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Abstract In real time scenario, transmission (of power) in 
power systems may not be always ideal i.e. they may be 
interrupted. As a result, the synchronization among the power 
generating modules may be lost. Loss of synchronization has a 
direct effect on the stability of power generators. Generally time 
domain simulation (TDS) is used to examine the stability but 
TDS is a time consuming process, hence we are required to 
explore other approaches. Accurate real-time security 
assessment is necessary to facilitate operations close to the 
stability limits. Hence for this purpose a distributed time 
efficient approach has been adopted to predict future values of 
system parameters and use the same to predict future stability of 
power generating modules by partially using artificial neural 
network and fuzzy interference system based on European 
Network of Transmission System Operators for Electricity 
(ENTSO-E) defined criteria. 

Index Terms Artificial neural networks, fuzzy logic, intelligent 
systems, power system stability, smart grid. 

I. INTRODUCTION 

The power system is the most extensive, complex and 
pivotal infrastructure of the modern world. Despite its 
importance, its structure and fundamental operating and 
design principles have remained unchanged for long. In the 
past few decades consumer load has increased at much faster 
pace than that of infrastructure in many nations thereby 
increasing operating stress of these systems. As a result, 
modern power systems are becoming more and more 
vulnerable to disturbances [1]. Recently, a plethora of factors 
have dictated a shift of paradigm, collectively denoted as the 
shift towards the smart grid. There is hardly a consensus on 
what really the smart grid is, or what its precise architecture is 
going to be [2]. Therefore, the stability of this new grid 
becomes a crucial consideration, and it assumes a more 
demanding character than its traditional form. 

Power system stability is the ability of an electric power 
system to retain a state of operating equilibrium after being 
subjected to a physical disturbance, with most system 
variables bounded so that practically the entire system remains 
intact. In [3] a thorough classification of stability is provided. 
In this work the focus is dynamic stability. Even though the 

use of the term dynamic may sometimes be ambiguous, in this 
work it is used to denote stability that concerns dynamic, i.e. 
short term phenomena. Apparently in this sense, dynamic 
stability concerns all three, rotor angle, frequency, and voltage 
stability [3]. 

Of course, traditional stability analysis techniques can still 
be applied into a smart grid concept. However there are two 
challenges concerning the particularities of the latter. First, the 
distributed nature of the smart grid hinders the development 
of centralized infrastructures to process and analyze data [4]. 
Second, the sub-(milli-) second responsiveness/nature of the 
grid implies equally fast responsiveness by the analysis 
intelligence [2]. These factors strongly suggest the 
development of distributed architectures for dynamic stability 
analysis purposes. 

This work proposes a dynamic security assessment system 
suited for the smart grid that is delimited by the above 
premises. The proposed system is distributed in nature, in the 
sense that it relies on local measurement data, limiting its 
communication requirements only during an offline stage. It 
monitors all three constituent parts of stability (rotor angle, 
frequency and voltage) using specifications set by the 
European Network of Transmission System Operators for 
Electricity (ENTSO-E). Finally, the computational core of it is 
established by an intelligent assessment of the input data, 
based on a prediction tool, an artificial neural network (ANN) 
and a fuzzy logic system (FLS). The speed of the latter core 
allows operation of the proposed system in a smart-grid real-
time frame. 

This paper is organized as follows. Section II introduces 
the reader to some fundamental background knowledge on 
the elements of the proposed system, and section III presents 
the suggested architecture. In section IV, results are presented 
concerning the accuracy and the computational requirements 
of the proposed system. Finally, conclusions are drawn in 
section V, and future potential research opportunities are also 
highlighted. 
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II. LITERATURE REVIEW AND FUNDAMENTALS 

A. Online and Real-Time Dynamic Stability Assessment 

Traditional dynamic stability assessment tools (DSA), 
depending on the context sometimes called transient stability 
assessment (TSA), have existed for decades. Traditionally 
they are performed offline using time-domain simulation 
methods to retrieve the response of the system to a 
disturbance. At this point it is useful to note a distinction 
raised in [5], between the terms online and real-time when 
used for power system analysis. Online refers to the results of 
the analysis tool being available to the Supervisory Control 
and Data Acquisition/ Energy Management Systems 
(SCADA/EMS) of the operator, while real-time refers to the 
results of the analysis being ready within a time frame that is 
deemed rational for the specific application. Real-time is 
particularly challenging, especially when the time constants of 
the volatile, inertia-poor environment of the smart grid are 
considered. 

