
Distributed Computing manuscript No.
(will be inserted by the editor)

Tolerating Permanent and Transient Value Faults

Zarko Milosevic · Martin Hutle · André Schiper

Abstract Transmission faults allow us to reason about

permanent and transient value faults in a uniform way.

However, all existing solutions to consensus in this model

are either in the synchronous system, or require strong

conditions for termination, that exclude the case where

all messages of a process can be corrupted. In this paper

we introduce eventual consistency in order to overcome

this limitation. Eventual consistency denotes the exis-

tence of rounds in which processes receive the same set

of messages. We show how eventually consistent rounds

can be simulated from eventually synchronous rounds,

and how eventually consistent rounds can be used to

solve consensus.

Depending on the nature and number of permanent

and transient transmission faults, we obtain different

conditions on n, the number of processes, in order to

solve consensus in our weak model.

Keywords consensus · transmission faults · arbitrary

faults · static and dynamic faults · transient and

permanent faults · eventual consistency

1 Introduction

Consensus is probably the most fundamental problem

in fault-tolerant distributed computing. It is related to

Zarko Milosevic (corresponding author)

EPFL, 1015 Lausanne, Switzerland
Tel.: +41-21-6936746

Fax: +41-21-6936770

E-mail: zarko.milosevic@epfl.ch

Martin Hutle
Fraunhofer AISEC, Garching, Germany

E-mail: martin.hutle@aisec.fraunhofer.de

André Schiper

EPFL, 1015 Lausanne, Switzerland
E-mail: andre.schiper@epfl.ch

the implementation of state machine replication, atomic

broadcast, group membership, etc. The problem is de-

fined over a set of processes Π, where each process

p ∈ Π has an initial value vi, and requires that all

processes agree on a common value.

Classical approach: Component fault model. Most re-

search on consensus algorithms is considering compo-

nent fault models, where faults are attached to a com-

ponent that is either a process or a link. With respect

to process/link faults, consensus can be considered with

different fault assumptions. On the one end of the spec-

trum, processes/links can commit so called benign faults

(processes fail only by crashing and links only loose

messages); on the other end, faulty processes/links can

exhibit an arbitrary behavior. Furthermore, in the con-

text of a component fault model, faults are mainly per-

manent (as opposed to transient faults): if a process

or link commits a fault, the process/link is considered

to be faulty during whole execution. It follows that not

all components can be faulty (at most f out of n per

run), which is referred to as static faults (as opposed to

dynamic faults that can affect any component).

Most research on consensus is about tolerating per-

manent and static process and/or link faults. While

processes and links can be considered faulty, most of

the literature considers only process faults. In the con-

text of Byzantine faults, where at most f processes can

behave arbitrarily, we can cite the early work of Lam-

port, Shostak and Pease [22,18] for a synchronous sys-

tem. Consensus in a partially synchronous system with

Byzantine faults is considered in [12,2,21,25]. Byzan-

tine variants of Paxos [15] include [10,19,1,20,17]. Only

few authors solve consensus in the synchronous sys-

tem model where, in addition to Byzantine processes,

a small number of links connecting correct processes

may be arbitrary faulty during the entire execution of

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148003735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

a consensus algorithm [24,28,30]. However, only a very

limited number of links can be faulty.

There are two major problems of a priori blam-

ing some component for the failure [26,27,11]. First, it

may lead to undesirable consequences if faults are per-

manent: for example, in the classical Byzantine fault

model, where a bounded number of processes can be-

have arbitrarily (even maliciously), the entire system

will be considered faulty even if only one message from

each process is received corrupted. Second, when solv-

ing consensus, faulty processes are typically not obliged

to make a decision or they are allowed to decide differ-

ently than correct processes.

Some work in the component fault model has ad-

dressed transient and dynamic faults [5]. These papers

solve consensus in the hybrid fault model for synchronous

systems, where every process is allowed to commit up

to fsal arbitrary send link failures and experience up to

fral arbitrary receive link failures without being consid-

ered as arbitrary faulty. Tolerating additional fs send

and fr receive omissions (i.e., message loss) requires to

increase the number of processes by small multiples of

fs and fr.

Finally, note that when a process q receives a cor-

rupted message from p, it makes no difference for q

whether p is faulty and therefore sends a message that

was not consistent with the protocol, or the message

is corrupted by the link between p and q. Actually, for

q these two cases are indistinguishable. Nevertheless,

these two cases are not equivalent in the component

fault model.

Alternative approach: Transmission fault model. These

observations led to the definition of the transmission

fault model that captures faults without blaming a spe-

cific component for the fault [26]. The transmission

fault model is well-adapted to dynamic and transient

faults.

Consensus under transmission faults in a synchronous

system has been considered initially in [26]. In [11],

this work combined with ideas from [14], is extended

to non-synchronous systems with only benign transmis-

sion faults, leading to the Heard-Of Model (HO model).

The paper gives several consensus algorithms under be-

nign transmission faults.

In [4], the HO model for benign faults is extended

to value faults. There, consensus under transmission

faults (both benign and value faults) is solved the first

time in a non-synchronous setting. For safety, only the

number of corrupted messages is restricted, that is, in

each round r of the round based model, every process

p receives at most α corrupted messages.1 However,

for liveness, some additional assumptions are necessary,

namely rounds in which some subset of processes does

not receive any corrupted messages.2 This means that,

despite the possibility to handle dynamic and transient

value faults in a non-synchronous system, [4] cannot

tolerate permanent faults located at a process p, where

all messages from p might be (always) corrupted.

This raises the following question: is it possible to

design a consensus algorithm in the general transmis-

sion fault model, with non-synchronous assumptions,

that does not require such a strong condition for live-

ness?

Transmission faults: Our contribution. We give a pos-

itive answer to the above question by presenting three

consensus algorithms for transmission faults (both be-

nign and value faults) that do not exclude permanent

faults.3 The key insight in achieving this goal is the in-

troduction of the notion of eventual consistency that

turns out to be fundamental building block for solving

consensus under transmission faults. Informally speak-

ing, for round-based algorithms, eventual consistency

denotes the existence of rounds in which processes re-

ceive the same set of messages.

Our three algorithms are inspired by well-known

consensus algorithms [12,10,20] for the classical Byzan-

tine fault model [18], which we have adapted to the

transmission fault model. All three algorithms require a

round in which consistency eventually holds (processes

receive the same set of messages). This round is used

to bring the system in the univalent configuration, and

later rounds are used to “detect” that the system en-

tered a univalent configuration and allows processes to

decide. So the key is to achieve eventually consistent

rounds. This is the most important contribution. We

show that eventually consistent rounds can be simu-

lated from eventually synchronous rounds in the pres-

ence of both static and dynamic value faults. The ben-

efits of our approach are the following:

– First, contrary to most of the related work on trans-

mission faults and on the hybrid fault model (where

both processes and links can be arbitrary faulty),

which considers the synchronous system model, our

consensus algorithms can also be used in systems,

where synchrony assumptions hold only eventually.

1 This assumption potentially allows corrupted messages on all
links in a run; therefore it models dynamic faults.

2 This assumption makes sense in the context of transient
faults.

3 We give three algorithms in order to show the generality of

our approach.

3

– Second, contrary to the algorithms in [4], our algo-

rithms can also be used in systems with permanent

faults located at a process p, where all messages

from p might be (always) corrupted.

– Third, by considering the transmission fault model,

the algorithms can tolerate dynamic and transient

value faults in addition to only permanent and static

faults of the component fault model. As we explain

in Section 10, considering (only) transmission faults

allows a variety of interpretations, making it possi-

ble to apply our algorithms to a variety of system

models: partially synchronous system with Byzan-

tine processes, partially synchronous system with

Byzantine processes eventually restricted to ”sym-

metrical faults” [29], partially synchronous system

with Byzantine processes, where, before stabiliza-

tion time, in every round processes can receive some

(bounded) number of corrupted messages from cor-

rect processes, etc.

Remark. Note that despite the similarity in title, [3]

addresses a different topic. The paper investigates the

possibility of designing protocols that are both self-

stabilizing and fault-tolerant in an asynchronous sys-

tem. A self-stabilizing distributed algorithm is an algo-

rithm that, when started in an arbitrary state, guaran-

tees to converge to a legitimate state and then forever

remains in a legitimate state. Solving one-shot consen-

sus, which is the subject of our paper, is impossible in

the context of self-stabilization, because a process can

start in any state, i.e., its first step can be decide(v),

where v is an arbitrary value.

In the model considered in our paper, (transmis-

sion) faults do not corrupt the initial configuration (the

system starts in a pre-defined state) but may disturb

the execution of the protocol. Therefore, the protocols

presented in this paper cannot deal with an arbitrary

initial configuration.

Organization of the paper. The rest of the paper is

structured as follows. We describe the transmission fault

model we consider in Section 2. The consensus problem

is defined in Section 3. In Section 4 and Section 5 we in-

troduce the communication predicates that we consider

in the paper, including eventual consistency. Section 6

shows how to simulate eventual consistency under weak

communication predicates, while Section 7 shows how

to solve consensus with eventual consistency. In Sec-

tion 8 we discuss in detail the combination of one of

the consensus algorithms and the eventual consistency

simulation. As we show in Section 9, eventual consis-

tency can be achieved also directly with authentication.

In Section 10 we argue that Byzantine faults and per-

manent value faults located at a process are indistin-

guishable, and thus our algorithms also work (but not

only) in a partial synchronous model with Byzantine

processes. We conclude the paper in Section 11.

2 Model

We use a slightly extended version of the round-based

model of [4]. In this model, we reason about faults only

as transmission faults, without looking for a “culprit”

for the fault [4]. Therefore there are no “faulty” pro-

cesses and no state corruption in our model, but mes-

sages can be arbitrarily corrupted (or lost) before re-

ception. Nevertheless, as we explain in Section 10, the

model can be used to reason about classical Byzantine

faults.

Computations in this model are structured in rounds,

which are communication-closed layers in the sense that

any message sent in a round can be received only in

that round. As messages can be lost, this does not im-

ply that the systems is synchronous.An algorithm A is

specified by sending function Srp and transition function

T rp for each round r and process p. We now give a formal

definition of the round-based model considered, and in-

troduce the notions of (i) the heard-of set HO(p, r),

which captures synchrony and benign faults, (ii) the

safe heard-of set SHO(p, r), which handles corruptions,

i.e., captures communication safety properties, and (iii)

consistency CONS(r), which is true in round r, if all

processes receive the same set of messages at round r.

2.1 Heard-Of Sets and Consistent Rounds

Let Π be a finite non-empty set of cardinality n, and

letM be a set of messages (optionally including a null

placeholder indicating the empty message). To each p in

Π, we associate a process, which consists of the follow-

ing components: A set of states denoted by statesp, a

subset initp of initial states, and for each positive inte-

ger r called round number, a message-sending function

Srp mapping statesp to a unique message from M, and

a state-transition function T rp mapping statesp and par-

tial vectors (indexed by Π) of elements ofM to statesp.

The collection of processes is called an algorithm on Π.

In each round r, a process p:

1. applies Srp to the current state and sends the mes-

sage returned to each process,4

4 W.l.o.g., the same message is sent to all. Because of trans-
mission faults, this does not prevent two processes p and q from

receiving different messages from some process s.

4

2. determines the partial vector µ rp , formed by the

messages that p receives at round r, and

3. applies T rp to its current state and µ rp .

The partial vector µ rp is called the reception vector of

p at round r.

Computation evolves in an infinite sequence of rounds.

For each process p and each round r, we introduce two

subsets of Π. The first subset is the heard-of set, de-

noted HO(p, r), which is the support of µ rp , i.e.,

HO(p, r) =
{
q ∈ Π : µ rp [q] is defined

}
.

A process q is in the set HO(p, r) if p receives a message

from process p in round r. Note that the message re-

ceived may be corrupted. The second subset is the safe

heard-of set, denoted SHO(p, r), and defined by

SHO(p, r) =
{
q ∈ Π : µ rp [q] = Srq (sq)

}
,

where sq is q’s state at the beginning of round r. A

process q is in the set SHO(p, r) if the message received

by p is not corrupted. In addition, for each round r, we

define the consistency flag, denoted CONS(r), which is

true if all processes receive the same set of messages in

round r, i.e.,

CONS(r) = (∀p, q ∈ Π2 : µ rp = µrq).

From the sets HO(p, r) and SHO(p, r), we form the al-

tered heard-of set denoted AHO(p, r) as follows:

AHO(p, r) = HO(p, r) \ SHO(p, r).

For any round r, and for any set of rounds Φ, we further

define the safe kernel of r resp. Φ:

SK(r) =
⋂
p∈Π

SHO(p, r) SK(Φ) =
⋂
r∈Φ

SK(r)

The safe kernel consists of all processes whose messages

were received correctly by all processes. We use also

SK = SK(N). Similarly, the altered span (of round r)

denotes the set of processes from which at least one

process received a corrupted message (at round r):

AS(r) =
⋃
p∈Π

AHO(p, r) AS =
⋃
r>0

AS(r)

We also extend the notion of CONS in a natural way

to a set Φ of rounds, i.e., CONS(Φ) =
∧
r∈Φ CONS(r).

2.2 HO Machines

A heard-of machine for a set of processes Π is a pair

(A,P), where A is an algorithm on Π, and P is a com-

munication predicate, i.e., a predicate over the collec-

tion

((HO(p, r),SHO(p, r))p∈Π ,CONS(r))r>0

A run of an HO machine M is entirely determined

by the initial configuration (i.e., the collection of pro-

cess initial states), and the collection of the reception

vectors
(
µ rp
)
p∈Π, r>0

.

2.3 Simulation of communication predicates

In the paper we will need to simulate5 communication

predicates P ′ using some HO machine M = (A,P).

Intuitively, in such a simulation, several rounds of M

will be used to simulate one round in which predicate

P ′ holds. If the run of M consists of k rounds, then

algorithm A is a k round simulation of P ′ from P.

