengths. Unfortunately,
using this method, polar codes do not offer a fine trade-
off granularity because their blocklength is constrained to
powers of two when using the simple 2× 2 polarizing matrix
introduced by Arıkan. Thus, any complexity reduction may
lead to a large loss in performance. Moreover, due to its
successive nature, the SC decoding algorithm is not amenable
to online complexity tuning. Other codes which are used in
modern systems, such as LDPC [3] and turbo codes [4], which
are usually decoded using iterative decoding algorithms, can
be tuned online by varying the number of performed itera-
tions, according to e.g., the channel conditions. Fortunately, a
simple observation allows us to trade decoding complexity for
performance for SC decoding in small steps, both offline and
online, without the need to change the blocklength by altering
the set of channels which are used to transmit information.

Contribution: In this work, we populate the complexity-
performance trade-off curve for SC decoding by formulating
the frozen channel selection step of polar code construction

as an optimization problem. This is achieved by reformulating
the original problem of polar code construction with the
objective to minimize the complexity while respecting qual-
ity constraints that represent the various dynamically chang-
ing operating conditions, or the offline system constraints.
The proposed reformulation enables complexity-performance
trade-offs which where not evident before. Finally, we also
present a low complexity greedy algorithm which seems to
approximate the original problem reasonably well.

II. POLAR CODES

Following the notation of [1], we use aN1 to denote a
row vector (a1, . . . , aN) and aji to denote the subvector
(ai, . . . , aj). If j < i, then the subvector aji is empty. We
use log(·) to denote the binary logarithm.

A. Construction of Polar Codes

Let W denote a binary input discrete and memoryless
channel with input u ∈ {0, 1}, output y ∈ Y , and transition
probabilities W (y|u). A polar code is constructed by applying
a 2×2 channel combining transformation recursively on W for
n times, followed by a channel splitting step [1]. This results in
a set of N = 2n channels, denoted by W (i)

N (yN1 , u
i−1
1 |ui), i =

1, . . . , N . In principle, it is possible to compute the mutual in-
formation values I(Y N

1 , U i−1
1 |Ui), i = 1, . . . , N . In practice,

finding an analytical expression turns out to be a very hard
problem, except for the case of the binary erasure channel
(BEC), where an exact recursive calculation is possible [1].
Methods for approximating the mutual information values
in more general cases are described in [1], [5], [6]. The
construction of a polar code is completed by choosing the good
channels as non-frozen channels which carry information bits,
while freezing the remaining channels to some known values
ui. The set of frozen channel indices is denoted by Ac and
the set of non-frozen channel indices is denoted by A.

B. Successive Cancellation Decoding of Polar Codes

In the SC decoding algorithm [1], decoding starts by com-
puting an estimate of u1, denoted by û1, based only on yN1 .
Subsequently, u2 is estimated using (yN1 , û1), etc. Decisions
are taken according to

ûi =

{
argmaxui∈{0,1}W

(i)
N (yN1 , û

i−1
1 |ui), i ∈ A,

ui, i ∈ Ac.
(1)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148003895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The channel likelihoods W (yi|xi), xi ∈ {0, 1} are combined
through the stages of a decoding graph in order to calculate
W

(i)
N (yN1 , û

i−1
1 |ui), i = 1, . . . , N [1]. The decoding graph

contains N logN nodes. If intermediate results are stored, then
each node has to be activated only once during decoding. Thus,
we need exactly N logN node-computations per codeword.

C. Complexity Reduction Through Pruning

Complexity reduction can be achieved by pruning nodes
from the decoding graph whose descendant nodes at stage 0
all correspond to frozen channels, since these nodes calculate
likelihoods that will never actually be used by the decoding
rule [7]. For example, consider a rate-1/2 code corresponding
to the decoding graph of Fig. 1 and let u1, u3 ∈ Ac and
u2, u4 ∈ A. In this case, (1) does not require the likelihoods
W

(1)
N (yN1 |u1), u1 = 0, 1, and W

(3)
N (yN1 , û

2
1|u3), u3 = 0, 1,

to estimate u1 and u3, respectively. So, the corresponding
node-computations at stage 0 can be pruned. However, the
computations at stage 1 can not be pruned, since their results
are required to estimate u2 and u4. If, instead, u1, u2 were
chosen as frozen, then the computations for u1 and u2 at
stage 0, as well as the two preceding computations at stage 1
could be pruned. In the first example we can prune two node-
computations, while in the second example we can prune four
node-computations. However, in the second case the error rate
performance of the code will be worse since we do not allow
the two best channels to carry information.

