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Abstract—Coherency group identification is an integral con-
stituent part of the wider field of reduction techniques in power
systems. It consists of separating the machines in the system
into groups that feature similar behavior. This paper presents
a coherency identification algorithm for dynamic studies. The
algorithm combines both modal and time domain techniques in
an effort to combine the merits of both approaches. Its outcome
is a suggested optimal number of clusters alongside the clustering
itself. Tests have been conducted on a sample power system of
39 buses and its validity has been demonstrated.

Index Terms—Generator coherency, k-means clustering, modal
analysis, power system dynamics, Principal Component Analysis.

I. INTRODUCTION

Dynamic reduction is the procedure in which the com-
plexity/size of a power system is reduced, trying to retain a
dynamic behavior as close as possible to that of the original
unreduced system. The restructuring of the power system
underway for the last couple of decades, and the soon-to-be
advent of the smart grid has brought up a renewed interest for
reduction techniques [1].

• Power system analysis computations, especially Time-
Domain (TD) simulations, are computationally burden-
some, and performance scales poorly as the size of the
system increases.

• Full-detail models are usually unavailable, as system
operators are increasingly unwilling to share full models
of their subsystems with neighboring entities for confi-
dentiality reasons, mainly due to market competition.

Reduction can be performed both online and offline and
is applied for a plethora of studies: Dynamic Security As-
sessment (DSA), over-voltage and switching studies [2], AC
filter design calculations [2], inter-area oscillation studies [3],
Special Protection Schemes (SPS) design (e.g. islanding proce-
dure) [4], post-event vulnerability analysis, etc. Reference [5]
provides a comprehensive bibliographical review on various
coherency, reduction and aggregation techniques.

This paper is focused on reduction applications for DSA.
Transient stability is one of the main concerns of DSA. It
has been defined as the ability of the system to retain a
state of operating equilibrium after being subjected to a given

set of disturbances [6]. In transient events examined during
DSA studies, the behavior of the system is described by com-
plex highly non-linear differential-algebraic equations (DAEs),
which are handled by specific solvers known as time-domain
(TD) engines. Given that mainly generators contribute to the
complexity of the dynamics of the system (electromechanical
oscillation modes) generator reduction is the main scope of
dynamic reduction for transient stability studies. Generally the
following steps apply. 1) The Internal System (IS) and the
External System (ES) are defined; 2) the groups of generators
that feature similar behavior are determined in the ES; and
3) generators in each coherency group are aggregated.

This paper proposes an algorithm for the point 2 of the
above, ie. the identification of coherent generator groups.
Coherency group identification techniques can be broadly
separated in two categories; to the ones that employ infor-
mation from the solution of the full DAEs that describe the
system behavior, and to the ones that extract coherency from a
linearized model of the system around a steady-state operating
point. We term the former time-domain techniques and the
latter modal techniques.

Modal techniques rely on forming the state equations of
the linearized system [1], [7]–[14]. This way, the behavior
of the system around the operation point is captured well.
By expressing its dynamics in a state-space form much can
be gained from solid theoretical work on dynamic systems
theory. However, linearization renders resulting groupings
better suited for small-signal analysis rather than for transient
stability analysis.

Time-domain techniques rely on information extracted from
trajectories resulting from the time-domain simulation of the
system under certain conditions [3], [4], [15]–[19]. They
allow for unlimited modelling capabilities and are able of
capturing big-signal dynamics. However, usually they employ
uninformative (or even uniform) priors regarding the clustering
participation. Moreover, they tend to make little (or even no)
use of information available by the topology of the system.

The proposed algorithm employs information from both
the modal analysis and the time-domain simulation of the
power system. The core of the algorithm is the latter, in that,
clustering is performed based on the post-fault trajectories
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Fig. 1. Algorithm overview

of the angles of the generators. Information from the modal
domain is used to facilitate clustering in the time-domain.

The rest of the paper is organized as follows. A theoretical
background on coherency group identification alongside the
proposed algorithm is presented in section II. In section III
the application of the algorithm on a sample test system
is demonstrated and a characterization of its validity and
consistency is performed. Finally, section IV gives conclusions
and suggests issues to be tackled in future work.