Formally, let k be any positive integer, and let A
be an algorithm that maintains a variable mp ∈ M
and Msgp ∈ Mn at every process p. We call macro-

round ρ the sequence of the k consecutive round k(ρ−
1)+1, . . . , kρ. The variable mp is an input variable that

can be set externally in every macro-round.6 The value

of mp at the beginning of macro-round ρ is denoted

m
(ρ)
p , and the value of Msgp at the end of macro-round

ρ is denoted Msg(ρ)
p . For the macro-round ρ, we define

in analogy to the definitions of Section 2.1:

HO(p, ρ) =
{
q ∈ Π : Msg(ρ)

p [q] is defined
}

SHO(p, ρ) =
{
q ∈ Π : Msg(ρ)

p [q] = m(ρ)
q

}
CONS(ρ) = (∀p, q ∈ Π2 : Msg(ρ)

p = Msg(ρ)
q)

We say that the HO machine M = (A,P) simu-

lates the communication predicate P ′ in k rounds if for

any run of M , the collection (HO(p, ρ),SHO(p, ρ))p∈Π ,

CONS(ρ))ρ>0 satisfies predicate P ′.
Given a simulation A of P ′ from P, any problem

that can be solved with P ′ by algorithm A′ can be

5 The notion of a simulation differs from the notion of a trans-
lation of the HO model for benign faults. A translation establishes
a relation purely based on connectivity, while with value faults,
also some computation is involved. Because of this, we decided

thus to use the term simulation instead.
6 The sending function in a simulation algorithm is thus a func-

tion that maps statesp and the input fromM to a unique message

fromM; while the state-transition function T rp is a function that
maps statesp, the input from M, and a partial vector (indexed

by Π) of elements of M to statesp.

5

solved with P instead by simply simulating rounds of

the algorithmA′ using algorithmA. In such a composed

algorithm, the input variable m
(ρ)
p of algorithm A is set

at each macro-round ρ to the value returned by the

sending function of A′, and the transition function of

A′ is applied to the output Msg(ρ)
p of algorithm A.

3 Consensus

Let V be (non-empty) totally ordered set. In the con-

sensus problem every process p has an initial value

initp ∈ V and decides irrevocably on a decision value,

fulfilling:

Integrity: If all processes have the same initial value

this is the only possible decision value.

Agreement: No two processes may decide differently.

Termination: All processes eventually decide.

Since, contrary to classical approaches, there is no

deviation according to T rp , and thus we do not have the

notion of a faulty process, the upper specification makes

no exemption: all processes must decide the initial value

in the Integrity clause, and all processes must make a

decision by the Termination clause.

Formally, an HO machine (A,P) solves consensus,

if any run for which P holds, satisfies Integrity, Agree-

ment, and Termination. To make this definition non-

trivial, we assume that the set of HO and SHO collec-

tions for which P holds is non-empty.

4 Communication predicates

In this section we introduce the communication predi-

cates that will be used in the paper. As already men-

tioned, we reason about faults only as transmission

faults. This allows us to deal with both permanent and

transient faults, but also with static and dynamic faults.

4.1 Predicates that capture static and dynamic value

faults

A dynamic fault is a fault that can affect any link in

the system — as opposed to static faults that affect the

links of at most f out of n processes per run [4]. We

start with static faults:

Pfstat :: |AS| ≤ f (1)

with f ∈ N and N = {0, . . . , n}. Pstat is the name

of the predicate, and f is a free parameter. Pfstat is a

safety predicate that models static faults, where cor-

rupted messages are received only from a set of f pro-

cesses. In Section 10 we will argue that such an assump-

tion corresponds to a system with at most f Byzantine

processes.

For our algorithms we will also consider the weaker

safety predicate Pfdyn (∀f ∈ N , Pfstat implies Pfdyn) that

restricts the number of corrupted messages only per

round and per process:

Pfdyn :: ∀r > 0,∀p ∈ Π : |AHO(p, r)| ≤ f

with f ∈ N and 0 ≤ f ≤ n. Predicate Pfdyn poten-

tially allows corrupted messages on all links in a run, it

therefore models dynamic value faults.

4.2 Predicates that restrict asynchrony of communi-

cation and dynamism of faults

Predicates Pstat and Pdyn only restrict the number of

value faults; however, it does not tell us anything about

liveness of communication. From [13] we know that we

cannot solve consensus in an asynchronous system if all

messages sent by one process may be lost. On the other

hand, Santoro and Widmayer [26] showed that consen-

sus is impossible to solve in a synchronous system if,

at each time unit, there is one process whose messages

may be lost. Therefore, in order to solve consensus we

need to restrict asynchrony of communication and dy-

namism of faults.

A synchronous system could be modeled as follows:

PfSK :: |SK| ≥ n− f

PfSK requires that there is a set of processes (safe ker-

nel) of size n− f whose messages are correctly received

in every round. From

∀f ∈ N, PfSK ⇒ P
f
stat

it follows that PfSK implies static faults only. However,

we want to study consensus with dynamic faults. We

consider therefore the following predicate:

Pf,k�SK :: ∀r > 0 ∃ro > r, Φ = {r0, . . . , r0 + k − 1} :

|SK(Φ)| ≥ n− f

with f ∈ N and k > 0. This predicate (repeatedly)

requires a safe kernel of size n− f only eventually and

only for k rounds. It also restrict the dynamism of value

faults during these k round; i.e., corrupted messages can

only be received from at most f processes.

6

In the paper we will consider P�SK always in con-

junction, either with Pstat or Pdyn . When we assume

P�SK with Pstat, i.e., Pf,k�SK ∧P
f
stat, transmission value

faults are static (benign transmission faults are not re-

stricted, so they can be dynamic). On the other hand,

when we assume P�SK with Pdyn , i.e., Pf,k�SK∧Pαdyn with

f ≤ α, transmission value faults are no more static:

Pf,k�SK alone does not imply Pf
′

stat for any f ′ < n.

The implementation of the predicate P�SK in a par-

tially synchronous system (in conjunction, either with

Pstat or Pdyn) is not discussed in this paper. The reader

is referred to [12,6].

4.3 Permanent versus Transient Faults

Both predicates, Pstat ∧ P�SK and Pdyn ∧ P�SK allow

permanent faults. Consider for example a run and a pro-

cess p, where every process receives a corrupted message

from p in every round:

∀q ∈ Π, r > 0 : p 6∈ SHO(q, r)

and all other messages are received correctly. Such a

run is included in the set of runs given by Pstat ∧P�SK
and Pdyn ∧ P�SK , and thus the algorithms given later

in the paper can solve consensus in such a run. More

precisely, Pfstat ∧ P
f
�SK and Pfdyn ∧ P

f
�SK permits the

existence of up to f such processes. As pointed out in

Section 10, this allows our algorithms to solve consen-

sus also, e.g., in classical models with Byzantine faults,

an addresses the question raised in the introduction. In-

deed, this contrasts with [4], where, although also Pdyn

is considered (named Pα there), eventually there has to

be a round, where a sufficiently large subset of processes

do not receive any corrupted messages. There, (most)

faults have to be transient.

5 Eventual Consistency

In this section we introduce the notion of eventual con-

sistency that turns out to be a fundamental building

block for solving consensus under transmission value

faults. Eventual consistency abstracts the major com-

plexity present when solving consensus under the weak

communication predicates presented above. Therefore

eventual consistency allows us to express consensus al-

gorithms in a very concise and elegant way.

Informally speaking, eventual consistency combines

the requirement of a consistent round (CONS(r) in our

model) with some requirements on liveness and safety of

communication. It can be seen as an eventual version

of interactive consistency [22]. In a component fault

model, an algorithm that solves interactive consistency

allows correct processes to agree on a vector, where at

least n − f entries correspond to the initial values of

the corresponding correct processes (f is the maximum

number of faulty processes).

Interactive consistency, when seen as a communica-

tion primitive, can be captured by the following predi-

cate:

PfIC :: |SK| ≥ n− f ∧ ∀r > 0 : CONS(r)

When we express the result of [22] in our model, their

algorithm allows a f + 1 round simulation of PfIC from

PfSK if n > 3f . Note that ∀f ∈ N , PfIC ⇒ P
f
stat.

Instead of PIC , we introduce a weaker predicate. We

call the predicate eventual consistency and define it as

follows:

Pf�cons :: ∀r > 0 ∃ro > r : |SK(r0)| ≥ n−f ∧ CONS(r0)

This predicate requires that there is always eventually

a consistent round with a safe kernel of size n − f . In

contrast to PfSK and PIC , this predicate requires these

safe kernels only eventually and then only for a single

round. Also faults are no more static: Pf�cons alone does

not imply Pf
′

stat for any f ′ < n. Note that Pf�cons is a

stronger predicate than Pf,1�SK : although both predicates

require a safe kernel of size n − f and both restrict

the dynamism of value faults for a single round, Pf�cons
in addition requires that consistency holds during this

round, i.e., for any two processes p and q we have µp =
µq.

However, P�cons can be simulated from P�SK . In the

next section, we give two such simulations, and then

establish the link to solving consensus.

6 Simulating eventual consistency P�cons from

eventually safe kernels P�SK

In this section we give two simulations of P�cons from

P�SK , one in the presence of only static value faults

(Pstat), and the other in the presence of dynamic (and

static) value faults (Pdyn). As we show, the first simu-

lation requires a smaller number of processes in order

to tolerate a given number of transmission value faults.

Then we introduce a generic predicate P�cons⊕SK that

can be simulated from P�SK . The predicate P�cons⊕SK ,

in conjunction with Pdyn or Pstat, is later used in Sec-

tion 7 to solve consensus.

7

p1

p2

p3

p4
3ρ− 2

v2

v2

v2

v2

3ρ− 1 3ρ

Fig. 1 Algorithm 1 from the point of view of v2 sent by p2 (p1
is the coordinator, n = 4, f = 1).

6.1 Simulation in the presence of only static value

faults

Algorithm 1 is a 3-round simulation of Pf�cons ∧ Pfstat
from P3(f+1)

�SK ∧ Pfstat inspired by [10]. It ensures con-

sistency during a sequence of rounds where the size of

the kernel is at least n−f (the corrupted messages can

be received only from at most f processes). Moreover,

it preserves Pfstat, i.e., if Pfstat holds for basic rounds,

then Pfstat holds also for the macro-rounds obtained by

the 3-round simulation using Algorithm 1. It requires

n > 3f . As already mentioned in Section 2.3, a simu-

lation is an algorithm that maintains at each process p

two variables: an input variable mp that is set at the

beginning of every macro-round ρ (line 7), and an out-

put variable Msgp whose value is considered at the end

of every macro-round ρ (lines 24 and 26). The special

value ⊥ represents the case when a (reception) vector

does not contain a message from the respective process.

Algorithm 1 is a coordinator-based algorithm, where
the coordinator is chosen using a rotating coordinator

strategy: the coordinator of macro-round ρ is process

ρ mod n + 1; in Algorithm 1 the variable coord refers

to this process. We describe Algorithm 1 from the point

of view of the message v2 that is sent by process p2 using

Figure 1. Assume that process p1 is the coordinator. In

round 3ρ − 2, process p2 sends the message v2 to all.

In rounds 3ρ − 1 and 3ρ of Algorithm 1, the processes

send messages that contain a vector of those messages

received in round 3ρ − 2. In this description we focus

only on those elements of the vectors that are related

to message v2 that is sent by process p2 in macro-round

ρ. In round 3ρ−1, all processes send the value received

from p2 to all. 7 The coordinator then compares the

value received from p2, say v2, in round 3ρ−2 with the

value indirectly received from the other processes.

7 At line 16, the reception vector µrp is a vector of vectors:
µrp[q′] is the vector p has received from q′, and µrp[q′][q] is element

q of this vector.

Algorithm 1 Simulation of Pf�cons ∧ Pfstat from

Pf,3(f+1)
�SK ∧ Pfstat

1: Initialization:
2: Msgp ← (⊥, . . . ,⊥) /* Msgp is the output variable */

3: /* ⊥ represents the absence of message */

4: coordp = ρ mod n+ 1

5: Round r = 3ρ− 2 :
6: Srp :

7: send mp to all

8: T rp :
9: receivedp ← µrp

10: Round r = 3ρ− 1 :

11: Srp :
12: send receivedp to all

13: T rp :

14: if p = coord then
15: for all q ∈ Π do

16: if
∣∣{q′ ∈ Π : µrp[q′][q] = receivedp[q]}

∣∣ < 2f + 1

then
17: receivedp[q]← ⊥

18: Round r = 3ρ :

19: Srp :
20: send 〈receivedp〉 to all

21: T rp :

22: for all q ∈ Π do
23: if (µrp[coordp][q] 6= ⊥) ∧∣∣{i ∈ Π : µrp[i][q] = µrp[coordp][q]}

∣∣ ≥ f + 1 then

24: Msgp[q]← µrp[coordp][q]
25: else

26: Msgp[q]← ⊥

If at least 2f+1 values v2 have been received by the

coordinator p1, then p1 keeps v2 as the message received

from p2. Otherwise p1 sets the message received from

p2 to ⊥ (line 17). This guarantees that if p1 keeps v2,

then at least f+1 processes have received v2 from p2 in

round 3ρ − 2. Finally, in round 3ρ every process sends

the value received from p2 in round 3ρ − 2 to all. The

final value adopted as message received from p2 at the

end of round 3ρ (and therefore at the end of macro-

round ρ) is computed as follows at each process pi. Let

vali be the value received from coordinator p1 in round

3ρ. If vali = ⊥ then pi receives ⊥ from p2. Process pi
receives ⊥ from p2 in another case: if pi did not receive

f + 1 values equal to vali in round 3ρ. Otherwise, at

least f + 1 values received by pi in round 3ρ are equal

to vali, and pi adopts vali as message received from p2
in macro-round ρ.

Algorithm 1 relies on a coordinator for ensuring

Pf�cons: all processes assign to Msgp the value received

from the coordinator in round 3ρ (see line 24). This is

achieved during a macro-round in which the size of the

safe kernel is at least n−f , with the coordinator in the

safe kernel. The rotating coordinator strategy ensures

the existence of such a macro-round. Consider Figure 2

that illustrates the mechanism for ensuring consistency

8

p1

p2

p3

p4
3ρ− 2

v1

v2

v1

v3

3ρ− 1

v1

v2

v1

v1

3ρ

v1

v2

v1

v5

Fig. 2 How Algorithm 1 ensures Pf�cons: point of view of message

sent by p4 and received by p3. Process p1 is the coordinator,

n = 4, f = 1, only messages received from p4 can be corrupted.

from the point of view of the message sent by process

p4 and received by process p3. The coordinator adopts

value v1 as the message sent by process p4 in round

3ρ−1 (line 16) since it is forwarded by 2f+1 processes.

