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Abstract—This paper presents the system-level architecture
of novel ultra-low power wireless body sensor nodes (WBSNs)
for real-time cardiac monitoring and analysis, and discusses the
main design challenges of this new generation of medical devices.
In particular, it highlights first the unsustainable energy cost
incurred by the straightforward wireless streaming of raw data
to external analysis servers. Then, it introduces the need for new
cross-layered design methods (beyond hardware and software
boundaries) to enhance the autonomy of WBSNs for ambulatory
monitoring. In fact, by embedding more onboard intelligence
and exploiting electrocardiogram (ECG) specific knowledge, it
is possible to perform real-time compressive sensing, filtering,
delineation and classification of heartbeats, while dramatically
extending the battery lifetime of cardiac monitoring systems. The
paper concludes by showing the results of this new approach to
design ultra-low power wearable WBSNs in a real-life platform
commercialized by SmartCardia. This wearable system allows a
wide range of applications, including multi-lead ECG arrhythmia
detection and autonomous sleep monitoring for critical scenarios,
such as monitoring of the sleep state of airline pilots.

Index Terms—Wearable Embedded Systems, Bio-Medical Sig-
nal Processing, Wireless Body Sensor Nodes.

I. INTRODUCTION AND MOTIVATION

Embedded cardiac monitors are wearable and miniaturized

devices, providing the acquisition, on-board processing and

wireless transmission of cardiac bio-signals for prolonged

periods of time. These wireless body sensor nodes (WBSNs)

allow non-intrusive and long-term monitoring of cardiac pa-

rameters of patients, such as electrocardiogram (ECG) and
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pulse oximetry (SpO2). They represent novel solutions in

the healthcare domain [1], both for the prevention of acute

episodes (e.g., strokes) and for the assessment of chronic

conditions (e.g., sleep disorders, stress-related pathologies).

The design of cardiac monitoring platforms is application-

driven, because relevant data for medical examination strongly

depends on the considered scenario. As an example, sleep

monitoring applications involve the analysis of heart rate

variability over a time window of the acquired bio-signal

while the assessment of the recovery after a stroke instead

requires the detailed analysis of the morphology of heartbeats.

Minimizing the bandwidth on the energy-hungry wireless link

[2] according to the application requirements is therefore an

effective strategy for the design of ultra-low power cardiac

monitors. To this end, on-node signal processing can be

employed to derive the data of interest at different levels of

abstraction before transmission, as illustrated in Figure 1.

This paper investigates how the energy efficiency of cardiac

monitors can be enhanced by leveraging embedded processing

and hardware-software optimization methodologies. We ad-

dress its design space in a top-down fashion. First, cardiac ap-

plications and their requirements are introduced in Section II.

Then, in Section III we detail how signal processing algorithms

can support such applications and, in Section IV the challenges

Fig. 1. On-node digital signal processing increases the energy efficiency
of cardiac monitoring by rising the abstraction level and decreasing the
bandwidth of transmitted data.
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involved in embedding them in resource-constrained cardiac

monitors. Section V reports the performance of embedded

cardiac monitors in real-world scenarios and finally section VI

outlines promising future directions in this field and concludes

the paper.

II. WIRELESS BODY SENSOR NODES APPLICATIONS

While traditional cardiac monitoring equipment are bulky

and target patient monitoring for short periods of time, recent

advances in technology have enabled the development of ultra-

small and wearable monitoring devices. With the development

of embedded cardiac monitors, we can envision a new genera-

tion of wearable systems where different sensors are integrated

directly in the user’s dress, processing and streaming the vital

signs information to a mobile phone or a cloud server.
This opens up new application domains for cardiac moni-

toring, ranging from extracting behavioral information of the

user (mental and emotional state), sleep/fatigue information

and early detection and prevention of diseases.
The digital signal processing required for such different

application scenarios varies widely. Applications that extract

behavioural information typically only require processing of

beat-to-beat intervals, while the diagnosis of heart problems

requires the processing of more detailed morphological infor-

mation of each heartbeat. Applications such as driver sleep

monitoring require classifiers that are trained over different

population sets and driving scenarios, and ported onto embed-

ded micro controllers. The noise level of the signal and the

required filtering algorithms also vary based on the application.