II. PROPOSED ALGORITHM

Dividing the machines of the system into coherency groups
is actually forming a set of similarity classes. In order to form
these classes a criterion needs to be established. This work is
primarily concerned with ε-coherency. That is, between any
two generators i and j of a coherency group, (1) needs to be
satisfied.

δi(t)− δj(t) = 0(ε), ∀t (1)

A synoptical overview of the algorithm is given in fig. 1.
Each block of the diagram is explained in detail in sections
that follow.

There are two flows in the algorithm, the modal and the
time-domain one. The latter is the core of it. The system
is subjected to a perturbation, so as to excite its dynamics.
The perturbation can be chosen according to engineering
judgement/experience of the system operator. Scrutiny of this
selection is out of scope of this work; however, in [18] it

is suggested that perturbations that result in a stable post-
fault response are used. The response of the system to the
perturbation is simulated with a conventional TD engine, and
then clustering takes place based on the behavior of the
generators. Modal information is used for the initialization
of the clustering algorithm. Finally, given that the number of
clusters to be determined is not known a priori, the algorithm
examines different alternatives and proposes an optimal value.

A. Time domain flow

The input of the time-domain flow of the algorithm is the
time response of the system to the perturbation. Notice that
there is no constraint on the modelling of the power system.

Trajectories of nts time samples can be viewed as points
on a nts dimensional space. As nts is normally expected to
be high, the problem suffers from the curse of dimensionality.
In an effort to aleviate the problem, dimension reduction is
performed. The goal of dimension reduction is to reduce the
dimension of the data set of the problem down as close as
possible to the intrinsic dimension of the data. The intrinsic
dimension of a signal is the minimum number of independent
variables necessary to describe the signal. Dimension reduc-
tion is performed in two stages, feature selection and feature

extraction. Feature selection refers to what part/form of the
original input to retain, and feature extraction refers to how this
data can be manipulated to approximate as closely as possible
the intrinsic dimension.

In this problem, the time series are first preconditioned to
remove the trend component. Feature selection refers to retain-
ing only a part of the time series that capture the dynamics of
the system. Finally, feature extraction is done by manipulating
the reduced time series using Principal Component Analysis
(PCA).

1) Time series preconditioning: The angle time series of
each generator i is decomposed into three constituent parts.

δi(t) = θri (t) + θpfi + δCOI(t)︸ ︷︷ ︸
T t
i (t)

(2)

In the above, δCOI(t) is the trajectory of the angle of the
Center Of Inertia (COI) system reference frame.

δCOI(t) = M−1
COI

ng∑
j=1

Mjδj(t)

MCOI =
ng∑
j=1

Mj

(3)

θpfi is the post-fault steady-state internal angle of generator
i expressed in the COI frame. The sum T t

i (t) = θpfi +δCOI(t)
can be viewed as the trend component of δi(t). When T t

i (t)
is subtracted, the remaining θri (t) captures all the relevant
dynamics of generator i.

2) Feature selection: An index called aggregate Angle
Radius (AR) is employed to retain a number of oscillations of
the machine angles.

Firstly, the machines of the system G are seperated into two
groups, the non-critical machines that retain their stability N ,
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and the critical ones that lose it C. A machine i is non-critical
if and only if its angular separation from the least advanced
machine in angle terms remains bounded by δth, for each time
instant tk. In this work a threshold value of δth = 180o is used.

N = {Gi : |δi(tk)−min
j∈G

(δj(tk))| ≤ δth, ∀tk}
C = G−N

(4)

Thereafter, AR is calculated for N -machines as follows.

AR(t) =
∑
i∈N

Mi(θ
r
i (t))

2 (5)

AR can be viewed as a measure of the weighted aggregate
angular distance of the system from its Stable Equilibrium
Point (SEP). Critical machines are not taken into account in
this calculation as normally they are not expected to feature
periodicity after the loss of their synchronism with the rest of
the grid (aperiodic oscillations).