This ensures that the value v1 sent by the coordinator

in round 3ρ is also sent by at least f more processes

from the safe kernel in round 3ρ. Therefore, the value

sent by the coordinator satisfies the condition of line 23

at all processes and is therefore assigned to Msgp[p4] by

all processes at line 24.

Using Figure 3, we now explain how Algorithm 1

preserves Pfstat. Figure 3 considers message v2 sent by

p2 and received by p3; again, process p1 is the coordi-

nator. Messages received from p2 in round 3ρ − 2 are

not corrupted, and we show that the message received

by p3 from p2 in macro-round ρ can only be v2 or ⊥. In

round 3ρ, process p3 does not “blindly” adopt the value

received from the coordinator (the message received can

be corrupted). The value received in round 3ρ from the

coordinator is adopted by p3 only if the same value is

received from at least f additional processes (line 23).

This ensures that at least one such message is not cor-

rupted. In Figure 3, process p3 adopts ⊥ as message

received from p2 in macro-round ρ, since it did not re-

ceived f + 1 messages equal to value v′2 received from

the coordinator.

Lemma 1 If n > 3f then Algorithm 1 preserves Pfstat.

Proof To avoid ambiguities, let in this proof ASρ =⋃
ρ>0 AS(ρ) denote the altered span with respect to

macro-rounds implemented by Algorithm 1, while AS =⋃
r>0 AS(r) denotes the altered span with respect to the

rounds of Algorithm 1.

We need to show that |ASρ| ≤ f given that |AS| ≤
f . It is thus sufficient to show ASρ ⊆ AS. Assume by

contradiction that there is a process p ∈ Π, a process

s 6∈ AS, and a macro-round ρ so that s ∈ AHO(p, ρ),

i.e., s sends message m in macro-round ρ and p receives

m′ 6= m.

p1

p2

p3

p4
3ρ− 2

v2

v2

v2

3ρ− 1

v′2

v2

3ρ

v′2

v2

v2

Fig. 3 How Algorithm 1 preserves Pfstat: point of view of v2 sent
by p2 and received by p3. Process p1 is the coordinator, n = 4,

f = 1, only messages received from p1 can be corrupted. Absence

of arrows represents message loss. Process p3 can only receive v2
or ⊥ from p2 (here ⊥).

Then, because of line 23, for Q = {q : µ3ρ
p [q][s] =

m′} we have |Q| ≥ f + 1. Because of |AS| ≤ f , there

is a i ∈ Q that has received i[s] = m′. Moreover, this

implies that µ3ρ−2
i [s] = m′. Since s sent m, this is a

contradiction to s 6∈ AS. �

Lemma 2 If n > 3f then Algorithm 1 simulates Pf�cons
from Pf,3(f+1)

�SK .

Proof Let ρ denote a macro-round, let Φ = {3ρ− 2, 3ρ− 1, 3ρ}
be the set of rounds of ρ, and let c0 = ρ mod n+ 1 be

the coordinator of ρ such that

c0 ∈ SK(Φ) ∧ |SK(Φ)| ≥ n− f.

Such a macro-round exists, because (i) Pf,3(f+1)
�SK holds

and (ii) the coordinator is chosen using a rotating co-

ordinator scheme (the coordinator of macro-round ρ is

process ρ mod n+ 1). We show that with Algorithm 1

(i) CONS(ρ) and (ii) |SK(ρ)| ≥ n− f .

(i) Assume by contradiction that for two processes

p and q, Msg(ρ)
p and Msg(ρ)

q differ by the message of

process s ∈ Π, that is Msg(ρ)
p [s] 6= Msg(ρ)

q [s]. By round

3ρ, every process adopts the value of c0 or sets Msg(ρ)[s]

to ⊥; when c0 ∈ SK(Φ) it follows that Msg(ρ)
p [s] or

Msg(ρ)
q [s] is ⊥. W.l.o.g. assume that Msg(ρ)

p [s] = v and

Msg(ρ)
q [s] = ⊥. For rounds r ∈ [3ρ− 1, 3ρ], let

Rrp(v, s) :=
{
i ∈ Π : µ rp [i][s] = v

}
represent the set of processes from which p receives v

at position s in round r. Similarly, for rounds r ∈ [3ρ−
1, 3ρ], let

Qr(v, s) := {i ∈ Π : Sri (sri)[s] = v}

represent the set of processes that sent v at position s

in round r.

By line 23, if Msg(ρ)
p [s] = v, then |R3ρ

p (v, s)| ≥ f+1,

and c0 ∈ R3ρ
p (v, s). Since c0 ∈ SK(Φ), we have c0 ∈

9

Q3ρ(v, s) and thus, by line 16, |R3ρ−1
c0 (v, s)| ≥ 2f + 1.

From this and |SK(Φ)| ≥ n− f , we have |R3ρ−1
c0 (v, s) ∩

SK(Φ)| ≥ f + 1. Therefore, at least f + 1 processes

p′ in SK(Φ), including c0, have receivedp′ [s] = v. It

follows that |R3ρ
q (v, s)| ≥ f + 1, and c0 ∈ R3ρ

q (v, s).

This contradicts the assumption that the condition in

line 23 is false for process q.

(ii) For every process p ∈ Π and q ∈ SK(Φ), by

definition we have receivedp[q] = mq at the end of round

3ρ − 2. In round 3ρ − 1, c0 receives receivedq′ [q] = mq

from every process q′ ∈ SK(Φ), and thus there is no

q ∈ SK(Φ) s.t. c0 sets receivedc0 [q] to⊥ (*). In round 3ρ,

since c0 ∈ SK(Φ), every process p receives the message

from c0. In addition, since n > 3f and |SK(Φ)| ≥ n−f ,

every process receives the message from n− f > f + 1

processes in SK(Φ). By (*) and line 23, for all processes

p and all q ∈ SK(Φ), we have Msgp[q] = mq. Thus

SK(Φ) ⊆ SK(ρ), which shows that |SK(ρ)| ≥ n− f . �

Corollary 1 If n > 3f , Algorithm 1 is a simulation of

Pf�cons ∧ Pfstat from Pf,3(f+1)
�SK ∧ Pfstat.

Remark 1. Algorithm 1 can easily be extended to pre-

serve also the following predicate:

|HO(p, r)| ≥ n− f

Intuitively, such an assumption is typical for algorithms

that are designed to work in a system with reliable

channels. The modified simulation algorithm then uses

the reception vector of the first round as Msg in case

there would be less than f elements in Msg . It is easy

to show that this does not affect Corollary 1, while pre-

serving the above predicate. Since our algorithms do

not need this assumption, we do not detail this exten-

sion further.

Remark 2. Interestingly there is also decentralized (i.e.,

coordinator-free) solution to this simulation. The algo-

rithm is presented in [8] in terms of Byzantine faults

but can be easily adapted to our framework. Such a

simulation requires f + 1 rounds. In some cases this

approach can be beneficial [7].

6.2 Simulation in the presence of dynamic value faults

In this section we show a simulation of P�cons from

P�SK and the weaker predicate Pdyn that (partially)

preserves Pdyn . More precisely, we show a simulation

from Pf�SK ∧ Pαdyn into Pf�cons ∧ Pβdyn with β ≥ α: the

simulation may only partially preserve Pαdyn in the sense

that the number of corruptions in the simulated rounds

may increase from α to β ≥ α, depending on n.

p1

p2

p3

p4

p5
4ρ− 3

v2

v2

v2

v2

v2

4ρ− 2 4ρ− 1 4ρ

Fig. 4 Algorithm 2 from the point of view of v2 sent by p2; p1
is the coordinator, n = 4, f = 1.

The simulation requires four rounds, as shown by

Algorithm 2. As we can see, β is not a parameter of

the algorithm. Fixing β leads to some requirement on

n. More precisely, given f , α ≥ f , β ≥ α, Algorithm 2

requires n > (β+1)(α+f)
β−α+1 . Similarly to Algorithm 1, it is

coordinator-based.

The communication pattern of Algorithm 2 is very

similar to Algorithm 1 with the addition of one “all-to-

all” round (see Figure 4, to be compared with Figure 1).

We explain Algorithm 2 from the point of view of the

message sent by process p2. In round 4ρ− 3, process p2
sends message v2 to all.8 In round 4ρ− 2, all processes

send to all the value received from p2, and then compare

the value v2 received from p2 in round 4ρ− 3 with the

value indirectly received from the other processes in

round 4ρ − 2. If at least n − f values v2 have been

received by process p, then p keeps v2 as the message

received from p2. Otherwise, the message received from

p2 is ⊥ (line 9). As explained later, rounds 4ρ− 3 and

4ρ−2 filter the values for rounds 4ρ−1 and 4ρ in order

to ensure Pβdyn from Pαdyn . Rounds 4ρ − 1 and 4ρ are

very similar to rounds 3ρ− 1 and 3ρ in Algorithm 1.

Algorithm 2 relies on a coordinator for ensuring

Pf�cons: all processes assign to Msgp the value received

from the coordinator in round 4ρ (see line 31). This is

achieved during a macro-round in which the size of the

safe kernel is at least n − f , with the coordinator in

the safe kernel. Since consistency is ensured under the

same conditions as with Algorithm 1, we use exactly

the same mechanism in Algorithm 2.

The additional complexity of Algorithm 2 comes

from the part responsible for ensuring Pβdyn . We start

by explaining on Figure 5 why Algorithm 1 does not

preserve Pαdyn for the simplest case f = α = 1, n = 4.

8 Similar as in the description of Algorithm 1, in case of mes-

sages that contain a vector of messages, we focus only on those
elements of the vectors that are related to the message sent by

process p2.

10

Algorithm 2 Simulation of Pf�cons ∧ Pβdyn from Pf,4(f+1)
�SK ∧ Pαdyn

1: Initialization:
2: Msgp ← (⊥, . . . ,⊥) /* Msgp is the output variable */

3: coordp = ρ mod n+ 1

4: Round r = 4ρ− 3 :
5: Srp :

6: send mp to all /* mp is the input variable */

7: T rp :
8: firstp ← µ r

p

9: conf p ← (⊥, . . . ,⊥)

10: Round r = 4ρ− 2 :

11: Srp :
12: send firstp to all

13: T rp :
14: for all q ∈ Π do

15: if
∣∣{i ∈ Π : µrp[i][q] = firstp[q]

}∣∣ ≥ n− f then

16: conf p[q]← firstp[q]

17: Round r = 4ρ− 1 :
18: Srp :

19: send conf p to all

20: T rp :
21: if p = coordp then

22: for all q ∈ Π do

23: if
∣∣{i ∈ Π : µrp[i][q] = conf p[q]

}∣∣ < α+ f + 1 then
24: conf p[q]← ⊥

25: Round r = 4ρ :

26: Srp :
27: send conf p to all

28: T rp :

29: for all q ∈ Π do
30: if

∣∣{i ∈ Π : µ r
p [i][q] = µ r

p [coordp][q]
}∣∣ ≥ α+ 1 then

31: Msgp[q]← µrp[coordp][q]

32: else
33: Msgp[q]← ⊥

p1

p2

p3

p4
3ρ− 2

v2

v′2

v′3

v3

3ρ− 1 3ρ

v′2,v′3

v′2,v3

v′3

Fig. 5 Algorithm 1 does not preserves Pαdyn ; from the point of
view of p2 and p3, that sends correspondingly v2 and v3 in round

3ρ−2, and reception of process p4 of messages sent by p2 and p3.

n = 4, f = α = β = 1 and p1 is coordinator. Message received by
p4 from coordinator in round 3ρ is corrupted; other messages are

correctly received. Absence of arrows represents message loss.

According to P1
dyn , every process can receive at most

one corrupted message per round. In round 3ρ−2, pro-

cess p3 receives the corrupted message v′2 from p2, and

p4 receives the corrupted value v′3 from p3. These values

are sent to the coordinator p1 in round 3ρ− 1. Finally,

in round 3ρ, process p4 receives v′2, v′3 from p1, v′2, v3
from p3, and v′3 from itself. Since there are f + 1 val-

ues equal to those sent by coordinator, p4 considers v′2,

respect. v′3, as messages received from p2, respect. p3,

in macro-round ρ, violating P1
dyn . The problem comes

from the fact that dynamic faults have a cumulative

effect, i.e., messages that are corrupted in round 3ρ− 2

add to corrupted messages from round 3ρ.

We now explain why the addition of round 4ρ − 2

allows us to cope with this issue. Informally speaking,

the role of round 4ρ− 2 in Algorithm 2 is to transform

dynamic faults into some maximum number of static

faults, i.e., into some maximum number of faults lo-

calized at some fixed set of processes. Consider rounds

firstp1 firstp1

firstp2 firstp2

firstp3 firstp3

firstp4 firstp4

×

×

×

×

×

×

×

×

Fig. 6 After round 4ρ − 3: Two examples (left and right) of

corrupted values (represented by X).

4ρ − 3 and 4ρ − 2, with n = 4, α = f = 1. In round

4ρ − 3, predicate Pαdyn ensures that, in total, at most

n ·α = 4 corrupted values are received. In other words,

among the vectors firstp1 to firstp4 received (line 8),

at most n · α = 4 elements can be corrupted (see Fig-

ure 6, where × represents possible corrupted values). In

round 4ρ− 2, each process pi sends vector firstpi to all

processes. Consider the reception of these four vectors

by some process pj . Since α = 1, one of these vectors

can be received corrupted at pj . Figure 7 shows four

examples, two starting from Figure 6 left, two starting

from Figure 6 right.

To understand which value p adopts from q (lines

15 and 16) we need to look at column q in Figure 7.

From line 16, p adopts a corrupted value from q only if

column q contains at least n−f = 3 corrupted values. In

the upper case, no column satisfies this condition, i.e.,

p adopts no corrupted value. In the lower case, columns

2 and 1 satisfy this condition, i.e., corrupted values can

be adopted from p2 or p1. It is easy to see that in the

case n = 4, f = α = 1, corrupted values can be adopted

from at most one process. In other words, rounds 4ρ−3

and 4ρ − 2 has transformed α = 1 dynamic fault into

at most β = 1 static faults. However, in the case n = 5,

f = α = 2, rounds 4ρ − 3 and 4ρ − 2 transform α = 2

dynamic fault into at most β = 3 static fault.