B. Centralized versus Decentralized 

A practical drawback of the aforementioned DSA work is 
the need for heavy communication requirements. This is 
because, in all centralized structure, data from Phasor 
Measurement Units (PMUs) needs to be communicated 
through the SCADA system to central processing 
centers/EMS. These data are analyzed and thereof the stability 
of the system is assessed. 

To weigh the communication requirements, in this work a 
fully distributed DSA system is proposed. In 
distributed/decentralized structure, the intelligence is 
dispersed across the power system, and can function 
autonomously, striking out the dependency factor and 
communication burden contrasting to centralized architecture 
and thus speeding up the assessment process facilitating real-
time operation. Follow up actions could be taken to eliminate 
or prevent large scale disturbances. The authors are not aware 
of similar efforts apart from [6], and with slight modifications 
in [7]. As it is going to be clarified in sections to follow, there 
is a training phase, during which communication between the 
autonomous intelligent modules is required. But there are no 
real-time requirements. To sum up, the proposed DSA system 
can be seen as a collection points of autonomous localized 
intelligence dispersed in the grid. 

C. Intelligent systems 

Intelligent Systems (IS) have shown encouraging potential 
in facilitating fast power system security assessment. 
Intelligent system could be defined as a system which learns 
during its existence and acts continually to reach its objective. 

, investigation with artificial intelligence (AI) in 
the field of security assessment was conducted. AI as well as 
machine learning and data mining approaches have been used 
to develop fast and intelligent DSA systems [8]. A thorough 
reference is given in [9]. As mentioned in the introduction, the 
computation core of the assessment procedure is based on an 
ANN. More specifically, it is used as rotor-angle stability 
prediction tool, i.e. for a given state of the system; the ANN 
predicts imminent rotor angle in-/stability. 

Computationally, an ANN is a model of a biological 
neuron network [10]. It features different layers, connected by 
neurons that carry weights. Hidden layers map the input to the 
output. Training the ANN against a real system is usually 
done offline and it permits the ANN to recognize patterns that 
relate the input to the output. During its operation the ANN is 
able to reproduce this relation and thus, to imitate the behavior 
of the system it was trained against. Similar to ANN, FLS is 
based on nonlinear mapping of input output based on rules. 
FLS is unique with its ability to simultaneously handle 
numerical and linguistic knowledge. The rules define how the 
inputs are mapped onto the output. Rules are expressed in 
terms of IF-THEN statements [11]. The computational time of 
both ANN and FLS is orders of magnitude lower than that of 
the real system; hence, the results are available 
instantaneously enabling a real-time application. 

III. PROPOSED IMPLEMENTATION FOR DISTRIBUTED REAL-
TIME SECURITY ASSESSMENT 

The proposed implementation as demonstrated in the block 
diagram (Fig. 1) has three units namely Measurement, Black 
Box and Real Time Results. Black Box has two inner modules 
and they are Prediction and Intelligent Assessment. The 
distributed assessment tool suggested here is to be 
implemented nearby each generator bus of the power system. 
The measurements are provided by PMUs from the generator 
bus. Hence the total number of distributed assessment tools to 
be deployed would equal the total number of generator buses.  

 
Fig. 1. Proposed Implementation 

A. Measurement 

The Measurement module measures the real time value of 
power 

generating module at a given time instance say t. Prediction 
module, as the name indicates, predicts the future value of bus 
voltage, frequency and internal rotor angle at time instance 
t+1 using the measured values at t. A time step of ten 
milliseconds was used i.e. between t and t+1. 

B. Prediction 

The Prediction module adapts a classical approach to 
predict future values. The methodology used is depicted in 
Fig. 2 using a flow chart. Predicted value is obtained by 
summing up three elements namely base, delta 
weighted error. 
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Fig. 2. Flow Chart explaining Prediction Tool 

Base is the average of actual values at past four time 

previous time step. Weighed error takes the weighted mean of 
error in past four time instances.  