Peak detection is run on AR(t) to determine the third peak,
at t = t3p. Then, all time series θr are truncated to n samples,
retaining values for t ∈ [0, t3p]. Testing has shown that the
three first oscillations of the AR index are enough to capture
the dynamics of the system. This is in accord with the fact
that any coherency/interdependancy between the trajectories
of machine angles is manifested more strongly during the first
moments after the perturbation.

3) Feature extraction: Feature extraction is done using
Principal Component Analysis (PCA) [16]. In this case the
application of PCA is much like Multi-Dimensional Scaling
(MDS) in the sense that it projects θr points from the n-
dimensional space to a space of a much lower dimension ndim

that is an approximation n̂intr of the intrinsic dimension nintr

of the data set.

ndim = n̂intr ≈ nintr (6)

PCA uses an orthogonal transformation to transform a set
of correlated variables to a set of uncorrelated ones called
principal components. The latter are a linear combination
of the original ones and are derived in decreasing order of
importance, in that the component determined at each step
accounts for as much as possible of the variation of the original
data.

Let the input matrix be:

(ng×n)X =

⎡
⎢⎣

θr1(t)
...

θrng
(t)

⎤
⎥⎦ (7)

Let the Singular Value Decomposition (SVD) of XT be:

XT = WTΣV T (8)

Then, the PCA preserving dimensionality is given by:

Y = XWT (9)

Matrix WT is by definition of the SVD an orthogonal matrix
WTW = WWT = I . It is also the matrix of eigenvectors of
the covariance matrix C = XXT . Rearranging (9):

X = YW = [y∗1| · · · |y∗n]

⎡
⎢⎣

w1∗(t)
...

wn∗(t)

⎤
⎥⎦ (10)

In (10), Y is the scores matrix and W is the principal

components matrix. Each original time series i is decomposed
to a weighted sum of the principal components.

θri (t) = yi1w1∗(t) + · · ·+ yinwn∗(t) (11)

As said, principal components wj∗ are calculated in a
decreasing order of importance. So, a reduced-dimensionality
representation can be achieved by projecting X down to
the reduced space defined by only the first ndim principal
components.

X̂ =(ng×ndim) YL ×(ndim×n) WL (12)

The singular values in Σ are the eigenvalues of the covari-
ance matrix C. Each value in Σ is proportional to the portion
of the variance that is correlated with each eigenvector (row of
W ). So, based on Σ values, ndim is selected to retain at least
99% of the original variance. This results in an acceptable
reconstruction of X by X̂ and (6) holds.

Rows of YL correspond to generators, and columns to scores
of PCA the principal components. YL is the time-domain input
to the core of the clustering procedure that is presented in
detail in section II-C.

B. Modal flow

Modal information is used to initialize the time-domain-
based clustering algorithm. For this a linearization of the sys-
tem equations is performed around the steady state operating
point.

1) Derivation of state-space equations: Loads are ex-
pressed as constant impedances at their respective buses.

Ȳdi =
Pdi − jQdi

V 2
0i

(13)

Using (13) the admittance matrix of the system is aug-
mented to account for the loads (constant impedances to
ground) Y0

(13)→ Y +
0 .

For the generators, the classical generator model is used.
Generators are modeled with their Norton equivalent of a
transient reactance x′

i in parallel to a current source Ī ′i =
E′
x′ e

j(δi−π
2 ). The swing equation applies for the dynamic

electromechanical behavior. Notice that nominal synchronous
speed is assumed and damping is neglected.

δ̇i = Ωrωi = ωi

ω̇i =
Pmi−Pei

Mi
−Diωi =

Pmi−Pei

Mi

(14)

The load-augmented admittance matrix is further augmented
with the (Norton) transient reactances of the generators Y +

0
x′
→
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Y ++
0 . If a different model is used for the generators, this step

needs to be modified accordingly.
The nodal equations are rearranged to group injection nodes

as follows.

[
ng×1Ig

(n−ng)×10

]
= Y ++

p

[
Vg

Vrest

]
(15)

Where:

Y ++
p =

[
Ygg Ygr

Yrg Yrr

]
(16)

Passive nodes are eliminated from (16) using Kron Reduc-
tion [20].