11

µpj [p1] µpj [p1]

µpj [p2] µpj [p2]

µpj [p3] µpj [p3]

µpj [p4] µpj [p4]

× × × ×

×

×

×

×

×

×

× × × ×

(a)

µpj [p1] µpj [p1]

µpj [p2] µpj [p2]

µpj [p3] µpj [p3]

µpj [p4] µpj [p4]

× × × ×

×

×

×

×

×

×

× × × ×

(b)

Fig. 7 After round 4ρ− 2: (a) Two examples of vectors received

by some pj starting from Fig. 6 left; (b) Two examples of vectors
received by some pj starting from Fig. 6 right (corrupted values

are represented by ×).

Transforming α dynamic faults into β ≥ α static

faults allows us to rely on the same mechanism as in

Algorithm 1 for the last two rounds of the simulation.

Note that in rounds 4ρ − 1 and 4ρ of Algorithm 2 we

have dynamic faults, while in rounds 3ρ − 1 and 3ρ of

Algorithm 1 faults were static. Nevertheless the same

mechanisms can be used in both cases.

Theorem 1 If n > (β+1)(α+f)
β−α+1 , n > α+ f , α ≥ f , and

β ≥ α, then Algorithm 2 simulates Pf�cons ∧ Pβdyn from

Pf,4(f+1)
�SK ∧ Pαdyn .

The theorem follows directly from Lemmas 3 and 4:

the first lemma considers Pβdyn and Pαdyn , the second

Pf�cons and Pf,4(f+1)
�SK .

Lemma 3 If n > (β+1)(α+f)
β−α+1 and β ≥ α, then Algo-

rithm 2 simulates Pβdyn from Pαdyn .

Proof We need to show that for every macro-round ρ,

and every process p, we have |AHO(p, ρ)| ≤ β, i.e., at

most β messages are corrupted.

Assume by contradiction that there is a process p

so that |AHO(p, ρ)| > β. That is, we have |S| ≥ β + 1

for

S =
{
s ∈ Π : Msgp[s] 6= ms and Msgp[s] 6= ⊥

}
For all s ∈ S, letm′s denote Msgp[s]. The output Msgp[s]

is set at line 31. Because of line 30, this implies that

∀s ∈ S :
∣∣{i ∈ Π : µ4ρ

p [i][s] = m′s
}∣∣ ≥ α+ 1.

Because of |AHO(p, 4ρ)| ≤ α, at the end of round 4ρ−1

we have

∀s ∈ S, ∃is ∈ Π : conf is [s] = m′s.

Since in round 4ρ− 1 the elements of conf can only be

set to ⊥, the same condition needs to holds also at the

end of round 4ρ− 2. Because of line 15, this implies

∀s ∈ S, ∃is ∈ Π,∃Qs ⊆ Π, |Qs| ≥ n− f, ∀q ∈ Qs :

µ4ρ−2
is

[q][s] = m′s.

Because of |AHO(p, 2)| ≤ α, at the end of round 4ρ− 3

we have

∀s ∈ S, ∃Q′s ⊆ Π, |Q′s| ≥ n− f − α : ∀q ∈ Q′s :

firstq[s] = m′s.

Note that firstq = µ4ρ−3
q . The number of tuples (q, s)

such that µ4ρ−3
q [s] = m′s is thus at least (β + 1)(n −

f − α). From this it follows that there is at least one
process q0 where the number of corrupted messages in
the first round is⌈

(β + 1)(n− f − α)

n

⌉
= α+

⌈
(β + 1)(n− f − α)− nα

n

⌉
> α,

where the last inequation follows from n > (β+1)(α+f)
β−α+1

and β ≥ α, which ensures (β + 1)(n− f −α)− nα > 0.

Therefore AHO(q0, 4ρ − 3) > α, which contradicts the

assumption AHO(q0, 4ρ− 3) ≤ α. �

Lemma 4 If n > α + f and α ≥ f , then Algorithm 2

simulates Pf�cons from Pf,4(f+1)
�SK .

Proof Let ρ denote a macro-round, let Φ = {4ρ− 3, . . . , 4ρ}
be the set of rounds of ρ, and let c0 = ρ mod n+ 1 be

the coordinator of ρ such that

c0 ∈ SK(Φ) ∧ |SK(Φ)| ≥ n− f.

Such a macro-round exists, because (i) Pf,4(f+1)
�SK holds

and (ii) the coordinator is chosen using a rotating co-

ordinator scheme (the coordinator of macro-round ρ is

process ρ mod n+ 1). We show that with Algorithm 2

(i) CONS(ρ) and (ii) |SK(ρ)| ≥ n− f .

(i) Assume by contradiction that for two processes

p and q, Msg(ρ)
p and Msg(ρ)

q differ by the message of pro-

cess s ∈ Π, that is Msg(ρ)
p [s] 6= Msg(ρ)

q [s]. By round 4ρ,

every process adopts the value of c0 or sets Msg(ρ)[s]

to ⊥; when c0 ∈ SK(Φ) it follows that Msg(ρ)
p [s] or

Msg(ρ)
q [s] is ⊥. W.l.o.g. assume that Msg(ρ)

p [s] = v and

Msg(ρ)
q [s] = ⊥. For rounds r ∈ [4ρ−1, 4ρ], letRrp(v, s) :={

q ∈ Π : µ rp [q][s] = v
}

represent the set of processes

from which p receives v at position s. Similarly, for

rounds r ∈ [4ρ− 1, 4ρ], let

Qr(v, s) :=
{
q ∈ Π : Srq (srq)[s] = v

}
represent the set of processes that sent v at position s.

By line 30, if Msg(ρ)
p [s] = v, then |R4ρ

p (v, s)| ≥ α+1,

and c0 ∈ R4ρ
p (v, s). Since c0 ∈ SK(Φ), we have c0 ∈

12

Q4ρ(v, s) and thus, by line 23, |R4ρ−1
c0 (v, s)| ≥ α+f+1.

From this and |SK(Φ)| ≥ n− f , we have |R4ρ−1
c0 (v, s) ∩

SK(Φ)| ≥ α+1. Therefore, at least α+1 processes p′ in

SK(Φ), including c0, have conf p′ [s] = v. It follows that

|R4ρ
q (v, s)| ≥ α+1, and c0 ∈ R4ρ

q (v, s). This contradicts

the assumption that the condition in line 30 is false for

process q.

(ii) For every processes p ∈ Π and q ∈ SK(Φ), by

definition we have firstp[q] = mq at the end of round

4ρ − 3. In round 4ρ − 2, for every process s ∈ SK(Φ),

firsts is received. Therefore, by line 15 since |SK(Φ)| ≥
n − f , at every process p ∈ Π we have conf p[q] = mq,

for all q ∈ SK(Φ) (*). In round 4ρ − 1 , c0 receives

conf q′ [q] = mq from every process q′ ∈ SK(Φ), and thus

there is no q ∈ SK(Φ) s.t. c0 sets conf c0 [q] to ⊥ (**).

In round 4ρ, since c0 ∈ SK(Φ), every process p receives

the message from c0. In addition, since n ≥ f + α + 1

and |SK(Φ)| ≥ n−f , every process receives the message

from n−f ≥ α+1 processes in SK(Φ). By (*), (**) and

line 30, for all processes p and all q ∈ SK(Φ), we have

Msgp[q] = mq. Thus SK(Φ) ⊆ SK(ρ), which shows that

SK(ρ) ≥ n− f . �

Corollaries 2 and 3 follow from Lemma 3.

Corollary 2 If n > (α + 1)(α + f), then Algorithm 2

preserves Pαdyn .

By Corollary 2, preserving Pαdyn leads to a quadratic

dependency between n and α. Corollary 3 shows the

surprising result that, allowing more than α corrup-

tions in the simulated round, leads instead to a linear

dependency between n and α. Note that the simulation

mentioned in Corollary 3 is not useful if
⌊

η
η−1α

⌋
≥ n.

Corollary 3 For any η ∈ R, η > 1, if n > η(α + f),

then Algorithm 2 simulates Pb
η
η−1αc

dyn from Pαdyn .

Proof Let ξ = η
η−1 . From bξαc > ξα− 1 = α η

η−1 − 1 =
αη−η+1
η−1 it follows that bξαc+1

bξαc−α+1 < η. The corollary

follows from Lemma 3 by setting β = bξαc. �

6.3 Generic predicate

In Section 7 we solve consensus using the following

generic predicate, which combines P�cons and P�SK :

Pf,b,k�cons⊕SK ::∀φ > 0,∃φ0 ≥ φ,
CONS((φ0 − 1)k + 1) ∧ |SK(Φ)| ≥ n− f,
where Φ = {(φ0 − 1)k + 1− b, . . . , φ0k}

It defines a phase with k rounds, where the first

round of some phase φ0 is consistent and all rounds of

phase φ0 plus the preceding b rounds have safe kernel

of size at least equal to n− f .

Obviously, P�cons⊕SK can be simulated from P�SK
and Pstat using Algorithm 1, and from P�SK and Pdyn

using Algorithm 2. In both cases, Algorithm 1 or Algo-

rithm 2 simulate the first round of a phase, and a triv-

ial simulation (where messages are just delivered as re-

ceived) are used for the other rounds. Ensuring that the

coordinator is in the safe kernel requires f + 1 phases.

In case of Algorithm 1, the first macro-round of a phase

requires 3 rounds, and the others k − 1 only 1 round.

Therefore f + 1 phases correspond to (k + 2)(f + 1)

rounds. This leads to:

Corollary 4 If n > 3f , then Pf,b,k�cons⊕SK ∧P
f
stat can be

simulated from Pf,K�SK ∧ P
f
stat, where K = (k + 2)(f +

1) + b+ (k + 1).

Note that the additional term k + 1 for K stems

from the fact that the rounds with a safe kernel are not

necessarily aligned to the phases of Pf,b,k�cons⊕SK . In case

of Algorithm 2, since the first macro-round requires 4

rounds, we have:

Corollary 5 If n > (β+1)(α+f)
β−α+1 , n > α+f , α ≥ f , and

β ≥ α, then Pf,b,k�cons⊕SK ∧ P
β
dyn can be simulated from

Pf,K�SK ∧ Pαdyn , where K = (k + 3)(f + 1) + b+ (k + 2).

Here the additional alignment term in K is k + 2.

7 Solving consensus with eventual consistency

In this section we use the generic predicate P�cons⊕SK
to solve consensus. In all consensus algorithms below,

the notation #(v) is used to denote the number of mes-

sages received with value v, i.e.,

#(v) ≡
∣∣{q ∈ Π : µrp[q] = v

}∣∣ .

7.1 The BOTR algorithm

We start with the simplest algorithm, namely the

BOTR algorithm. The basic technique of this algorithm

is that a value that is decided is locked in the sense that

a sufficiently high quorum of processes retain this value

as estimate. A similar algorithmic scheme can be found

in algorithms for benign [9,23,16,11] and arbitrary [20,

4] faults.

The code of BOTR is given as Algorithm 3. It con-

sists of a sequence of phases, where each phase φ has

two rounds 2φ − 1 and 2φ. Every process p maintains

13

Algorithm 3 The BOTR algorithm
1: Initialization:

2: votep ← initp ∈ V

3: Round r = 2φ− 1 :

4: Srp :
5: send votep to all

6: T rp :

7: if |HO(p, r)| ≥ T then
8: votep ← min {v : 6 ∃v′ ∈ V s.t. #(v′) > #(v)}

9: Round r = 2φ :

10: Srp :
11: send votep to all

12: T rp :

13: if ∃v̄ 6= ⊥ : #(v̄) ≥ T then
14: Decide v̄

a single variable votep initialized to p’s initial value. In

every round, every process p sends votep to all. In round

2φ− 1, if a process p receives at least T messages then

it updates votep, and sets votep to the smallest most

often received value of the current round. In round 2φ,

if a process p receives at least T times the same value

v then it decides on v.9

We will show that BOTR is safe (in the sense that it

fulfills integrity and agreement) for appropriate choices

of T when Pαdyn holds (or Pαstat, since Pαstat implies

Pαdyn). The value of threshold T is chosen such that

if some process decides v at line 14 of round r, then

in any round r′ ≥ r, at all processes only v can be as-

signed to any vote, and hence only v can be decided.

Termination is achieved in both cases if in addition the

following predicate holds:

PfBOTR :: ∀φ, ∀p,∃φ0 > φ :

CONS(2φ0 − 1) ∧ |HO(p, 2φ0 − 1)| ≥ n− f
∧ (∃φ1 ≥ φ0 : |SHO(p, 2φ1)| ≥ n− f)

The PfBOTR predicate ensures the existence of phases

φ0 and φ1 ≥ φ0 such that: (i) in the first round of phase

φ0 processes receive the same set of at least n− f mes-

sages, and (ii) in the second round of phase φ1 processes

receive at least n− f uncorrupted messages.

Obviously, Pf,0,2�cons⊕SK implies PfBOTR. Eventual con-

sistency ensures the first part of the predicate, namely

the existence of a consistent round 2φ0 − 1 where in

addition every process receives enough messages. This

guarantees that at the end of round 2φ0−1 all processes

adopt the same value for votep. The second part of the

predicate forces every process to make a decision at the

end of round 2φ1.

9 The two rounds of BOTR algorithm can be merged in a

single round in which the code of both state-transition functions is
executed at once. We have split them in two rounds to emphasize

on the different communication predicates required.

7.1.1 Correctness of the BOTR algorithm

First we introduce some piece of notation. For any vari-

able x local to process p, we denote x
(r)
p the value of

xp at the end of round r. For any value v ∈ V and any

process p, at any round r > 0, we define the sets Rrp(v)

and Qrp(v) as follows:

Rrp(v) :=
{
q ∈ Π : µ rp [q] = v

}
Qrp(v) :=

{
q ∈ Π : Srq (p, sq) = v

}
.

where sq denotes q’s state at the beginning of round r.

The set Rrp(v) (resp. Qrp(v)) represents the set of pro-

cesses from which p receives v (resp. which ought to

send v to p) at round r. Since at each round of the con-

sensus algorithm, every process sends the same message

to all, the sets Qrp(v) do not depend on p, and so can

be just denoted by Qr(v) without any ambiguity.