III. ENABLING COMPLEXITY-PERFORMANCE
TRADE-OFFS

A. Complexity and Performance Metrics

The total number of computations that can be saved by prun-
ing the decoding graph, denoted by c, is used as a complexity
metric. Let the blocklength N and the rate R = 1− k

N , k ∈
N, 0 < k < N be fixed and let the mutual information values
of the N channels be denoted by Ii, i = 1 . . . , N . We use the
sum mutual information of the set of non-frozen channels as
a performance metric, i.e.,

m =
∑
i∈A

Ii = N · I(W)−
∑
i∈Ac

Ii. (2)

Note that the polar code construction proposed in [1] maxi-
mizes this metric under the constraint |A| = k and let mmax

denote this maximum, i.e.,

mmax = max
A:|A|=k

∑
i∈A

Ii. (3)

Since Ii ≥ 0, 0 ≤ i ≤ N, the maximization amounts to
selecting the channel indices with the k largest Ii values.

B. Optimization Problem Formulation

From a complexity perspective, it is favorable to form
clusters of 2l, l ∈ N, frozen channels in order to maximize
pruning. In this section, we describe an optimization problem
which constructs a polar code of rate R, in a way that
maximizes c while ensuring that m is larger than a predefined
performance constraint m′ ≥ 0. To this end, the indices of the

Fig. 1: Decoding graph for N = 4 with channel groups.
An optimization variable xi is associated with each group gi.
Setting xi = 1 corresponds to freezing all channels in gi.

Fig. 2: Tree structure of channel groups with descendants of
g7, i.e., D(g7), and their corresponding optimization variables.
If x7 = 1, then xi = 0 has to be enforced for all xi : gi ∈
D(g7).

N channels are grouped into clusters of 1, 2, . . . , N consec-
utive channels as illustrated in Fig. 1, where the illustration
of the groups has been spread across the stages of the data
dependency graph to reduce congestion. Let the set of all the
groups be denoted by G. We have

|G| = N

n∑
j=0

2−j = 2N − 1. (4)

We associate each of the groups gi ∈ G with a binary
optimization variable xi, i = 1, . . . , 2N − 1. The assignment
xi = 1 means that all channels contained in group i are frozen.
Each group also has a cost, denoted by fi, i = 1, . . . , 2N−1.
This cost is equal to the number of channel indices that are
contained in gi, i.e., fi = |gi|, and it reflects the rate loss
incurred by setting xi = 1. This leads to the rate constraint

2N−1∑
i=1

fixi = N − k. (5)

Observe that, if in the example of Fig. 1, say, x7 = 1, then
the cost f7 is paid. However, due to the tree structure of
the groups, f7 includes the costs for freezing the channels
in groups g1 to g6, So, when xi = 1 for any non-leaf group,
xi = 0 has to be enforced for all the descendants of this
group in order not to count any costs more than once. Let
the descendants of group gi ∈ G be denoted by D(gi). An

example is illustrated in Fig. 2. Let M = {(i, j) : gi ∈
G\{leaves}, gj ∈ D(gi)}. Since xi ∈ {0, 1}, the mutual
exclusiveness constraint can be formalized as

xi + xj ≤ 1, ∀(i, j) ∈M. (6)

Moreover, we have

|M| = N

logN−1∑
i=1

(logN − i)2−i = 2(logN − 1)N + 2. (7)

From (4) and (7), it can be seen that the number of vari-
ables grows linearly with the code length and the number of
constraints in (6) grows as N logN . Each group gi ∈ G has
an associated gain in the number of computations, denoted by
ci, i = 1, . . . , 2N−1. This gain is the number of computations
that is saved via pruning if all the channels in this group are
frozen. Let s(gi) ∈ {0, . . . , logN − 1} denote the stage to
which group gi ∈ G corresponds. For example, in Fig. 1,
group g5 corresponds to stage 1. Then, we have

ci = (s(gi) + 1)2s(gi), i = 1, . . . , 2N − 1. (8)

Due to (6), no complexity gain is counted more than once.
Finally, freezing the channels in group gi ∈ G results in a loss
in total mutual information, denoted by mi, with

mi =
∑
j∈gi

Ij , i = 1, . . . , 2N − 1. (9)

again, due to (6), no loss is counted more than once. A
performance constraint m ≥ m′, m′ ≥ 0, is enforced, which
can equivalently be written as

2N−1∑
i=1

ximi ≤ N · I(W)−m′. (10)