     Predicted value t = Base t-1 t-1 + Weighted error t-1      (1) 

                           t = Actual t  Actual t-1                             (2) 

                 Error t = Actual t  Predicted Value t                    (3) 

In order to suppress overshoot/undershoot of the predicted 
value, a saturator has been added in the prediction loop. The 
saturator based upon error value at that time instance neglects 
the weighted error and actual value in predicted value and 
base calculation respectively in the next iteration. Hence for 
this purpose (1) can be rewritten as  

                      Predicted t = Base t-1 t-1                                             (4) 

The prediction tool was tested using Western System 
Coordinated Council (WSCC) three machines, nine bus 
system by inflection of a perfect three phase fault. A 
simulation time step of 10ms was used. For Frequency, Bus 
voltage and Rotor angle prediction an average error of ±0.1 
degree, ± 0.01 Hz and ±0.004 pu was observed respectively. 

C. Intelligent Assessment 

The Intelligent Assessment module has three inner 
functional blocks i.e. Frequency stability check, Voltage 
stability check and Artificial neural network (ANN). The 
Frequency stability check block uses the predicted value as 
they come in to yield the Frequency stability index. A 
frequency stability index ranging [0-100] is derived, based on 
the instantaneous deviation of the nominal operation point of 
f_nom = 50 Hz. The droop profile of generators is neglected in 
this study. This index takes into account proximity to upper 
and lower limits [47.5 Hz  51.5 Hz] as defined by ENTSO-E 
guidelines. For this a quadratic penalty function has been used. 
Around the nominal operating frequency a dead band of ± 5% 
is considered. 

In general, the frequency of the power system has the 
tendency to oscillate in a non-symmetrical manner after a 
disturbance. Hence the index derived from these frequency 
values will also oscillate in similar fashion. A Butterworth low 
pass filter was used with a conditional case monitoring the 
output to filter out low amplitude high frequency variations. 
The crust retention is used to retain the critical low values and 
neglects the temporary well-thought-of values of the 
oscillations, as shown in Fig. 3. The cut off frequency of the 
filter was chosen after a detail analysis of the oscillations 
using Discrete Fourier Transform (DFT). 

 
Fig. 3. Frequency Stability Index vs. Instantaneous Stability Index  

Analogous to Frequency stability check, Voltage stability 
check module produces a Voltage stability index ranging [0-
100], with respect to the ENTSO-E prescribed criteria. 
Assuming one per unit (pu) of bus voltage as nominal value, 
voltage stability index reflects instantaneous deviation with 
respect to stability limits by means of quadratic difference 
function. Additionally, 5% dead band is considered around the 
nominal operating point. For simplicity purpose, upper limit 
stability criteria have been assigned symmetrically with 
respect to that of lower limit. 

An additional function of the voltage check block is to 
detect the duration of the fault, by checking the profile of the 
variation of the bus voltage. Once the fault duration has been 
detected, line trip can also be determined. For most cases fault 
duration is detected accurately as the values change sharply 
when the fault is cleared. The worst case performance has 
been observed to be 0.1-0.2 s of overestimation of the duration 

Crust Retention 
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of the fault. This occurs in certain unusual scenarios, where 
uncommon variation of the voltage is manifested, and thus the 
block fails to detect accurately the duration of the fault. 

TABLE I. VOLTAGE STABILITY CRITERIA 

Time Lower Limit Upper Limit 

Nominal value  1 pu 

During fault  (1 - 0.05) pu (1.95 - 1) pu 

Post fault till 0.7 (s) from 
fault clearance 

(1 - 0.7) pu (1.3 - 1) pu 

Post fault < 0.7 (s) from fault 
clearance 

(1- 0.85) pu (1.15 - 1) pu 

 

Both Voltage and Frequency stability check blocks run in 
steady state as well as during contingency, whereas artificial 
neural network (ANN) block has a different operating profile. 
The ANN kicks in once fault clearance has been detected by 
Voltage stability check end and is used for the prediction of 
rotor angle stability as mentioned earlier. Rotor angle stability 
of generator is a relative concept, in the sense that it depends 
on the difference of the angle of the generator with respect to a 
reference.  