We start our correctness proof with a general basic

lemma:

Lemma 5 For any process p and any value v, at any

round r, we have:

|Rrp(v)| ≤ |Qr(v)|+ |AHO(p, r)|

Proof Suppose that process p receives a message with

value v at round r > 0 from process q. Then, either the

code of q prescribes it to send v to p at round r, i.e., q

belongs to Qr(v) and thus q is also in SHO(p, r), or the

message has been corrupted and q is in AHO(p, r). It

follows that Rrp(v) ⊆ Qr(v) ∪AHO(p, r), which implies

|Rrp(v)| ≤ |Qr(v)|+ |AHO(p, r)|. �

As an intermediate step to argue agreement, our

next lemma introduces a condition on T that ensures no

two processes can decide differently at the same round:

Lemma 6 If T > n
2 + α then in any run of the HO

machine 〈BOTR,Pαdyn〉 there is at most one possible

decision value per round.

Proof Assume by contradiction that there exist two

processes p and q that decide on different values v and

v′ in some round r > 0. From the code of BOTR,

we deduce that |Rrp(v)| ≥ T and |Rrq(v′)| ≥ T . Then

Lemma 5 ensures that |Qr(v)| ≥ T − |AHO(p, r)| and

|Qr(v′)| ≥ T − |AHO(q, r)|.
Since each process sends the same value to all at

each round r, the sets Qr(v) and Qr(v′) are disjoint if

v and v′ are distinct values . Hence |Qr(v) ∪Qr(v′)| =
|Qr(v)|+ |Qr(v′)|. Then from T > n

2 +α and since Pαdyn
holds, we have |AHO(p, r)| ≤ α and |AHO(q, r)| ≤ α.

Therefore, we derive that |Qr(v)∪Qr(v′)| > 2(T−α) >

n, a contradiction. �

14

The next lemma shows that once a sufficently high

number of processes have the same vote, no other value

will be adopted in later rounds by any process:

Lemma 7 If T > 2
3 (n + 2α), then in any run of the

HO machine 〈BOTR,Pαdyn〉, if |{p′ ∈ Π : vote
(r−1)
p′ =

v}| ≥ T − α, every process q that updates its variable

voteq at round r sets it to v.

Proof Since vote is only updated in the first round of

a phase, it sufficies to consider the case r = 2φ − 1.

Since q updates voteq in round r, because of line 13,

|HO(q, r)| ≥ T . Let Qr(v̄) denote the set of processes

that, according to their sending functions, ought to send

messages different from v at round r, and let Rrq(v̄)

denote the set of processes from which q receives values

different from v at round r. Since each process sends a

message to all at each round, Qr(v̄) = Π \ Qr(v), and

thus |Qr(v̄)| = n− |Qr(v)|. Similarly, we have Rrq(v̄) =

HO(q, r)\Rrq(v), and since Rrq(v) ⊆ HO(q, r), it follows

that |Rrq(v̄)| ≤ T −Rrq(v).

Because of the assumption of the Lemma, and the

fact that processes send their current value of vote in

every round, we have |Qr(v)| ≥ T − α. It follows that

|Qr(v̄)| ≤ n − (T − α). With an argument similar to

the one used in the proof of Lemma 5, we derive that

|Rrq(v̄)| ≤ |Qr(v̄)| + |AHO(q, r)|. Therefore, we obtain

|Rrq(v̄)| ≤ n− T + α+ |AHO(q, r)|.
Since Pαdyn holds, it follows that |Rrq(v̄)| ≤ n− T +

2α. It follows that because of T > 2
3 (n + 2α), we have

|Rrq(v̄)| < 1
3 (n + 2α), and therefore |Rrq(v)| > |Rrq(v̄)|.

This implies that v is the most frequent value received

by q at round r. Then the code entails q to set voteq to

v. �

We now extend the statement of Lemma 7 to hold

also for any phase φ > φ0:

Lemma 8 If T > 2
3 (n + 2α), then in any run of the

HO machine 〈BOTR,Pαdyn〉 such that process p decides

some value v at some phase φ0 > 0, every process q

that updates its variable voteq at some phase φ > φ0
necessarily sets it to v.

Proof Assume process p decides value v at round r0 =

2φ0 of phase φ0. We prove by induction on r that:

∀r ≥ r0, |{q ∈ Π : vote(r−1)q = v}| ≥ T − α.

Then Lemma 7 ensures this Lemma.

Basic case: r = r0. Since p decides v at round r0,

then |Rr0p (v)| ≥ T . By Lemma 5, we have |Qr0(v)| ≥
T − α when Pαdyn holds. From the code of BOTR, we

have Qr0(v) = {q ∈ Π : vote
(r0−1)
q = v}, and so the

basic case follows.

Inductive step: r > r0. Assume |{q ∈ Π : vote
(r−1)
q =

v}| ≥ T − α. Lemma 7 ensures that for any process q,

voteq is updated only to v. Thus |{q ∈ Π : vote
(r)
q =

v}| ≥ |{q ∈ Π : vote
(r−1)
q = v}| ≥ T − α. �

With the help of the previous lemmas, we can show

the agreement clause of consensus:

Proposition 1 (Agreement) If T > 2
3 (n+ 2α), then

there is at most one possible decision value in any run

of the HO machine 〈BOTR,Pαdyn〉.

Proof Let φ0 be the first phase at which some process

p makes a decision, and let v be p’s decision value. As-

sume that process q decides v′ at phase φ. By definition

of φ0, we have φ ≥ φ0.

We proceed by contradiction, and assume that v 6=
v′. Since T > n

2 + α, by Lemma 6, we derive that φ >

φ0. Since p decides v at round 2φ0 and q decides v′

at round 2φ, Lemma 5 ensures that |Q2φ0(v)| ≥ T −
|AHO(p, 2φ0)| and |Q2φ(v′)| ≥ T − |AHO(q, 2φ)|.

Since T > 2
3 (n+2α), Lemma 8 implies that Q2φ0(v)

and Q2φ(v′) are disjoint sets. Therefore,

|Q2φ0(v) ∪Q2φ(v′)| = |Q2φ0(v)|+ |Q2φ(v′)|.

Because of T > 2
3 (n+2α), we have |Q2φ0(v)∪Q2φ(v′)| >

n, which is a contradiction. �

Now we show that the HO machines 〈BOTR,Pαdyn〉
satisfies the integrity clause of consensus for T > 2α.

Proposition 2 (Integrity) If T > 2α, then in any

run of the HO machine 〈BOTR,Pαdyn〉 where all the

initial values are equal to some value v0, the only pos-

sible decision value is v0.

Proof Consider a run of the HO machine 〈BOTR,Pαdyn〉
such that all the initial values are equal to v0.

First, by induction on r, we show that:

∀r > 0 : Qr(v0) = Π

Note that according to the code of BOTR, p belongs

to Qr(v0) if and only if vote
(r−1)
p = v0, and so Qr(v0) =

{p ∈ Π : vote
(r−1)
p = v0}.

Basic case: r = 1. All the initial values are equal to

v0. Therefore, every process sends a message with value

v0 at round 1.

Inductive step: r > 1. Suppose that Qr−1(v0) = Π.

Let p be a process that updates its variable xp at round

r−1. Since AHO(p, r−1) ≤ α, each process p receives at

most α values distinct from v0 at round r−1. Therefore,

either p does not modify votep at the end of round

r which remains equal to v0, or p receives at least T

messages at round r, and thus at least T − α messages

15

with value v0 and at most α values different from v0.

In the latter case, p sets votep to v0 since T > 2α.

This shows that definitely, vote
(r−1)
p = v0. Therefore,

Qr(v0) = Π.

Let p be a process that makes a decision at some

round r0 > 0. We have just shown that Qr0(v0) = Π.

When |AHO(p, r0)| ≤ α holds, p receives at most α

messages with value different to v0. Since T > α, the

code entails p to decide v0 at round r. �

For liveness, as already stated the communication

predicate PfBOTR ensures that (i) voteq are eventually

identical, and (ii) each process then hears of sufficiently

many processes to make a decision.

Proposition 3 (Termination) If n > 4α + 3f and

T > 2
3 (n + 2α), then any run of the HO machine

〈BOTR,PfBOTR∧Pαdyn〉 satisfies the Termination clause

of consensus.

Proof Since n > 4α+3f , we have n−f ≥ T . By PfBOTR,

there exists a phase φ0 such that for all processes p

|HO(p, 2φ0 − 1)| ≥ n− f ∧ CONS(2φ0 − 1). Therefore,

in round 2φ0−1, for any two processes p and q, we have

µ2φ0−1
p = µ2φ0−1

q , and |HO(p, 2φ0 − 1) ∩ HO(q, 2φ0 −
1)| ≥ n − f ≥ T . The code of BOTR algorithm (see

line 8) implies that for all processes p at the end of

round 2φ0 − 1 we have votep set to the same value v0.

Because of T > 2
3 (n + 2α), a similar argument as

the one used in Lemma 8 shows that every process q

that updates voteq at round r′ > r0 definitely sets it

to v0. Moreover, from PfBOTR we have ∀p ∈ Π, ∃φ1 ≥
φ0 s.t. |SHO(p, 2φ1)| ≥ n− f ≥ T . Therefore, there ex-

ist a round 2φ1 such that every process p in Π eventu-

ally receives at least T messages with value v0 at round

2φ1, and so decides v0. �

Combining Propositions 1, 2, and 3, we get the fol-

lowing theorem:

Theorem 2 If n > 4α + 3f and T > 2
3 (n + 2α), then

the HO machine 〈BOTR,PfBOTR ∧ Pαdyn〉 solves con-

sensus.

Similar reasoning can be used to show:

Corollary 6 If α = f , n > 5f and T > 2
3 (n + f),

then the HO machine 〈BOTR,PfBOTR ∧ Pαstat〉 solves

consensus.

7.2 The BLV algorithm

The next algorithm we present is called BLV . It

is based on the last voting mechanism [11] that was

Algorithm 4 BLV algorithm

1: Initialization:
2: votep ← initp ∈ V
3: tsp ← 0

4: historyp ← {(initp, 0)}

5: Round r = 3φ− 2 :
6: Srp :

7: send 〈votep, tsp, historyp〉 to all

8: T rp :
9: selectp ← FBLVT,α(µrp)

10: if selectp 6= null then

11: historyp ← historyp ∪ {(selectp, φ)}

15: Round r = 3φ− 1 :

16: Srp :

17: if ∃(v, φ) ∈ historyp then
18: send 〈v〉 to all

19: T rp :

20: if #(v) ≥ T then
21: votep ← v

22: tsp ← φ

23: Round r = 3φ :

24: Srp :
25: if tsp = φ then

26: send 〈votep〉 to all
27: T rp :

28: if ∃v̄ 6= ⊥ : #(v̄) ≥ T then

29: Decide v̄

first introduced in the seminal Paxos algorithm by Lam-

port [15] for benign faults. This mechanism is also at the

core of the PBFT algorithm by Castro and Liskov [10],

the Byzantine variant of the Paxos algorithm.

BLV is designed to work both under Pαstat and Pαdyn .

It requires n > 2(α+ f) and T > n
2 +α in the presence

of dynamic value faults (Pαdyn), or n > 3f , α = f ,

and T > n+f
2 if value faults are only static (Pαstat).

Termination is achieved with Pαdyn or Pαstat if in addition

the following predicate holds:

PfBLV ::∀φ > 0,∃φ0 > φ : CONS(3φ0 − 2)

∧ ∀r ∈ {3φ0 − 2, . . . , 3φ0} : |SK(r)| ≥ n− f

The PfBLV predicate ensures the existence of a phase

φ0 such that: (i) in the first round of φ0 processes receive

the same set of messages, and (ii) in all three rounds

of φ0 processes receive at least n− f uncorrupted mes-

sages.

Obviously, Pf,0,3�cons⊕SK implies PfBLV . Eventual con-

sistency ensures that at the end of round 3φ0−2, all pro-

cesses select the same value. The condition that there

exists a large enough safe kernel in phase φ0 finally

forces every process to make a decision at the end of

round 3φ0.

The code of BLV is given as Algorithm 4. It consists

of a sequence of phases, where each phase φ has three

16

Algorithm 5 Function FBLVT,α(M)

30: possibleV ← {(v, ts) : ∃i ∈ Π : (v, ts) = M[i] ∧ |{q : M[q] = (v′, ts′,−) ∧ ((v = v′ ∧ ts = ts′) ∨ ts > ts′)}| ≥ T }
31: confirmedV ← {v : (v, ts) ∈ possibleV ∧ |{q : M[q] = (−,−, history) ∧ (v, ts) ∈ history}| > α }

32: if |confirmedV | ≥ 1 then
33: return min(confirmedV)

34: else if {q : M[q] = (−, 0,−)} ≥ T then

35: return minimal v, such that ∃(v, 0,−) ∈M and 6 ∃(v′, 0,−) ∈M s.t. #((v′, 0,−)) > #((v, 0,−))
36: else

37: return null

rounds 3φ − 2, 3φ − 1 and 3φ. The last voting mecha-

nism uses a timestamp variable ts in addition to to the

variable vote. Whenever a process p updates votep in

round 3φ− 1, tsp is set to φ (line 21 and 22). If enough

processes update vote in round 3φ− 1, then a decision

is possible in phase 3φ. This is the same mechanism

as in Paxos. Note the condition at line 20. It ensures

that in round 3φ − 1, all processes that update vote,

update it to the same value. As in Paxos, this ensures

that in round 3φ, processes attempt to decide on one

single value, which is necessary for agreement.

In order to deal with value faults, BLV maintains

also a history variable, which stores pairs (v, φ). Having

(v, φ) ∈ historyp means that p added (v, φ) to historyp
in phase φ (line 11). The history variable ensures that a

corrupted message with invalid values for vote and tsp
will not affect the safety properties of the algorithm. It

is mainly used in round 3φ−2, which has two roles, the

first related to agreement and integrity, and the second

related to termination:

1. Safety role:

(a) Agreement : If a process p has decided v in some

phase φ0, then for any process q, only v can be

assigned to selectq at line 9 in phases φ > φ0.

(b) Integrity : If all process have the same initial value

v, then only v can be assigned to selectp at line 9.

2. Termination role: In a consistent round with safe

kernel of size n − f , all processes must assign the

same value to select at line 9.