For a cardiac system embedded in vehicles that use non-

contact sensors, a major challenge is to remove the common

mode electrical noise and obtain a clean signal, while for

ambulatory monitoring of stroke patients, the challenge is to

remove muscular and motion artifacts. Towards this end, in

this paper, we present an application driven methodology for

cardiac and bio-signal processing.

III. CARDIAC SIGNAL PROCESSING METHODS

As illustrated in Figure 1, digital signal processing on

embedded cardiac monitors typically follows a number of

phases. A filtering stage is mandatory before performing

further processing steps. To further counteract noise, different

signals with the same modality (e.g.: multi-lead ECGs) can

be combined after filtering. Afterwards, characteristic features

are derived from the the cardiac signals with processes such

as ECG delineation, and classification is performed to detect

abnormalities in each heart-beat. Information at each level

is instrumental to perform automated diagnosis for different

cardiac-related pathologies.
An alternative solution, also effective in minimizing trans-

mission bandwidth, is to compress the signal on the cardiac

monitor, and reconstruct it for further analysis on the receiver

side. The two approaches are not mutually exclusive. In [3], in

fact, a classification methodology on compressed ECG signals

has been proposed.
This section illustrates promising solutions for the automa-

tion of the different phases.

A. ECG compression

Today’s state-of-the-art WBSN-enabled ambulatory ECG

monitors still fall short of the required energy efficiency and

longevity. This is mainly because of the raw data transfer over

energy-hungry wireless links. It is today acknowledged that

the achievement of truly WBSN-enabled ambulatory monitor-

ing systems requires more breakthroughs not only in terms

of ultra-low-power read-out electronics and radios, but also

in terms of dedicated digital processors, which execute the

associated embedded feature extraction and data compression

algorithms in order to reduce airtime over wireless links.

In [4], the potential of the compressed sensing (CS) signal

acquisition/compression paradigm for low-complexity energy-

efficient ECG compression has been investigated. It is shown

that CS could outperform its state-of-the-art counterpart com-

pression algorithms, thanks to its low complexity and CPU

execution time in terms of overall energy efficiency. With more

advances on the reconstruction algorithm, in [5], the possibility

of a real-time CS decoder running on an iPhone (acting as a

WBSN coordinator) has been demonstrated.

Building on these initial works which proves the suitability

of using CS for ECG compression on the resource- and

energy-aware WBSN, the technique has been extended to

fully leverage and exploit underlying structural information,

like any state-of-the-art compression technique. More specific

recovery algorithms for single lead and multi-lead ECG has

been presented in [6].

Beyond all these works, CS is usually used as a very low

cost and easy to implement compression technique. Signals

should be acquired with the traditional limitations on the

bandwidth (BW) and after the major portion of redundant

data should be discarded. The main challenges are then taking

the whole design of the front-end and read-out devices to the

next level based on the promises of the CS and merging the

sampling and compression steps. This removes a large part of

the digital architecture and considerably simplifies analog-to-

information (A2I) conversion devices.

This so-called “analog CS”, where compression occurs di-

rectly in the analog sensor readout electronics prior to analog-

to-digital conversion, could thus be of great importance for

applications where bandwidth is moderate, but computation-

ally complex, and power resources are severely constrained.

Different realization of the CS-based “analog-to-information”

readout devices has been introduced in the literature [7], [8],

although designing a truly CS-based A2I still remains as a

challenge.

B. Noise filtering and source combination

Cardiac bio-signals are usually affected by noise, which

must be filtered before relevant features can be retrieved

from the acquisitions. Different sources of noise range from

those coming from environmental factors (e.g. electromagnetic

interference) to others of biological nature (e.g. muscular

activity). The authors of [9] propose a filtering technique based

on the application of two morphological operators (erosion
and dilation), which removes unwanted components from



Fig. 2. Delineated normal sinus beat.

the input signal. Alternatively, [10] proposes a technique for

removing low-frequency components causing the so called

baseline wandering. This method, based on cubic splines,

searches for “knots” in a characteristic silent region of the

acquired signal (before each QRS complex), and interpolates

three consecutive knots to estimate the baseline.