An optimization problem which maximizes the complexity
gain, while ensuring that the resulting code has rate R and
satisfies the performance constraint, can be formulated as

maximize
2N−1∑
i=1

cixi

subject to
2N−1∑
i=1

fixi = N − k

2N−1∑
i=1

ximi ≤ N · I(W)−m′ (11)

xi + xj ≤ 1, ∀(i, j) ∈M
xi ∈ {0, 1}, i = 1, . . . , 2N − 1

The above problem is a binary integer linear programming
formulation of a multidimensional 0–1 knapsack problem [9],
which is known to be NP-hard. If m′ is chosen carefully so
that m′ ≤ mmax, then (11) is always feasible. Moreover,
for m′ = mmax, the optimization problem reduces to the
construction proposed by Arıkan,1 while m′ = 0 results in

1Note that, in this case, the solution is not necessarily unique, but each
solution of (11) is also a solution of Arıkan’s construction.

0.7 0.75 0.8 0.85 0.9 0.95
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Average Non−Frozen Channel Capacity (bits/ch. use)

C
o

m
p

le
x
it

y
 (

o
p
er

at
io

n
s

p
er

 b
it

)

N = 16

N = 32

N = 64

N = 128

Fig. 3: Solutions of (11) for R = 0.5, N = 2n, n = 4, 5, 6, 7,
and transmission over a BEC(0.5).

a construction that maximizes the number of saved computa-
tions while completely disregarding performance. By varying
m′ between these two extremal values, various complexity-
performance trade-offs can be achieved.

C. Results

Even though (11) is NP-hard, relatively small instances can
still be solved by using standard branch-and-bound methods.
For simplicity in calculating the mutual information values
Ii, i = 1, . . . , N , we present results only for the BEC(ε),
where ε denotes the erasure probability. However, the proposed
approach can be used for any other channel and input distribu-
tion, provided that Ii, i = 1, . . . , N , are available. Moreover,
given Ii, i = 1, . . . , N , the complexity of (11) and of the
greedy algorithm presented in Section IV does not depend on
the type of channel. We assume that the capacity achieving
input distribution is used, so that I(W) = 1− ε. In Fig. 3, we
present the solutions of (11) for transmission over a BEC(0.5)
with a polar code of rate R = 0.5 for N = 24, 25, 26, 27,
which are obtained by solving the problem for various 0 ≤
m′ ≤ mmax. We use the complexity in operations per bit on
the vertical axis and the average mutual information on the
horizontal axis. The former can be easily obtained from any
solution x∗ as 1

N

(
N logN −

∑2N−1
i=1 cix

∗
i

)
, while the latter

is equal to 1 + 1
RN

∑2N−1
i=1 mix

∗
i .

IV. GREEDY ALGORITHM

In order to solve (11) for practically relevant blocklengths,
like 210 ≤ N ≤ 220, in reasonable time, we present a greedy
algorithm that takes advantage of the structure of the problem
to provide useful solutions with negligible running time.

A. Greedy Algorithm Description

Our greedy algorithm consists of three steps, namely the
greedy maximization step, the feasibility step, and the post-
processing step. In the first step, the goal is to greedily maxi-
mize the objective function while satisfying all inequality con-
straints. The second step ensures that the equality constraint
is also satisfied, while the last step finalizes and improves the
solution. Recall that k′ = N−k is the number of bits that need

to be frozen. Let k′bin denote the logN bit right-MSB binary
representation of k′ and let k′bin(j), 0 ≤ j ≤ logN−1, denote
the j-th bit of k′bin. The greedy maximization step is inspired
by the following observation.

Proposition 1. If there were no performance constraint
present in (11), the problem could be solved exactly as follows.

1. Set j = logN − 1 and xi = 0, 1 ≤ i ≤ 2N − 1.
2. If k′bin(j) = 1, then set xi = 1 for one gi : s(gi) =

j, denoted by gi′ , and set xi = 0 for all remaining
gi : s(gi) = j. Remove all xi : gi ∈ D(gi′) from the
problem.