Line 9 refers to the selection function FBLVT,α,

which takes as input the messages received in round

3φ− 2. We explain now this function (Algorithm 5):

– Line 30 (together with line 31) ensures 1a. More pre-

cisely, it ensures selection of the most recent vote in

the history of some process. This is basically the

same mechanism as in Paxos, adapted to transmis-

sion value faults. Selecting the most recent vote among

the set of majority processes can be expressed in

Paxos as follows:

mostRecentV ←
{

(v, ts) : (v, ts) ∈ µrp ∧

|{q : µrp[q] = (v′, ts ′) ∧ ts ≥ ts ′)}| > n

2

}

In Paxos, this selection rule ensures agreement since

most recent vote is a single value. In BLV, a cor-

rupted message can contain (vote, ts) with ts equal

to the highest timestamp of a process, but with a

different vote. Therefore, the above selection rule

does not ensure 1a, since several values can satisfy

the condition of lines 30 and 31. The solution con-

sists in transforming condition ts ≥ ts ′ into (v =

v′∧ ts = ts ′) ∨ ts > ts ′ and using a higher threshold

(T > n
2 + f or T > n+f

2).

With this, if a process has previously decided v̄, then

only v̄ can be in confirmedV .10

– Line 31 prevents from returning a value v from a

pair (v, ts) that is from a corrupted message: the

pair must be in the history of at least one process.

Therefore, a pair (v, ts) is considered only if it is part

of the history in at least α + 1 messages received.

Together with line 30, it also ensures 1b: when all

processes have the same initial value, no other value

is in the historyp variable of processes.

We consider now lines 32 and 33 of Algorithm 5.

As we just explained, if a process has previously de-

cided v̄, then only v̄ can be in confirmedV , that is,

|confirmedV | = 1. In this case, by line 33, the func-

tion FBLVT,α returns v̄. If no correct process has de-

cided, we can have |confirmedV | > 1. In this case, if

some round 3φ− 2 is a consistent round with safe ker-

nel of size n − f , then all processes consider the same

set confirmedV , which ensures 2. Lines 34 and 35 are

for the case where not all processes have the same ini-

tial value. Termination would be violated without these

lines.

10 Consider two phases φ0 and φ0 + 1, such that a process has
decided v̄ in phase φ0. We consider the more general case in the
presence of dynamic faults, and we assume that n = 5, f = α = 1

and T = 4. This means that at least T − α = 3 processes have

ts = φ0 and vote = v̄. Consider in phase φ0 + 1 that (v, ts) ∈
possibleVp at p with v 6= v̄. This means that p, in round 3(φ0+

1) − 2, has received T = 4 messages with either (v, ts,−), or
(−, ts′,−) and ts′ < ts. Since n = 5 and T = 4, at least one
of these messages is from a process c such that votec = v̄ and

tsc = φ0. Since v 6= v̄, we must have φ0 < ts. However, in phase
φ0 + 1, no process p can have (v, ts) with ts > φ0 in historyp.
Therefore, by line 31, we will not have v ∈ confirmedV .

17

7.2.1 Correctness of the BLV algorithm

In this section we use the same definition of R(v) and

Q(v) as in Section 7.1.1.

Definition 1 A value v is locked in a phase φ by pro-

cess p if votep = v and tsp = φ at the end of round

3φ− 1.

Lemma 9 If T > n
2 + α, then in any run of the HO

machine (BLV,Pαdyn) there is at most one locked value

per phase.

Proof Assume by contradiction that there exist two

processes p and q that lock different values v and v′

in some phase φ0 > 0. From line 20 we deduce that

|R3φ0
p (v)| ≥ T and |R3φ0

q (v′)| ≥ T . Then Lemma 5

(note that this lemma holds also for BLV) ensures that

|Q3φ0(v)| ≥ T − α and |Q3φ0(v′)| ≥ T − α when Pαdyn
holds.

Since each process sends the same value to all at

each round, the sets Q3φ0(v) and Q3φ0(v′) are disjoint

if v and v′ are distinct values. Hence,

|Q3φ0(v)∪Q3φ0(v′)| = |Q3φ0(v)|+|Q3φ0(v′)| ≥ 2T−2α.

Consequently, since T > n
2 + α, we derive that

|Q3φ0(v) ∪Q3φ0(v′)| > n, a contradiction. �

Lemma 10 If T > α, then in any run of the HO ma-

chine (BLV,Pαdyn) there is at most one possible decision

value per phase.

Proof Assume by contradiction that there exist two

processes p and q that decide on different values v and

v′ in some phase φ0 > 0. From line 28 we deduce that
|R3φ0
p (v)| ≥ T and |R3φ0

q (v′)| ≥ T . Then Lemma 5 and

Pαdyn ensure that |Q3φ0(v)| ≥ T − α and |Q3φ0(v′)| ≥
T − α.

Since each process sends the same value to all at

each round, the sets Q3φ0(v) and Q3φ0(v′) are disjoint

since v and v′ are distinct values. Hence, when T > α,

the sets Q3φ0(v) and Q3φ0(v′) are not empty, and so by

line 25, there exist two processes p′ and q′ that have

votep′ = v, tsp′ = φ0, voteq′ = v′ and tsq′ = φ0 . A

contradiction with Lemma 9. �

Lemma 11 If T > n
2 + α, then in any run of the HO

machine (BLV,Pαdyn), if process p decides v in phase

φ0 > 0, then for all later phases φ > φ0 and all pro-

cesses q, (v, φ) is the only pair that can be added to

historyq.

Proof Assume by contradiction that φ1 > φ0 is the first

phase where a pair (v1, φ1) with v1 6= v is added to the

historyq at process q. This implies that if history at

some process contains a pair (v′, φ′) with v′ 6= v, then

φ′ ≤ φ0 (*).

Since by our assumption q added (v′,−) to historyq
in phase φ1, this implies that FBLVT,α returns v′ at

line 9 in phase φ1. Therefore, either (i) line 33 or (ii)

line 35 of Algorithm 5 was executed by q in phase φ1.

In case (ii), the condition of line 34 has to be true.

This implies that |R3φ1−2
q ((−, 0,−))| ≥ T , and thus, by

Lemma 5, |Q3φ1−2((−, 0,−))| ≥ T − α.

We prove an intermediate result: In phases φ

such that φ0 ≤ φ < φ1, we have |{q ∈ Π :

vote3φ−1
q = v ∧ ts3φ−1q ≥ φ0}| ≥ T − α. Since

p decides v in phase φ0, |R3φ0
p (v)| ≥ T , and

thus by Lemma 5, we have |Q3φ0(v)| ≥ T − α.

From the code of the BLV algorithm, we have

Q3φ0(v) = {q : vote3φ0−1
q = v ∧ ts3φ0−1

q = φ0},
therefore the claim holds for phase φ0.

We now show that any process that locked value

v in phase φ0 (see Definition 1) and updates vote

in phase φ such that φ0 < φ < φ1, sets it to v.

This ensures the claim. Assume by contradiction

that one of these processes q′ sets voteq to v′

in round 3φ − 1. By line 20, |R3φ−1
q (v′)| ≥ T .

Then Lemma 5 ensures that |Q3φ−1(v′)| ≥ T −
α. Since T > α, we have |Q3φ−1(v′)| > 0, i.e.

at least one process sent v′ at line 18. Therefore,

by line 17 at least one process has (v′, φ0 + 1)

in history , a contradiction with the assumption

that φ1 is the first phase where a pair (v′,−) is

added to history at some process.

So we have also |
⋃

ts≥φ0
Q3φ1−2((v, ts,−))| ≥ T − α.

Since in each round, every process sends the same value

to all, and φ0 > 0, the setsX(v) =
⋃
ts≥φ0

Q3φ1−2((v, ts,−))

and Q3φ1−2((−, 0,−)) are disjoint. Hence,

|X(v) ∪Q3φ1−2((−, 0,−))| =
|X(v)|+ |Q3φ1−2((−, 0,−))| ≥ 2T − 2α.

Together with T > n
2 + α, we derive that |

⋃
ts≥φ0

Q3φ1−2((v, ts,−)) ∪ Q3φ1−2((−, 0,−))| > n, a contra-

diction.

In case (i), the condition at line 32, has to be true,

i.e., v′ need to be part of confirmedV set at line 31.

Value v′ can be part of the set confirmedV only if

(v′, ts′) is part of the set possibleV at line 30. We show

that if (v′, ts′) is part of the set possibleV at line 30, v′

cannot be part of the set confirmedV at line 31, which

establishes the contradiction.

If the pair (v′, ts′) is added to the set possibleV at

line 30, then HO(q, 3φ1 − 2) ≥ T . Since 2T − α >

n+α, |HO(q, 3φ1−2)∩
⋃

ts≥φ0
Q3φ1−2((v, ts,−))| > α.

Therefore, since Pαdyn holds, any set of messages of size

18

T contains at least one message m with m.vote = v

and m.ts ≥ φ0 (**). So we have |{m′ ∈ µrq : (m′.ts <

ts ′)}| ≥ T and, because of (**), ts ′ > φ0.

The value v′ is added to the set confirmedV at

line 31 only if there are at least α + 1 messages m in

µ3φ−2
q such that: (v, φ) ∈ m.history and φ ≥ ts ′ and

v = v′. Since ts′ > φ0, by (*), q receives at most α such

messages, a contradiction. �

Proposition 4 (Agreement) If T > n
2 + α, then no

two processes can decide differently in any run of the

HO machine (BLV,Pαdyn).

Proof Let a phase φ0 > 0 be the first phase at which

some process p makes a decision, and let v be the p’s de-

cision value. Assume that process q decides v′ at phase

φ′. By definition of φ0, we have φ′ ≥ φ0.

We proceed by contradiction and assume that v 6=
v′. By Lemma 10, we derive that φ′ > φ0. Since q de-

cides at round 3φ′, by line 28 we have |R3φ′

q (v′)| ≥ T .

By Lemma 5, we have |Q3φ′(v′)| ≥ T −α. Since T > α,

there is at least one process p′ that sends v′ in round

3φ′. By line 25 and line 22 we have that process p′ sends

it’s current vote in round 3φ′ only if vote is updated

in round 3φ′ − 1. Therefore, |R3φ′−1
p′ (v′)| ≥ T , i.e. by

Lemma 5, we have |Q3φ′−1(v′)| ≥ T − α. Since T > α,

at least one process q′ sends v′ in round 3φ′ − 1. By

line 17, if q′ sends v′ in round 3φ′ − 1, then ∃(v′, φ′) ∈
history3φ′−2

q′ , a contradiction with Lemma 11. �

Lemma 12 If T > 2α, then in any run of the HO ma-

chine (BLV,Pαdyn) where all the initial values are equal

to some value v, for all processes q, historyq contains

only pairs (v,−).

Proof Since all processes have v as their initial value,

history at all processes is initialized to (v, 0). Assume

by contradiction that φ0 is the first phase where a pair

(v′,−) is added to historyp at some process p (*). This

implies that FBLVT,α returns v′ at line 9. Therefore,

either (i) line 33 or (ii) line 35 of Algorithm 5 was exe-

cuted by p in phase φ0.

For (i), the condition at line 32 has to be true, i.e., v′

needs to be in confirmedV at line 31. This means that

p received more than α messages m = (−,−, historym)

with (v′, ts) ∈ historym in round 3φ0− 2. By Lemma 5

and Pαdyn , at least one process sends a message m =

〈−,−, historym〉 with (v′, ts) ∈ historym in round 3φ0−
2, a contradiction with (*).

For (ii), the condition of line 34 has to be true. If this

condition is true, this implies that |HO(p, 3φ0−2)| ≥ T .

Since T > 2α, Pαdyn holds, and all processes have the

same initial value v, v is returned at line 35 and (v, φ0)

is added to the historyp. A contradiction. �

Proposition 5 (Integrity) If T > 2α, then in any

run of the HO machine (BLV,Pαdyn) where all the ini-

tial values are equal to some value v, the only possible

decision value is v.

Proof By contradiction, assume that phase φ0 > 0 is

the first phase in which some process p decides v′ 6= v.

Since p decides at round 3φ0, by line 28 we have

|R3φ0
p (v′)| ≥ T . By Lemma 5 and Pαdyn , we have |Q3φ0(v′)| ≥

T − α. Since T > α, there is at least one process q

that sends v′ in round 3φ0. By line 25 and line 22, we

have that process q sends it’s current vote in round 3φ0
only if vote is updated in round 3φ0 − 1. Therefore,

|R3φ0−1
q (v′)| ≥ T , i.e., by Lemma 5 and Pαdyn , we have

|Q3φ0−1(v′)| ≥ T − α. Since T > α, at least one pro-

cess q′ sends v′ in round 3φ0− 1. By line 17, if q′ sends

v′ in round 3φ0 − 1, then ∃(v′, φ0) ∈ history3φ0−2
q′ , a

contradiction with Lemma 12. �

Proposition 6 (Termination) If n > 2(f +α), T >
n
2 + α and f ≤ α, then any run of of the HO machine

(BLV,Pαdyn∧P
f
BLV) satisfies the Termination clause of

consensus.

Proof By PfBLV , there exists a phase φ0 such that

CONS(3φ0−2)∧∀r ∈ {3φ0−2, . . . , 3φ0} : SK(r) ≥ n−f.

Therefore, in round 3φ0−2, for any two processes p and

q, we have µrp = µrq, and |SHO(p, 3φ0−2)∩SHO(q, 3φ0−
2)| ≥ n− f .

Part A. We now prove that select3φ0−2
p will be the

same at all processes p, i.e., that FBLVT,α returns the

same value at all processes, and all processes add the

same pair to history in round 3φ0 − 2. There are two

cases to consider: (i) some process p ∈ SK(φ0) locked a

value in some phase smaller than φ0, or (ii) there is no

such process in SK(φ0).

Case (i): Let φ < φ0 be the largest phase in which

some process p locked some value v (line 21). By Lemma 9

and since Q > n
2 + α, all processes that lock a value in

phase φ, lock the same value v. Since n > 2(f +α) and

T > n
2 + α, n − f ≥ T ; therefore in case (i) at least a

pair (v,−) is added to the set possibleV at line 30 of

Algorithm 5 (*).