In [11], it is shown that the effect of noise can be also

reduced by combining different ECG leads before the analysis

and/or delineation phase. Simple root mean square (RMS)

aggregation of inputs, is presented as a light-weight, yet

effective, implementation strategy.

C. ECG Delineation

ECG delineation is the process of identifying the fiducial

points (start, peak and end) of the characteristic waves com-

posing each heart-beat (Figure 2). The information enables

the diagnosis of a large set of cardiac conditions, such as

arrhythmias. For this purpose, [12] propose a method based

on wavelet decomposition, relying on the fact that different

waves present distinct frequency components.

An alternative strategy, presented in [13], proposes to use

a morphological transform of the ECG to automate the de-

lineation of fiducial points. The method gives an effective

solution to the problem of delineation, as minima in the

transformed signal indicates the presence of peaks in the

original wave, while maxima (or sudden changes in slope)

delimit the start and end point of each wave.

D. Embedded classification

Higher-level ECG processing, after the delineation phase,

can further reduce the amount of data to be transmitted, while

also adding further information about the processed signal. The

work presented in [14] proposes the utilization of a classifier

to identify abnormal heartbeats and trigger delineation only in

those cases. The authors describe a methodology to implement

a fuzzy network into a state-of-the-art WBSN meeting real-

time and sensitivity constraints.

An important problem in classification is to identify a set

of representative features for each heartbeat. The random pro-

jection approach introduced in [15] is particularly promising

in this context. It allows the minimization of the number of

features (and therefore a simplified classification process) as

well as the efficient computation of the feature set.

IV. EMBEDDED CARDIAC MONITORING PLATFORMS

The design of a truly effective embedded cardiac monitor

has to overcome diverse challenges. The most important design

goals are to require low maintenance and allow long-term

execution, at the same time causing as little discomfort as

possible to subjects. Moreover, accurate diagnostic data should

be retrieved for medical evaluation.

These conflicting goals require a careful system-wide eval-

uations in the platform design. Energy efficiency is a key

objective, as it allows to minimize the battery size and weight

while retaining continuous operations for extended periods of

time. This section describe several effective strategies (both

at the hardware and software levels) allowing ultra-low power

regimes while performing embedded processing.

Moreover, physical constrains impede the continuos acquisi-

tion of important cardiac parameters. We show how parameters

such as Blood Pressure (BP) can instead be estimated from

other ready-obtainable quantities.

A. Software optimizations

The filtering, delineation and classification algorithms pro-

posed in Section III must be carefully tailored to be executed

on resource-constrained embedded cardiac monitors. Typi-

cally, these platforms (like the SmartCardia device presented

in Figure 4) operate at a clock frequency of few MHz and

only support integer arithmetic operations.

Computationally-intensive parts of applications must there-

fore be analyzed to derive light-weight implementations. This

approach is exemplified in [12], where a proper choice of

the filter bank coefficients leads to an efficient execution of

the wavelet-based delineation on a state-of-the-art embedded

device. In the cases of morphological filtering and delineation,

if a flat structuring element is employed, the computational

demands of the morphological operations can be drastically

reduced by keeping track of only the center value, maximum

and minimum in a sliding window of the input signal.

The approximation of complex functions is also as an effec-

tive strategy to reduce algorithmic complexity. For instance,

in the scenario of heartbeat classification, which usually in-

volves the evaluation of many gaussian functions, a four-

segments linearization is shown to achieve close-to-optimal

results [14], while vastly simplifying the computational re-

quirements. Moreover, by using random projections (described

in Section III-D) memory usage can be minimized considering

a projection matrix only composed by elements of value 0,

1 and -1, which can be represented using only two bits per

component.

Sparsity considerations are important to minimize compu-

tation and memory usage. In [16], it is shown how few non-

zero elements in the sensing matrix suffice to achieve close-to-

optimal results when performing compressive sensing, while

minimizing the run-time workload.

Along the same lines, the knowledge of the structure of

coefficient vectors can be exploited to increase the quality of

compressed sensing by differentiating signal information from

recovery artifacts. A first approach stems from the observation

that wavelet coefficients are naturally organized into a tree

structure, and the largest coefficients cluster along the branches

of this tree. A CS reconstruction algorithm based on the



Fig. 3. Hardware architecture of a typical multi-core WBSN. In red, hardware
support for synchronization.

connected tree model has been proposed in [17]. Second, in

case of the multi-lead ECG compression, there is a strong

correlation between the sparsity structure among the leads,

each lead therefore conveying useful information about other

leads. In particular, non-zero coefficients are partitioned in

subsets or groups, and this information can be employed to

enhance the compression performance across all leads [6].