Y = Ygg − YgrY
−1
rr Yrg (17)

The electrical power is S = V I∗ = V (Y V )∗ = V V ∗Y ∗ so
for each generator.

Pei = �{
ng∑
j=1

V̄iV̄
∗
j Ȳ

∗
ij} =

ng∑
j=1

ViVjYijcos(δi−δj−φij) (18)

By combining (14) and (18) the system is written in state
space form as follows.

[
δ̇
ω̇

]
= ẋ = f(x, u)

y = g(x, u)
→ Δẋ = AΔx+BΔu

Δy = CΔx+DΔu
(19)

The system matrix A is the Jacobian of the system calcu-
lated for steady state conditions.

A = J(x)|x=x0 =

[
∂δ
∂δ

∂δ
∂ω

∂ω
∂δ

∂ω
∂ω

]
x=x0

=

[
Jδδ Jδω
Jωδ Jωω

]
(20)

Let L = [lij ] = Jωδ with:

lij = −M−1
i ViVjYijsin(δi − δj − φij)

lii = M−1
i

∑ng

j=1 ViVjYijsin(δi − δj − φij)
(21)

Since Jδδ = 0, Jωω = 0 and Jδω = I , then A can be
rewritten as follows.

A =

[
0 I
L 0

]
(22)

Notice that unless damping D had been neglected, it would
be Jωω = −diag(D).

2) Eigenanalysis: Let the eigendecomposition of L be:

L = V ΛV −1 (23)

Where the eigenvalues are Λ = diag(λ0, λ1, . . . , λn−1) and
the corresponding eigenvectors V = [V0|V1| · · · |Vn−1].

Matrix L can be used to analyse A, since L captures all
electromechanical dynamics of A (the original system). It
holds that the eigenvalues of A are complex pairs of the
eigenvalues of L: ΛA = ±√

Λ.
Eigenvalues of L are non-positive. It is supposed without

loss of generality that they are sorted 0 = λ0 > λ1 > . . . >
λn−1. Zero-frequency eigenvalue λ0 = 0 corresponds to the
aggregate motion of the machine speeds and angles.

Suppose that we want to extract cluster initialization in-
formation for k clusters. Then a reduced version of the
eigenvector set is retained.

Vred = [V1| · · · |Vk] (24)

In this matrix, rows correspond to generators and columns
to system modes. Vred is then normalized row-wise, as it has
been noted that this improves separability of the participation
of generators between different modes. This normalization
implies that coherency is decided upon angluar proximity of
the generator vectors in the system-modes space. Reference [9]
suggests a stricter criterion requiring match for the magnitude
as well.

3) Clustering initialization: Next, the ng row elements of
Vred need to be assigned to k clusters in the k-dimensional
space. Reference [8] proposes LU-decomposition with com-
plete pivoting to determine a set of k reference generators,
according to the pivot elements selected at each step of the
decomposition. Then, V rows are translated to the coordinate
system defined by the reference generators. Cluster participa-
tion is determined based on the translated coordinates of the
rows of V.

This work employs QR decomposition instead. The or-
thonormality of the base resulting from the QR algorithm
is preferable as it results in better separability between the
machines. This is not necessarily true with LU decomposition
as in that case the base of the new coordinate system is not
necessarily orthogonal.

QR decomposition of a matrix A is its decomposition to
the product of an orthogonal matrix Q and an upper triangular
matrix R. If column pivoting is used and A is of size (m1 ×
m2) then the following holds.

A = QRPT = Q [R1 R2]P
T (25)

Where P is the permutation matrix of size (m2 ×m2), R1

is upper triangular of size (m1×m2) and R2 a matrix of size
(m2 −m1 ×m1). Supposing that rank(A) = m1, i.e. A has
m1 linearly independent columns, then columns of Q form an
orthonormal basis of the column space of A. For c ≤ m1, the
cth column of A×P depends of the first c columns of Q, and
thus R1 is upper triangular.
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The analysis described hereinabove is performed for A =
V T
red. Generators relate to matrix columns as Vred is trans-

posed. Q columns are selected as the base for the new coordi-
nate system and R columns contain the translated coordinates
of V T

redP columns.
Finally, cluster membership info is extracted from RT . Let

sgnj be the sign of the jth element in the diagonal of R1.
Let elements of column j of RT have the maximum absolute
value signed with sgnj , in row i. This signifies that the
generator corresponding to this row belongs to the cluster
whose behavior is dominated by the jth column of the base
matrix Q. In other words, generators corresponding to all rows
that have a maximum absolute element at column j belong to
the same cluster. The permuation matrix P links RT rows with
real system generators.