We consider now line 31 of Algorithm 5. If p locked

value v in phase φ, then |R3φ−1
p (v)| ≥ T , i.e., by Lemma 5,

we have |Q3φ−1(v)| ≥ T −α when Pαdyn holds. Because

of line 17 of Algorithm 4, at least T −α processes have

(v, φ) in history . By assumption, n > 2(f + α) and

T > n
2 +α, therefore n− f +T > n+α. Therefore, be-

cause of |SK(φ0)| ≥ n− f , any set of messages received

in round 3φ0−2 contains more than α messages m with

(v, φ) ∈ m.history . Since n > 2(f + α) and T > n
2 + α,

19

n − f ≥ T (***), and therefore v is added to the set

confirmedV at line 31 of Algorithm 5 (**).

From (*) and (**), it follows that the condition of

line 32 of Algorithm 5 is true at all processes in phase

φ0. Moreover, since function FBLVT,α is deterministic

and CONS(3φ0 − 2) holds, for any two processes p and

q, we have selectp = selectq at line 9. Therefore p and

q add the same pair to history at line 11.

Case (ii): By hypothesis, for all processes p ∈ SK(φ0),

we have tsp = 0. By (***) n − f ≥ T and therefore

the condition at line 34 of Algorithm 5 is true at each

process. Moreover, by CONS(3φ0 − 2) we have for any

two processes p and q µrp = µrq. Therefore, the value

returned at line 35 of Algorithm 5 is the same at all

processes, and they will add the same pair to history

at line 11 of Algorithm 4.

Part B. From Part A, there exists a value v such

that at all processes p we have (v, φ0) ∈ historyp at

the beginning of round 3φ0− 1. Therefore all processes

send v to all at line 18. By |SK(3φ0 − 1)| ≥ n − f we

have that all processes receive at least n − f messages

equal to v, and since by (***) n − f ≥ T , they all set

votep to v (line 21) and send v to all at line 26. By

|SK(3φ0)| ≥ n−f and the same reasoning we can show

that all processes receive n − f messages equal to v in

round 3φ0, and since by (***) n − f ≥ T , decide v at

line 29 in phase φ0. �

Combining Propositions 4, 5, and 6, we get the fol-

lowing theorem:

Theorem 3 If n > 2(α+ f) and T > n
2 + α, then the

HO machine 〈BLV,PfBLV ∧ Pαdyn〉 solves consensus.

Similar reasoning can be used to show:

Theorem 4 If α = f , n > 3f and T > n+f
2 , then the

HO machine 〈BLV,PfBLV ∧ Pαstat〉 solves consensus.

Note that the BLV algorithm can also be used in

the model considered in [4], where all faults are tran-

sient. By Theorem 3, the BLV algorithm solves con-

sensus in this model if n > 2α (f = 0), in contrast to

algorithm AT,E in [4], which requires n > 4α. Algo-

rithm UT,E,α in [4] requires n > 2α but, contrary to

BLV , requires for safety that in every round every pro-

cess receives a sufficient number of correct messages.

This is not required by BLV , which is still correct even

if processes do not receive any correct message in some

rounds.

7.3 The BLK algorithm

The third algorithm we present is called BLK. It is

based on locking/unlocking mechanism that was first

introduced in the seminal consensus algorithm for be-

nign and arbitrary faults given by Dwork, Lynch and

Stockmayer [12].

It requires n > 2(α + f) and T > n
2 + α in the

presence of dynamic value faults (Pαdyn), or n > 3f ,

α = f and T > n+f
2 if value faults are only static

(Pαstat). The code of BLK is given as Algorithm 6. It

consists of a sequence of phases, where each phase φ

has three rounds 3φ− 2, 3φ− 1, and 3φ. In addition to

the variable vote, and similarly to BLV , the algorithm

maintains a timestamp ts and a history variable. In

round 3φ−2, every process p sends 〈votep, initp〉 to all,

where initp is p’s initial value. It is maybe surprising

to see that also the initial value initp is sent in the

first round. The initial value is used only when votep =

None, as can be seen in the selection function FBLKT
(Algorithm 7). A value selected in round 3φ−2 (lines 9

and 15) is sent to all in round 3φ−1. If in round 3φ−1,

a process p receives at least T messages equal to some

value v, it sets votep to v and tsp to φ (lines 18 and 19).

Then we say that process p locked value v in phase φ. If

votep = None then process p has not locked any value.

In round 3φ, a process p sends 〈votep, tsp, historyp〉 to

all processes. If some value v is locked in phase φ by

sufficiently high quorum of processes, then a decision is

possible in phase φ (line 24).

A value can be unlocked by process p in round 3φ,

if p learns that some process q locked different value in

higher phase (tsq > tsp ∧ voteq 6= votep). In addition to

vote and ts, BLK maintains the history variable, which

stores pairs (v, φ). Having (v, φ) ∈ historyp means that

p selected v in round 3φ−2 and added (v, φ) to historyp
in phase φ (line 11). It is used to filter out corrupted

pairs (vote, ts) at round 3φ.

It can be shown, using similar technique as for BLV ,

that BLK is safe (it fulfills integrity and agreement)

for appropriate choice of T when Pαdyn holds (or Pαstat,
since Pαstat implies Pαdyn). Termination is achieved in

both cases if in addition the following predicate holds:

PfBLK ::∀φ > 0,∃φ0 > φ : CONS(3φ0 − 2)

∧ ∀r ∈ {3φ0 − 3, . . . , 3φ0} : |SK(r)| ≥ n− f

The PfBLK predicate ensures the existence of a phase

φ0 such that: (i) in the first round of φ0 processes re-

ceive the same set of messages, (ii) in all three rounds

of φ0 processes receive correctly messages from at least

n−f processes, and (iii) in the last round of phase φ0−1

processes receive at least n− f uncorrupted messages.

Obviously, P1,3
gen implies PfBLK . Eventual consistency

ensures that at the end of round 3φ0 − 2, all processes

set selectp to the same value. PfBLK also ensures a large

enough safe kernel in the last round of the previous

20

Algorithm 7 Function FBLKT (M)

1: validV ← {m.vote s.t. m ∈M and |m′ ∈M s.t. m′.vote = m.vote or m′.vote = None| ≥ T}
2: if |validV | > 0 then

3: if None ∈ validV then
4: return minimal v, such that ∃(−, v) ∈M and 6 ∃(−, v′) ∈M s.t. #((−, v′)) > #((−, v))

5: else

6: return min(validV)
7: else

8: return null

Algorithm 6 BLK algorithm

1: Initialization:
2: votep ← initp ∈ V
3: tsp ← 0

4: historyp ← ∅

5: Round r = 3φ− 2 :

6: Srp :

7: send 〈votep, initp〉 to all
8: T rp :

9: selectp ← FBLKT (µrp)

10: if selectp 6= null then
11: historyp ← historyp ∪ {(selectp, φ)}

12: Round r = 3φ− 1 :

13: Srp :
14: if ∃(v, φ) ∈ historyp then

15: send 〈v〉 to all

16: T rp :
17: if #(v) ≥ T then

18: votep ← v

19: tsp ← φ

20: Round r = 3φ :
21: Srp :

22: send 〈votep, tsp, historyp〉 to all

23: T rp :
24: if ∃v̄ 6= ⊥ : #(〈v̄, φ,−〉) ≥ T then

25: Decide v̄

26: if((∃〈v′, ts, −〉 ∈ µrp s.t. votep 6= v′ ∧ ((ts >
tsp) ∨ tsp = 0) and

(|{m : m ∈ µrp ∧ (v′, ts) ∈ m.history}| > α)) or
(received at least T 〈 v, 0, −〉 s.t.
6 ∃v : |〈v, 0,−〉| > α) then

27: votep ← None
28: tsp ← 0

phase φ0 − 1. The role of this round is to ensure that

all processes either lock the same value (those with the

highest timestamp), or they do not lock any value. The

condition that there exists a large enough safe kernel in

phase φ0 finally forces every process to make a decision

at the end of round 3φ0.

The proof of correctness follows a similar pattern as

for BLV and is not repeated here.

BLK versus BLV. There are strong similarities between

BLV and BLK: three rounds per phase, only round 3φ−
2 must eventually be a consistent round, the history

variable. However, the mechanisms for agreement differ:

BLV uses a last voting mechanism, while BLK employs

a locking mechanism. The two mechanisms are used in

round 3φ− 2, when assigning a value to select (line 9):

– The last voting mechanism uses vote and ts (mech-

anism of PBFT and Paxos).

– The locking mechanism uses only vote (mechanism

introduced in [12]).

This difference has consequences in the information

sent in round 3φ − 2: in BLV, 〈votep, tsp, historyp〉 is

sent; in BLK, only 〈votep, initp〉 is sent. The initial

value is only needed when several correct processes do

not have a locked value (vote = None) as can be seen

in Algorithm 7 (see line 3 and 4).

To illustrate the difference between the two mech-

anisms, consider the case with dynamic value faults

where n = 5, α = f = 1, T = 4 and some process p1
has decided v1 at the end of phase φ1. A possible con-

figuration of processes p1 to p5 for the two algorithms

at the end of phase φ1 is the following:

(v1, φ1), (v1, φ1), (v1, φ1) (v2, φ2), (v2, φ2)

where each tuple represents the states (vote, ts) and

φ2 < φ1. 11 The history at T −α = 3 processes contains

the pair (v1, φ1). In round 3(φ1 + 1) − 2 of the BLV

algorithm, let a process p2 receive, from processes p1 to

p5 (the message received from process p5 is corrupted):

(v1, φ1,−), (v1, φ1,−), (v1, φ1,−), (v2, φ2,−), (v2, φ1,−).

With the last voting mechanism, we have v1 ∈ confirmedV

(there are 4 messages with vote = v1 or ts < φ1 and

(v1, φ1) is in history of the message sent by three pro-

cesses), and selectp is set to v1. Assume that similarly,

in round 3(φ1 + 1) − 2 of the BLKalgorithm, process

p2 receives, from processes p1 to p5 (all messages are

correctly received):

(v1,−), (v1,−), (v1,−), (v2,−), (v2,−).

With the locking mechanism, validV in Algorithm 7

is empty (there are no four messages with vote = v1),

11 Process p1 decided v1 by receiving correctly messages from
processes p1,p2 and p3 and the corrupted message 〈v1, φ1,−〉
from p4.

21

and null is returned. With the locking mechanism,

processes p1, p2 and p3 have “locked” v1, while pro-

cesses p4 and p5 has “locked” v2. It is clear that as long

as processes p4 and p5 have locked v2, no additional

process can decide. Therefore, an unlocking mechanism

is needed. This is the role of lines 26 and 28 of Al-

gorithm 6. If process p4 receives a message (v, ts,−)

from a process with (v, ts) in history of α+ 1 messages

received, and votep4 6= v, tsp4 < ts, then process p4 un-

locks votep4 by setting the variable to None (line 28).

The second part of condition at line 26 is for the case

where not all processes have the same initial value (ter-

mination would be violated without it). Now in round

3(φ1 + 1) − 2, let a process receive, from processes p1
to p5:

(v1,−), (v1,−), (v1,−), (None,−), (v2,−).

This leads to have v1 ∈ validV , and selectp is set to v1.

Observe that the unlocking mechanism requires historyp
(line 22). Therefore, we can also summarize the two

mechanisms by saying that the last voting mechanism

requires historyp in phase 3φ − 2, while the locking

mechanism requires historyp in phase 3φ (for unlock-

ing).

7.4 Summary of BOTR, BLV and BLK

Table 1 summarizes the resilience (right column) and

the predicate for termination (middle column) of our

three algorithms BOTR, BLV and BLK. We can ob-

serve that BOTR has the weakest predicate for termi-

nation, and the strongest condition for resilience. BLV

and BLK have the same resilience, while BLK has a

slightly stronger predicate for termination (it requires

a safe kernel in one more round).

8 Deriving the overall resilience of BLV

In this section we look at the overall resilience of the

BLV consensus algorithm together with the PfBLV pred-

icate simulation algorithm. A similar derivation can be

done for the BOTR and BLK algorithms.

When solving consensus in the presence of (only)

static value faults (P�SK∧P
f
stat), both algorithms (BLV

and the simulation algorithm) require n > 3f . This fol-

lows from Theorem 4, Corollary 4 and the fact that

Pf,0,3�cons⊕SK implies PfBLV . However, these algorithms

have different requirements on n in the presence of dy-

namic value faults (P�SK ∧ P
f
dyn).

From Corollary 5 and the fact that Pf,0,3�cons⊕SK im-

plies PfBLV we get:

Corollary 7 If n > (β+1)(α+f)
β−α+1 , n > α+f , α ≥ f , and

β ≥ α, then Algorithm 2 simulates PfBLV ∧ P
β
dyn from

P6(f+1)+5
�SK ∧ Pαdyn .

From Corollary 7 for any β ≥ α, we can simulate

PfBLV ∧ P
β
dyn from Pf,6(f+1)+5

�SK ∧ Pαdyn if

n >
(β + 1)(α+ f)

β − α+ 1
∧ n > α+ f

On the other hand, from Theorem 3 we know that

we can solve consensus with BLV under PfBLV ∧ P
β
dyn

if

n > 2(β + f).

Combining these conditions and setting β = kα,

where k ∈ R, k ≥ 1, we can solve consensus with Al-

gorithm 4 and Algorithm 2 under Pf,6(f+1)+5
�SK ∧Pαdyn if

the following two conditions hold:

n >
(kα+ 1)(α+ f)

kα− α+ 1
(2)

n > 2(k − 1)α+ 2(α+ f). (3)

We first consider α > 1, then α = 1.

Case α > 1: We can obtain different resilience bounds

depending on the choice of k.

Choosing k = 1 leads to the quadratic dependency

from Corollary 2, and is thus not what we want to

achieve here.

For k ≥ 2, condition (3) implies condition (2) for

any α > 1, because kα+1
kα−α+1 ≤ 2. Thus, when choosing

k ≥ 2, the smallest n is obtained with k = 2:

n > 4α+ 2f.

In case 1 < k < 2, the optimal choice of k depends

on α and f . As special case we get for k = 1.5 from

condition (2), n > 3α+2
α+2 (α+ f), i.e.,

n > 3(α+ f)

while from condition (3) we get

n > 3α+ 2f

Since both conditions should hold, it follows that n >

3(α+ f).

Case α = 1: For the special case α = 1 and f = 1,

conditions (3) and (2) become n > 2(k−1)+4 and n >
2(k+1)
k . We obtain the smallest value for n by choosing

k = 1, which leads to n > 4.