B. Ultra-low-power architectures for cardiac monitoring

Cardiac monitoring applications present a high degree of

parallelism, either because multiple sources are processed by

the same algorithms (e.g., filtering of multiple ECG inputs)

or because processing is divided into consecutive different

phases of computation (as introduced in Figure 1). These

characteristics allow the parallelization of the workload on a

multi-core core architecture by exploiting voltage scaling to

achieve substantial energy savings.

In [18] we propose a platform interfacing multiple pro-

cessors to independent multi-bank program and data memo-

ries (cf. Figure 3). Low-overhead mechanisms are introduced

to synchronize code execution and enable single-instruction

multiple-data (SIMD) operations, resulting in a decrease of

the energy consumption of the instruction memory sub-

system. To this end, the employed broadcasting mechanism,

which is implemented by the interconnect networks, merges

multiple identical read requests from different cores into a

single memory access. Moreover, this architecture includes

a software technique based in barrier insertion to maintain

cores in lock-step and recover from de-synchronization after

data dependent branches. This technique requires a reduced

instruction set extension that annotates the synchronization

status on dedicated data words stored in the shared memory to

allow the synchronization hardware to properly orchestrate the

execution flow. This architecture enables the use of producer-

consumer relationships among computational stages and the

application of the proposed methodology allows to correctly

map bio-medical applications onto the multi-core platform

in order to avoid program memory conflicts, and therefore

unnecessary stalls and performance degradation. Interestingly,

fine-tuned load balancing is not a necessary precondition for

energy efficiency in cardiac monitoring systems.

A complementary approach for minimizing power consump-

tion in this kind of devices is to include application-specific

accelerators. In the case of compressed sensing, the authors of

[19] highlight that a minimal hardware support accompanied

by a specific instruction set extension of a RISC core can

achieve more than ten-fold power saving with respect to a

baseline implementation while performing compressed sensing

over an ECG signal.

C. Real-time estimation of multiple cardiac parameters

In clinical scenarios, information extracted from the ECG

is analyzed along with other cardiac bio-signals, such as

blood pressure (BP) and pulse oximetry, to assess the global

health status of the cardiovascular system. The realization of

multi-modal cardiac monitors integrating diverse sensors in

a wearable device is, therefore, desirable but not straightfor-

ward. As an example, sensors capable of directly measuring

blood pressure are either cumbersome (e.g., inflating cuffs) or

extremely complex (e.g., arterial tonometry).

An interesting approach for multi-modal analysis is to

combine available information to estimate parameters which

cannot be easily measured. For instance, the pulse arrival time

(PAT), calculated using ECG and a simple and inexpensive

photoplethysmograph (PPG) finger probe, can be used to

estimate the pulse wave velocity (PWV), which is a surrogate

marker for arterial stiffness and BP [20].

In addition, when signals of multiple modalities are consid-

ered, the correlation between the different inputs can be used to

facilitate signal processing. Most cardiac bio-signals originate

from the response to the bioelectric stimuli reflected in the

ECG. The signals are, therefore, time-locked to these stimuli.

This information can be used to remove noise (which is instead

uncorrelated to the stimuli) with different techniques such

as ensemble averaging (EA) and adaptive impulse correlated

filtering (AICF). In [21] it is shown that ECG information can

be employed to calculate, among other parameters, the EA of

the pulse oximetry. Also, AICF can be used to filter the ECG

signal [22] and to de-noise PPG signals [23]. The disadvantage

of using EA is that the beat-to-beat variation of the signals

is lost after the processing. AICF, on the other hand, is also

capable of tracking dynamic changes in the signal.