The result of this procedure is an array of sets C0
i , ∀i ∈

[1, k] that contain the indexes of generators participating in
each cluster. For each cluster, the corresponding centroid c0
in the YL space is computed.

c0i = ave
j∈C0

i

(YL [j, :]), ∀i ∈ [1, k] (26)

C. Clustering

Coherency group identification can be classified as unsu-
pervised learning, in that no knowledge on generator cluster
participation is available a priori. In this work the k-means

clustering algorithm is used. It is a method which aims to
partition ns observations into k clusters trying to minimize
the within-cluster sum of squares (see also (28)). In our case
YL is the input of the algorithm, and ns is the number of
generators ng .

A major factor affecting the performance of k-means is the
initial position of the centroids. Unless additional information
is provided, initialization is done in a random manner, fact
that has detrimental effects on the quality of the clustering. In
our case, centroid initialization information is extracted from
the modal analysis, as detailed in section II-B

Another issue, distinct from the clustering proper but closely
related to it, is the determination of the number of clusters k.
For this, a series of different cluster numbers are investigated
in a loop. In [21], k∗0 =

√
n/2 is proposed as a rule-of-thumb

optimal number of clusters. In this work candidate cluster
numbers between 2 and kmax = 3k∗0 are investigated as per
the algorithm below.

Algorithm 1 Investigation of different numbers of clusters k

k ← 2
while k ≤ kmax do

MODALANALYSIS(k)
↓ init

K-MEANS(k)
k ← k + 1

end while
EVALUATE(k = 2 . . . kmax)

D. Clustering Evaluation

Determining the optimal k is done according to the cor-
rected Akaike Information Criterion (AICc). The original AIC
measures the goodness of fit of a model, with respect to
alternative ones [22]. In this application, “model” refers to
the number of clusters k. Given a set of candidate models,
the preferred is the one with the minimum AIC value. When
the number of samples is small, as in our case with ns = ng ,
the use of the corrected AIC (AICc) is recommended, as it
accounts for the finite sample size [23].

AICc(k) = 2p− 2ln(L) +
2p(p+ 1)

ns − p− 1
(27)

In (27):
• ns = ng is the number of samples in the data set. It

coincides with the number of generators.
• p = k · ndim is the number of the parameters in the

model. In our case, there are as many parameters as there
are centroid coordinates in the ndim-dimensional space,
whose values are fixed.

• ln(L) is the maximum log-likelihood of the data for k
clusters and it is essentially a measure of distortion. If
the model underlying the k-means is assumed to be a
Gaussian mixture with hard assignment, uniform cluster
priors and identical spherical covariance matrices, then
the following equality holds [24].

−2ln(L) = RSS =
k∑

i=1

RSSi =

k∑
i=1

∑
j∈Ci

(YL [j, :]− ci)
2

(28)
Where RSS is the overall residual sum of squares, which by

the way is the objective function of the k-means minimization
problem. RSSi is the residual sum of squares within the
cluster i.

After the calculation of AICc(k) for different k values the
relative likelihood is calculated for each model.

LAICc(k) = e
min(AICc)−AIC(k)

2 (29)

The model k∗ that is the best fit to our data is the one with
LAICc(k

∗) = 1.