22

Algorithm Communication Predicate for Termination under Pαdyn Resilience

BOTR ∀φ, ∀p, ∃φ0 > φ : CONS(2φ0 − 1) ∧ |HO(p, 2φ0 − 1)| ≥ n− f ∧ (∃φ1 ≥ φ0 : |SHO(p, 2φ1)| ≥ n− f) n > 4α+ 3f

BLV ∀φ > 0, ∃φ0 > φ : CONS(3φ0 − 2) ∧ ∀r ∈ {3φ0 − 2, . . . , 3φ0} : |SK(r)| ≥ n− f n > 2α+ 2f

BLK ∀φ > 0,∃φ0 > φ : CONS(3φ0 − 2) ∧ ∀r ∈ {3φ0 − 3, . . . , 3φ0} : |SK(r)| ≥ n− f n > 2α+ 2f

Table 1 Summary of the three consensus algorithms BOTR, BLV and BLK.

Discussion: The results show that k = 1 (i.e. β = α)

leads to the smallest value of n only when α = 1. In

cases where α > 1, a better choice is e.g. k = 1.5 (i.e.

β = 1.5α). This is a non intuitive result.

9 Direct implementation of eventual

consistency using authentication

In Section 6 we gave two simulations of P�cons from

P�SK . In this section we show that in some systems

we can get P�cons with sufficiently high coverage with-

out such a simulation, but simply using authentication.

Authentication has been introduced very early in dis-

tributed computing research to solve consensus. Never-

theless, people were always struggling to give a rigorous

formal definition of authentication.

The first observation is that in a transmission fault

model, the introduction of authentication makes the

model in fact benign: if every process signs its messages

and upon reception only correctly signed messages are

processed, no corruptions can occur. This implies that

with authentication (whatever it means) transmission

faults are not able to capture Byzantine process faults.

However, even if we consider process faults, it is hard to

formalize authentication in a precise manner. A possi-

ble approach to this open question is, instead of trying

define authentication, state what can be achieved with

authentication. As we will show, (eventual) consistency

is what we naturally get from authentication assuming

(eventual) synchrony.

For the clarity of the presentation, we explain how

eventual consistency can be achieved using authenti-

cation in two steps. In Section 9.1, we show how to

obtain PIC from synchrony and a correct leader using

authentication. In Section 9.2, we slightly modify the

algorithm of Section 9.1 to obtain P�cons from eventual

synchrony and eventual correct leader.

9.1 Ensuring PIC from synchrony and correct leader

using authentication

Consistency, namely PfIC (Sect. 5), can be achieved

with high probability using cryptographic signatures

in a synchronous system with f Byzantine processes

(note that we are then no more in the scope of the

transmission fault model; for a discussion for the rela-

tion between these two models see Section 10). To that

end, in every round that should be consistent, every

process signs its messages before sending it to the (cor-

rect) leader. The leader collects all the messages it re-

ceives and forwards them to all processes. The processes

deliver all correctly signed messages that are received

from the leader as the messages of this round. Tech-

nically this procedure requires two “subrounds” that

can be obtained in a similar way as the normal round

structure. However, the algorithm is not a simulation

as in the previous section, since the correctness is con-

ditional.

Assuming the (i) signatures cannot be forged, (ii)

the system is synchronous and (iii) the leader is correct,

it is easy to see that (a) all processes have the same

reception vector, and (b) all processes receive at least

n− f messages. Therefore, PfIC holds.

9.2 Ensuring P�cons from eventual synchrony and

eventual correct leader using authentication

The above leader-based procedure can be used, with

a small modification, to ensure P�cons from eventual

synchrony. It is sufficient to replace the fixed correct

leader with a rotating leader. This ensures an eventual

correct leader when synchrony holds. The result follows

directly.

10 Communication predicates and

corresponding systems

In the HO model, there are no faulty processes and

no state corruption. Nevertheless, for predicates that

characterize permanent faults, the model can be used

to reason about classical Byzantine faults. This implies

that the algorithms in this paper can be used also to

solve consensus in the classical Byzantine fault model.

We develop this observation first for a synchronous sys-

tem (for simplicity), and then extend it to our model.12

12 This observation was made already in [19] and [4], but with-

out giving algorithms supporting the observation.

23

Algorithm Synchrony Static and Dynamic and Process faults Link faults Resilience
Permanent Transient

[22,18] synchronous X X n > 3f

[28] synchronous X X n > 2la + 2

[31,30] synchronous X X X n > 3f and c > 2f + la
OMH [5] synchronous X X X X n > 3f + fral + 2fsl +

frl + 2fs + 2fo + fm
FaB Paxos [20] partially synchronous X X n > 5f

PBFT [10] partially synchronous X X n > 3f

DLS [12] partially synchronous X X n > 3f

AT,E [4] partially synchronous X X n > 4α

UT,E,α [4] partially synchronous X X n > 2α

BOTR partially synchronous X X X X n > 3f + 6α

BLV partially synchronous X X X X n > 3f + 3α

BLK partially synchronous X X X X n > 3f + 3α

Table 2 Summary of consensus algorithms that tolerate arbitrary faults. The parameter f denotes the number of Byzantine faulty

processes; la denotes the number of links subjected to arbitrary faults. In [31,30], the parameter c denotes the network connectivity

(value c means that there exists at least c disjoint paths between any pairs of processes). In OMH, fral is the number arbitrary receive
link failures, fsl the number of send link failures, frl the number of receive link failures, fs the number of symmetrical Byzantine faulty

processes, fo the number of omission faulty processes and fm the number of manifest faulty processes. The parameter α denotes the

maximum number of corrupted messages a process can receive per round.

Let Sf denote a synchronous system with reliable

links and at most f Byzantine processes, and consider

on the other hand an HO machine with |SK| ≥ n − f .

For correct processes, a run in Sf is indistinguishable

from a run of the HO machine. Therefore, an algorithm

that solves consensus with |SK| ≥ n−f allows in Sf cor-

rect processes to solve consensus. Note that in Sf faulty

processes do not follow the protocol. It is then natural

that they do not follow the specification of consensus.

The same indistinguishability argument can be ap-

plied to (i) the weaker partial synchronous system [12]

with at most f Byzantine processes and (ii) the HO

model with Pfstat ∧ P
f,∞
�SK . For correct processes in the

model (i), a run is indistinguishable from a run in model

(ii), and so an HO algorithm that solves consensus al-

lows correct processes in the fault-prone system to solve

consensus.

The predicate Pαdyn ∧ P
f,k
�SK , α ≥ f , can correspond

to a partially synchronous system with at most f Byzan-

tine processes, where in addition, before stabilization

time, in every round processes can receive α − f cor-

rupted messages from correct processes (*). This spec-

trum of interpretations, which includes permanent faults

(see Sect. 4.3) contrary to [4], shows the benefit of con-

sidering the consensus problem in a model with (only)

transmission faults.

Further, these interpretations show that the con-

sensus algorithms BOTR, BLV and BLK presented

in this paper can be used in classical system models.

This allows us to compare BOTR, BLV and BLK with

existing consensus algorithms, specifically consensus al-

gorithms that tolerate arbitrary faults (process and/or

link faults). The comparison appears in Table 2. For

BOTR, BLV and BLK, we assume the interpretation

(*) in the preceding paragraph.

11 Conclusion

The transmission fault model allows us to reason about

permanent and transient value faults in a uniform way,

which makes the model very attractive. However, all ex-

isting solutions to consensus in this model are either in

the synchronous system, or require strong conditions for

termination that exclude the case where all messages of
a process can be corrupted. The paper has shown that

this limitation can be overcome thanks to the even-

tual consistency predicate that states the existence of

a round where all processes receive the same set of

messages. Two simulations of eventual consistency have

been given, both from a predicate that corresponds to a

partially synchronous system parameterized with α (in

every round each process can receive up to α corrupted

messages) and f (at most f processes are corrupted).

The first simulation, which refers only to the parame-

ter f , is for static faults. The second simulation, which

refers to the parameters f and α, includes static and

dynamic faults, and is compatible with permanent and

transient faults. The paper has pointed out two options

for this second simulation: preserving or not the number

of corrupted messages in each round. The first option

requires n > (α+1)(α+f). The second option requires

n > η(α+f). Combining the BLV consensus algorithm

with this second simulation leads to n > 3(α + f) for

α > 1 and n > 4 for α = 1.

24

References

1. Abraham, I., Chockler, G., Keidar, I., Malkhi, D.: Byzantine

disk paxos: optimal resilience with byzantine shared memory.

Distributed Computing 18(5), 387–408 (2006)
2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg,

S.: Consensus with byzantine failures and little system syn-
chrony. In: Dependable Systems and Networks (DSN 2006),

pp. 147–155 (2006)
3. Anagnostou, E., Hadzilacos, V.: Tolerating transient and

permanent failures (extended abstract). In: Proceedings of

the 7th International Workshop on Distributed Algorithms,

WDAG ’93, pp. 174–188. Springer-Verlag (1993)
4. Biely, M., Charron-Bost, B., Gaillard, A., Hutle, M., Schiper,

A., Widder, J.: Tolerating corrupted communication. In: Pro-

ceedings of the 26th Annual ACM Symposium on Principles
of Distributed Computing (PODC’07). ACM Press (2007)

5. Biely, M., Schmid, U., Weiss, B.: Synchronous consensus un-

der hybrid process and link failures. Theor. Comput. Sci.
412(40), 5602–5630 (2011)

6. Borran, F., Hutle, M., Santos, N., Schiper, A.: Quantitative
analysis of consensus algorithms. IEEE Trans. Dependable

Sec. Comput. 9(2), 236–249 (2012)
7. Borran, F., Hutle, M., Schiper, A.: Timing analysis of leader-

based and decentralized byzantine consensus algorithms. In:

LADC, pp. 166–175 (2011)
8. Borran, F., Schiper, A.: A leader-free byzantine consensus

algorithm. In: ICDCN, pp. 67–78 (2010)
9. Brasileiro, F.V., Greve, F., Mostéfaoui, A., Raynal, M.: Con-

sensus in one communication step. In: Proceedings of the
6th International Conference on Parallel Computing Tech-

nologies, PaCT ’01, pp. 42–50. Springer-Verlag, London, UK
(2001)

10. Castro, M., Liskov, B.: Practical byzantine fault tolerance

and proactive recovery. ACM Transactions on Computer
Systems 20(4), 398–461 (2002)

11. Charron-Bost, B., Schiper, A.: The heard-of model: comput-

ing in distributed systems with benign faults. Distributed
Computing 22(1), 49–71 (2009)

12. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the pres-

ence of partial synchrony. Journal of the ACM 35(2), 288–
323 (1988)

13. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of

distributed consensus with one faulty process. Journal of the
ACM 32(2), 374–382 (1985)

14. Gafni, E.: Round-by-round fault detectors (extended ab-
stract): unifying synchrony and asynchrony. In: Proceeding

of the 16th Annual ACM Symposium on Principles of Dis-

tributed Computing (PODC’98), pp. 143–152. ACM Press,
Puerto Vallarta, Mexico (1998)

15. Lamport, L.: The part-time parliament. ACM Trans. Com-

put. Syst. 16, 133–169 (1998)
16. Lamport, L.: Fast paxos. Tech. Rep. MSR-TR-2005-12, Mi-

crosoft Research (2005)
17. Lamport, L.: Byzantizing paxos by refinement. In: Proceed-

ings of the 25th international conference on Distributed com-

puting, DISC’11, pp. 211–224. Springer-Verlag, Berlin, Hei-
delberg (2011)

18. Lamport, L., Shostak, R., Pease, M.: The byzantine generals

problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401
(1982)

19. Lampson, B.: The abcd’s of paxos. In: Proceeding of the

19th Annual ACM Symposium on Principles of Distributed
Computing (PODC’01), p. 13. ACM Press (2001)

20. Martin, J.P., Alvisi, L.: Fast byzantine consensus. Transac-

tions on Dependable and Secure Computing 3(3), 202–214
(2006)

21. Milosevic, Z., Hutle, M., Schiper, A.: Unifying Byzantine con-
sensus algorithms with weak interactive consistency. In: 12th

International Conference on Principles of Distributed Sys-

tems (OPODIS 2009) (2009)
22. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in

the presence of faults. Journal of the ACM 27(2), 228–234

(1980)
23. Pedone, F., Schiper, A., Urbán, P., Cavin, D.: Solving agree-

ment problems with weak ordering oracles. In: Proceedings of

the 4th European Dependable Computing Conference on De-
pendable Computing, EDCC-4, pp. 44–61. Springer-Verlag,

London, UK (2002)

24. Pinter, S.S., Shinahr, I.: Distributed agreement in the pres-
ence of communication and process failures. In: Proceedings

of the 14th IEEE Convention of Electrical & Electronics En-
gineers in Israel. IEEE (1985)

25. Rutti, O., Milosevic, Z., Schiper, A.: Generic construction of

consensus algorithms for benign and byzantine faults. De-
pendable Systems and Networks, International Conference

on 0, 343–352 (2010)

26. Santoro, N., Widmayer, P.: Time is not a healer. In: Proc. 6th
Annual Symposium on Theor. Aspects of Computer Science

(STACS’89), LNCS, vol. 349, pp. 304–313. Springer-Verlag,

Paderborn, Germany (1989)
27. Santoro, N., Widmayer, P.: Agreement in synchronous net-

works with ubiquitous faults. Theor. Comput. Sci. 384(2-3),

232–249 (2007)
28. Sayeed, H.M., Abu-Amara, M., Abu-Amara, H.: Optimal

asynchronous agreement and leader election algorithm for
complete networks with byzantine faulty links. Distrib. Com-

put. 9, 147–156 (1995)

29. Schmid, U., Weiss, B., Rushby, J.: Formally verified byzan-
tine agreement in presence of link faults. In: 22nd In-

ternational Conference on Distributed Computing Systems

(ICDCS’02), pp. 608–616. Vienna, Austria (2002)
30. Siu, H.S., Chin, Y.H., Yang, W.P.: Byzantine agreement in

the presence of mixed faults on processors and links. IEEE

Trans. Parallel Distrib. Syst. 9, 335–345 (1998)
31. Yan, K.Q., Chin, Y.H., Wang, S.C.: Optimal agree-

ment protocol in malicious faulty processors and faulty

links. IEEE Trans. on Knowl. and Data Eng.
4(3), 266–280 (1992). DOI 10.1109/69.142017. URL
http://dx.doi.org/10.1109/69.142017