The ANN was trained in an offline stage using a database 
with varied dispatch and disturbance characteristics. The 
output of ANN i.e. Rotor flag can be either 1 equating to 
stability or 0 equating to instability. In this work, the scenario 
was deemed stable if the angular difference between any two 
generators in the system always remained below 120 degrees. 
The ANN used here is a feed forward (Multilayer Perceptron) 
with back propagation. So as to reduce the complexity, the 
ANNs implemented are with single hidden layer (nine 
neurons) and were trained with seventy per cent, validated and 
tested with fifteen per cent of the input samples. The inputs to 
the ANN are the following:  

 Bus Voltage Steady State (pu) 

 Bus Voltage Fault Clearance (pu) 

 Fault duration (s) 

 Line Trip 

 Rotor angle Steady State(rad) 

 Rotor angle Fault Clearance (rad) 

 Real Power (MW) 

 Reactive Power (Mvar) 

 Generator Capacity loading (%) 

D. Real Time Results 

So far the indexes/flag attained reflect the stability of a 
generator in only one of several dimensions (Rotor angle, Bus 
voltage & Frequency). Combining all these aspects a Final 
stability index was obtained. Since all these aspects are 
equally important the Final stability index is obtained by using 
a FLS as shown in Fig. 4. With the Voltage stability and the 
Frequency stability indices as inputs, the FLS yields the Final 
stability index. The input and output indexes were fuzzified 
using triangular membership functions with four linguistic 

variables: very low (VL), low (L), high (H), very high (VH). 
With Voltage stability index and Frequency stability index as 
inputs the FLS produces Final stability index. The rules 
governing the mapping of FLS are tabulated in Table II. Once 
rotor flag is available, it is taken into account in the 
determination of the final index, by logical ANDing. If it is 1, 
the final index is calculated as explained hereinabove. If it is 
0, the final index is also 0. This reflects the fact that the 
scenario is unstable in at least one of the constituent parts of 
stability, in this case the rotor angle one. 

 
Fig. 4. Fuzzy Logic System 

TABLE II. RULES FOR FLS 

Rule 
Voltage Stability 

Index 
Frequency 

Stability Index Final Index 

1 Very Low Very Low Very Low 

2 Very Low Low Very Low 

3 Very Low High Very Low 

4 Very Low Very High Very Low 

5 Low Very Low Very Low 

6 Low Low Low 

7 Low High Low 

8 Low Very High Low 

9 High Very Low Very Low 

10 High Low Low 

11 High High High 

12 High Very High High 

13 Very high Very Low Very Low 

14 Very high Low Low 

15 Very high High High 

16 Very high Very high Very high 
 

IV. NUMARICAL RESULTS 

The proposed concept was implemented and tested using 
the following power systems in MATLAB. 

 Western System Coordinated Council (WSCC) 9 bus, 
3 machine system 

 A modified version of the IEEE 57 Bus System 

 A 2383 version of the Polish System (winter peak) 

For each power generating module in a power system, a 
dedicated ANN was employed. 
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TABLE III. ANN S FIGURE OF MERIT 

Power System Average ANN misclassification rate 

WSCC 3% 

Modified IEEE - 57 4% 

Polish 2383 WP 6.7% 

 

In the following, the response of the proposed DSA system 
to a sample fault on the polish 2383 network is demonstrated. 
A 400 ms perfect 3-phase fault was applied in the middle of 
branch #786, and Figs. 5 to 8 show the resulting indices 
produced by the proposed architecture. 

 
Fig. 5. Voltage Stability Index for Polish  2383 system (Generator - 6) 

 
Fig. 6. Frequency Stability Index for Polish  2383 system (Generator - 
6) 

 
Fig. 7. Final Stability Index for Polish  2383 system (Generator - 6) 

 
Fig. 8. Role of Rotor Angle Stability 

The Fig. 9 illustrates the importance of Rotor flag in the 
calculation. The shaded area in the graph Fig. 9 indicates the 

clearance has been detected. If Rotor flag had been zero, Final 
stability index would have also fallen to zero from that time 
instance onwards. 

V. CONCLUSION 

This paper proposes a novel distributed method for real 
time dynamic security evaluation of power systems. Its 
intelligence can be embedded on modules situated at buses 
where generators are present. The stability status of the power 
generating unit at each bus is predicted by processing the 
trajectories of variables of interest, using intelligent 
techniques. The scheme incorporates a forecasting tool and 
neural network to predict transient rotor angle stability. 

Application of the method to a large 2383-bus system 
indicates to the fact that the proposition holds on its figure of 
merit despite the size of the power system it is applied upon. 
As a scope of future work, automated remedial action schemes 
(RAS) could be integrated once the indexes are at disposal. In 
addition, the economic value chain aspect could be explored 
possibly by analyzing the potential threat of power deficit on 
the power market in terms of monetary units. 
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