III. NUMERICAL RESULTS

The algorithm described in section II has been implemented
in MATLAB. It has been applied on the 39-bus 10-generator
New England test system found in [25] and shown in fig. 2.
The generators of the system are modeled with the classical
second-order synchronous machine model. It has been noted
that coherency would manifest in a similar manner regardless
of the modelling detail in the system [26]. All simulations
were performed using the MatDyn time-domain simulator [27]
for MATLAB, in a typical modern desktop PC (Intel Core i7
4×2.80GHz, 8GB RAM) running Microsoft Windows 7 x64.
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Fig. 2. New England 39-bus 10-generator system and clustering results for
a fault at bus #25

Fig. 3. θr and Angle Radius values

A. Detailed application on a specific perturbation

The perturbation is chosen to be a perfect 3φ fault to ground
on bus 25, applied at tf = 0s and cleared at time tcl =
0.420s. The faulted bus is highlighted in light red in fig. 2.
The simulation is performed for tsim = 10s. For a timestep
of tstep = 0.005s this results is nts = 2003 samples for the
simulated trajectories. Fig. 3 shows θr and AR values as per
(2) and (5) respectively, for the first 5s.

The fourth peak of AR is detected on sample n = 294
at time t3p = 1.455s. θr trajectories are truncated and PCA
is performed according to section II-A3. Scores for the three
first principal components are visualized in the scatter plot of
fig. 4.

The approximation of the intrinsic dimension of the data set,
i.e. the determination of how many principal components to
retain is done according to table I and section II-A3. ndim = 3
is chosen, as this results in retaining 99.6% of the variance of
the original data.

The numbers of clusters to investigate is according to II-C.

2 ≤ k ≤ kmax = 3k∗0 = 3

√
ngen

2
= 9 (30)

Algorithm 1 is applied for ks in question. Cluster initial-

Fig. 4. Scores of the 3 first principal components

TABLE I
RETAINED VARIANCE AS A PERCENTAGE AGAINST

THE NUMBER OF RETAINED PRINCIPAL COMPONENTS

Retained PCA components 1 2 3 4 5 6
Retained variance 0.887 0.9665 0.9964 0.9997 ~1 ~1

ization information by the modal analysis, as well as final
clustering in the time domain by the k-means is given in
table II.

Determination of the final number of clusters is done
according to the relative likelihood of the different models,
as per section II-D. Fig. 5 shows AICc and LAICc values for
different cluster number options. From the figure it is obvious
that the optimal number of clusters suggested by the algorithm
is k∗ = 4.

This clustering is projected back to the time (θr) domain
in fig. 6. Three clusters are single machine ones: G2 in dark
green, G8 in blue and G10 in red. The cluster in light green
aggregates the response of generators G1, G3, G4, G5, G6,
G7 and G9.

TABLE II
CLUSTERING SUGGESTED BY MODAL INITIALIZATION

AND FINALLY COMPUTED BY K-MEANS

k Modal initialization k-means clustering
2 {1,2,3,4,5,6,7} {8,9,10} {1,2,3,4,5,6,7,8,9} {10}
3 {1,2,3} {4,5,6,7} {8,9,10} {1,2,3,4,5,6,7,9} {8} {10}
4 {1,2,3} {4,5} {6,7} {8,9,10} {1,3,4,5,6,7,9} {2} {8} {10}
5 {1,3} {2,9} {4,5} {6,7}

{8,10}
{1,3,5,7} {2} {4,6,9} {8}
{10}

6 {1,2} {3} {4,5} {6,7} {8,10}
{9}

{1,3,5,7} {2} {4} {6,9} {8}
{10}

7 {1,2} {3} {4,5} {6,7} {8}
{9} {10}

{1,3} {2} {4} {5,6,7} {8}
{9} {10}

8 {1,2} {3} {4,5} {6} {7} {8}
{9} {10}

{1,3} {2} {4} {5,7} {6} {8}
{9} {10}

9 {1} {2,4} {3} {5} {6} {7}
{8} {9} {10}

{1,3} {2} {4} {5} {6} {7}
{8} {9} {10}
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Fig. 5. AICc and LAICc values for different cluster numbers k

Fig. 6. Clustering projected to the time domain

Qualitatively we can say that both the clustering number
choice and the clustering itself are quite well-placed. From
the response of the machines it can be clearly seen that there
are indeed four groups of machines with different response
patterns to the perturbation.