3. Set j = j − 1 and go to 2. until j < 0.

Proof: By eliminating all xi : gi ∈ D(gi′) from the
problem at step 2, we guarantee that the mutual exclusiveness
constraint is not violated. Moreover, stage logN − 1 contains
two groups, of which only one can be frozen, and for each
group in stage j there are two groups in stage j − 1, so that
step 2 can always be executed. We now show that any optimal
solution must freeze at most one group per stage. Suppose that,
for some solution, more than one groups were frozen in some
stage j. Then, it is possible to replace any two frozen groups at
stage j with some frozen group at stage j+1 without violating
any constraint. Based on (8), for the complexity gains we have

2 ·
(
j2j−1

)
= j2j < (j + 1)2j , ∀j ≥ 0, (12)

so this would strictly increase the objective function, meaning
that the original solution could not have been optimal. Since
all groups in stage j contain 2(j−1) bits and the binary
representation of k′ is unique, it follows that the only way
to freeze exactly k′ channels by freezing at most one group
per stage, thus satisfying the rate constraint, is to freeze the
groups according to the pattern dictated by k′bin.

1) Greedy maximization step: The greedy maximization
step is different than the procedure of Proposition 1 in that
it makes sure that the performance constraint is satisfied. In
the following procedure, k′bin is again initialized to logN bit
right-MSB binary representation of k′, but k′bin(j) ∈ N.

1. Set j = logN − 1 and xi = 0, 1 ≤ i ≤ 2N − 1.
2. If k′bin(j) ≥ 1, then try the following.

2.1. Find the gi : s(gi) = j with the smallest mi in stage
j and set xi = 1.

2.2. If
∑

i ximi ≤ N · I(W) − m′, then remove all
xi : gi ∈ D(gi′) from the problem, set k′bin(j) =
k′bin(j)− 1, and go to 2.

2.3. Else, set k′bin(j − 1) = k′bin(j − 1) + 2, set xi = 0,
and go to 3.

3. Set j = j − 1 and go to 2. until j < 0.
At step 2.3., we set k′bin(j − 1) = k′bin(j − 1) + 2 because
for each group that could not be frozen at stage j due to
the performance constraint, we need to freeze two groups at
stage (j−1) in order to (hopefully) satisfy the rate constraint.
Unfortunately, there is no longer a guarantee that the procedure
will be able to freeze exactly k′ bits as required to satisfy
the rate constraint. However, the mutual exclusiveness and
performance constraints are guaranteed to be met.

0.7 0.75 0.8 0.85 0.9 0.95
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Average Frozen Channel Mutual Information (bits/ch. use)

C
o
m

p
le

x
it

y
 (

o
p
er

at
io

n
s

p
er

 b
it

)

N = 16 (full)

N = 16 (greedy)

N = 32 (full)

N = 32 (greedy)

N = 64 (full)

N = 64 (greedy)

N = 128 (full)

N = 128 (greedy)

Fig. 4: Results from exact solution of (11) and of the greedy
algorithm for R = 0.5, N = 2n, n = 4, 5, 6, 7, and
transmission over a BEC(0.5).

2) Feasibility step: The second step of the algorithm sacri-
fices the objective function in a systematic step-by-step fashion
until the solution is feasible, i.e., until the rate constraint is
satisfied. Let k′′ denote the number of additional bits that need
to be frozen after the greedy maximization step is finished so
that the rate constraint is satisfied, i.e., k′′ = k′ −

∑
i fixi.

If k′′ > 0, then the feasibility step starts greedily unfreezing
frozen groups to free up mutual information. More and more
groups are unfrozen until the total number of unfrozen groups
that can be frozen at stage 0 is equal to k′′ plus the number of
variables in the groups that were unfrozen so far. Since during
this step only groups at stage 0 are refrozen which provide the
smallest complexity gain, no direct effort is made to minimize
the loss in the objective function. The feasibility step starts at
stage dlog k′′e+1, because by unfreezing a group in this stage
it is possible to satisfy the rate constraint in a single step, thus
making an indirect effort to minimize the objective function
loss. Subsequently, all stages up to logN − 1 are visited, and
the procedure continues with stages 0 to dlog k′′e, thus visiting
all stages, if required. If m′ ≤ mmax, the feasibility step is
guaranteed to find a feasible solution.

3) Post-processing step: The post-processing step identifies
pairs of consecutive frozen groups at each stage j and replaces
them with their parent group at stage j + 1, which improves
the objective function without violating any of the constraints.

B. Results

The solutions obtained by solving (11) exactly as well as
by using the greedy algorithm for various constraints and
blocklength up to N = 27 and for R = 0.50 are compared
in Fig. 4. The greedy algorithm is able to find most of the
optimal solutions for small instances of the problem.