The respective topographical clustering is superimposed in
color on the network topology in fig. 2. Again, we can see that
the results are consistent with the scenario and the topology
in question. All three single-generator clusters are electrically
near the faulted bus. Whereas, all generators that are relatively
far from it exhibit similar response to the disturbance, and are
thus grouped in the same cluster (in light green).

The clustering results retrieved in the previous section can
be validated by subjecting the system to a different pertur-
bation that is expected to excite it in a similar way. The
event E = {500ms 3φ fault on bus#11} is chosen and the
resulting generator trajectories are shown in fig. 7.

Color coding remains consistent with the previous example.

Fig. 7. Generator θ responses of a 500ms 3φ fault on bus #11

TABLE III
CLUSTERING RESULTS FOR DIFFERENT EVENTS ON THE SYSTEM

Event Number
of clusters

Clustering

E1 1s 3φ fault at B12 5 {1,3,4,5,6,7} {2} {8} {9} {10}
E2 1s 3φ fault at B19 1 {1,2,3,4,5,6,7,8,9,10}
E3 1s 3φ fault at B25 4 {1,3,4,5,6,7,9} {2} {8} {10}
E4 1s 3φ fault at B27 2 {1,3,4,5,6,7,8,9,10} {2}
E5 1s 3φ fault at B33 2 {1,2,3} {4,5,6,7,8,9,10}
E6 1s 3φ fault at B36 2 {1,2,3,6,7,8,9,10} {4,5}

G2 in dark green, G8 in blue and G10 in red are the single-
generator clusters, which indeed have a distinct dynamic
behavior. Generators G1, G3, G4, G5, G6, G7 and G9 are
clustered together, and their responses are shaded in light
green. It is apparent that the proposed clustering succesfully
captures the similar behavior of the machines in this group.

B. Application on different perturbations

The algorithm has been applied for a number of different
events and respective results can be found in table III.
E2 takes place near the slack of the system G2 and the

algorithm proposes a single cluster, result that is deemed
reasonable. The slack generator buffers the shock of the
perturbation, as its huge inertia (mechanical starting time
M2 = 500s for modelling purposes) absorbs most of the
kinetic energy injected in the system during the fault-on
period. This results in dynamics that are satifactorily enough
approximated even with a single cluster. This can be useful
e.g. when the system under study is a subsystem of a greater
entity.

In events E5 and E6 two clusters are enough to closely
describe the behavior of the system. In the case of E5 the
system is split in two groups: G1, G2 and G3 who are
electrically closer to the faulted bus, and thus more perturbed.
The rest of the generators swing together, following the same
weak oscillation mode. For E6 the same applies; the system is

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

1031978-1-4673-2232-4/13/$31.00 ©2013 IEEE



split between two clusters: one electrically closer to the faulted
bus consisting of G4 and G5, and another encompassing the
remaining machines.

Faults at the electrical region around buses 12, 25, etc. seem
to be able to excite more complex dynamics on the system.
In both cases generators G2, G8 and G10 that are electrically
closer to the disturbance form single-machine clusters.

IV. CONCLUSIONS

In this paper, a generator coherency group identification al-
gorithm has been presented. The algorithm derives information
from both the modal analysis of the system and the time-
domain simulation, in an effort to combine merits of the two
approaches.

In the modal domain, system equations are linearized around
the steady state operating point and clustering initialization is
derived from the eigen-analysis of the dynamics of generators.
In the time domain, a perturbation is selected to excite the
system. The resulting trajectories are truncated and dimen-
sionally reduced with PCA, and the resulting features are fed
to a k-means clustering algorithm that performs the clustering
proper. Clusterings for different cluster numbers are evaluated
using the corrected Akaike Information Criterion. The final
outcome of the algorithm is a suggested optimal number of
clusters alongside the clustering proper.

The algorithm has been tested on a sample test system of
39 buses and has been proved to derive consistent results both
in the proposed number of clusters and in the clustering itself.

This work can be extended in two ways. Firstly, the excitat-
ing perturbation selection needs to be systematized as noted in
section II. Then, it needs to be put in the frame of a complete
reduction methodology (see also section I). This would involve
the selection of the internal and external area of studies, as well
as the aggregation of the generators in the resulting coherency
groups.
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