The solutions found by the greedy algorithm are presented
in Fig. 5 for various blocklengths and for R = 0.50. For
N = 220 the average running time of the greedy algorithm is
less than 102 seconds, which is negligible given that the opti-
mization is carried out offline. We observe that the rightmost
part of the curve is relatively steep, thus providing favorable
trade-offs. For a fixed blocklength, the codes corresponding

Fig. 5: Solutions of greedy algorithm for R = 0.5,
N = 2n, n = 9, 10, 11, 12, 13, 15, over a BEC(0.5). The
circled codes for N = 210 are simulated in Fig. 6.

to some solution points can be chosen and stored in order to
provide the system with online performance-complexity trade-
offs. Moreover, during the design phase one can choose the
solution with the largest performance among all blocklengths
that satisfies a given complexity constraint.

V. DISCUSSION

Our choice of performance metric requires some intuitive
justification. Let Z(W) denote the Bhattacharyya parameter
of a channel W and let Zi = Z(W (i)). It is known that∑

i∈A Zi is an upper bound on the probability of block error
[1]. It was shown in [8] that, for the BEC, it is also a lower
bound. Moreover, for the BEC we have Ii = 1 − Zi, so
by maximizing

∑
i∈A Ii one can minimize the probability of

block error. Similarly, by placing a constraint on
∑

i∈A Ii,
we are implicitly placing a constraint on

∑
i∈A Zi, which is

directly related with the probability of block error. So, for the
case of the BEC, the metric that we use has an explicit relation
with the probability of block error. For more general channels,
one intuitively expects there to be at least an implicit relation
between the two quantities. Ideally, one would like to use the
probability of block error itself as a metric, but, to the best
of our knowledge, this can not be described analytically as
a function of A, and especially not in a linear way which
enables a simple formulation of the optimization problem.

Moreover, in principle, it is possible that a solution of
(11) contains a very bad channel in A. This would lead to
a catastrophic failure of the code, resulting in a block error
rate (BLER) close to 1. This problem can be circumvented by
adding the following additional constraints to (11)

(1− xi) · hi = 0, i = 1, . . . , 2N − 1, (13)

where hi = 1 if gi ∈ G contains a channel with Ii ≤ m′′,
where m′′ is chosen as the lowest acceptable mutual infor-
mation of the channels used for the information bits, and
hi = 0 otherwise. However, we have observed in simulations
that the useful codes (a code is said to be useful if it lies
on the Pareto frontier of the set of obtained solutions) have
performance which degrades gracefully with decreasing values

0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−4

10
−3

10
−2

10
−1

10
0

ε

B
L

E
R

Code 1 (m=489.95)

Code 2 (m=489.54)

Code 3 (m=488.55)

Code 4 (m=488.46)

Code 5 (m=487.65)

Code 6 (m=487.26)

Code 7 (m=486.33)

Code 8 (m=485.99)

Fig. 6: BLER performance and performance metric of the
useful codes for N = 210.

of the performance metric. An example of this behavior for
N = 210 can be seen in Fig. 6, where code 1 corresponds to
the construction in [1], while codes 2 to 8 provide different
performance-complexity trade-offs (annotated in Fig. 5).

VI. CONCLUSION

In this paper, we showed how to achieve fine-grained trade-
offs between complexity and performance of SC decoding
of polar codes by reformulating the frozen channel selection
step of the standard polar code construction procedure as
a 0-1 knapsack problem. Moreover, we described a low-
complexity greedy algorithm, which is tailored to fit our
specific knapsack problem instance. The greedy algorithm was
used to approximately solve the optimization problem in order
to construct polar codes of blocklength up to N = 220.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments. This work was kindly supported
by the Swiss NSF under Project ID 200021 149447 and by
the European Union under Marie Curie grant 304186.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[2] IEEE 802.11n-2009 – Amendment 5: Enhancements for Higher Through-
put, IEEE Std., Oct. 2009.

[3] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:
MIT Press, 1963.

[4] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: Turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10, pp.
1261–1271, Oct. 1996.

[5] R. Pedarsani, S. Hassani, I. Tal, and E. Telatar, “On the construction of
polar codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT 2011), Aug.
2011, pp. 11–15.

[6] I. Tal and A. Vardy, “How to construct polar codes,” arXiv:1105.6164,
2013.

[7] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-
cancellation decoder for polar codes,” IEEE Comm. Letters, vol. 15,
no. 12, pp. 1378–1380, Dec. 2011.

[8] M. Bastani Parizi and E. Telatar, “On the correlation between polarized
BECs,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT 2013), July 2013.

[9] A. Fréville, “The multidimensional 0–1 knapsack problem: An
overview,” European Journal of Operational Research, vol. 155, no. 1,
pp. 1–21, May 2004.