V. EXPERIMENTAL RESULTS

Embedded cardiac monitors enable a new family of ap-

plication scenarios in the healthcare domain. Although they

are computationally- and energy- constrained, these devices

are able to perform the advanced signal processing algorithms

described in Sections III and IV, allowing novel breakthroughs

in the healthcare monitoring field. As an example, the Smart-

Cardia device [24] depicted in Figure 4 is able to perform

3-lead ECG monitoring and execute a set of algorithms for

real-time ECG filtering and arrhythmia detection. In partic-

ular, it allows the automatic detection of abnormal cardiac

events and the remote notification of such phenomena to a

centralized server infrastructure, thanks to an on-board radio

transceiver. Compressed Sensing is employed to efficiently

transmit excerpts of the acquired signals, periodically or when

an abnormality is detected. This SmartCardia device embeds



Fig. 4. SmartCardia 3-lead ECG monitoring device.

an ultra-low-power micro-controller for digital processing, an

acquisition front-end and a wireless transmission stage, all in

a compact form factor. The mean time between charges is

typically one week.

This level of functionality is achieved by an optimized

implementation of hardware and software components, such

as the ones described in this paper. Moreover, these optimiza-

tions do not have major impact on the obtained quality of

the retrieved data. As an example, the performance of the

illustrated ECG delineation algorithms are in line with the

results reported by computing-demanding off-line variants,

while requiring only a fraction of the resources (7% of the

duty cycle and 7.2kB of memory [12]). For this application,

the measured sensitivity and specificity of retrieved fiducial

points are above 90% in all cases, which is at the target level

for medical use in this field.

Figure 5 compares the averaged signal-to-noise ratio (SNR)

results over different compression ratios (CR) for single-

lead and multi-lead CS compression [6]. These results show

that an averaged SNR over 20 dB (corresponding to good

reconstruction quality [16]) is reached for CR = 65.9% and

CR = 72.7% for single and multi-lead CS, respectively. To

characterize the power figure, the compression algorithms are

implemented on our target WBSN running FreeRTOS on a

16-bit processor and simple medium access control (MAC)

scheme for wireless communication (IEEE 802.15.4) between

the node and the base station. Figure 6 depicts the share of

radio, OS and compression in the total node power consump-
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tion for raw data streaming and two CS-based compression for

good quality of reconstruction. The average power reduction

estimates are 44.7% and 56.1% compared to raw-data stream-

ing for single-lead and multi-lead CS compression. This proves

the suitability of CS as a promising low-power compression

technique for wearable cardiac monitoring systems.

In addition, similar results have been obtained for applica-

tions performing a diagnosis at a higher level of abstraction,

such as Atrial Fibrillation (AF) detection [25]. This cardiac

monitoring application uses the results of the ECG delineation

to analyze the regularity of the heart beat rate as well as

the shape of the P wave, which constitute two characteristic

irregularities of AF episodes. The results generated after the

observation of these irregularities can be subsequently ana-

lyzed in real-time using a fuzzy classifier. This low-complexity

approach achieves 96% sensitivity and 93% specificity, which

are comparable figures to state-of-the-art off-line AF detection

algorithms while operating in real-time on an embedded

device.

Finally, the use of multi-core computing architectures in

cardiac monitoring systems (cf. Section IV-B) increases further

the energy efficiency of the processing stage. In particular,

Figure 7 shows how the filtering (3L-MF), delineation (3L-

MMD) and classification (RP-CLASS) applications described

in Section III can be efficiently executed on the presented

multi-core platform of Figure 3 (MC), reducing up to 40%

the global power consumption with respect to a single-core

variant (SC).

Fig. 7. Average power consumption decomposition of a synchronized
multicore (MC) system and an equivalent single-core (SC) architecture.



VI. CONCLUSIONS AND FUTURE APPLICATIONS

In this paper we have presented the main design chal-

lenges and latest approaches targetting next-generation ultra-

low power wearable cardiac monitors, which need to perform

an energy-efficient real-time acquisition and processing of

ECG, thus providing the possibility of performing on-line

diagnosis and analysis of the cardivascular state of a person.

In order to develop this new cardiac monitoring systems, we

have shown that multiple optimizations exploiting the target

bio-signal features need to be performed at both hardware and

software levels in order to achieve the target ultra-low power

figures needed to extend autonomy of the systems for long-

term bio-signals monitoring.

As a result, these new ultra-low power cardiac monitoring

WBSNs will be able to enable novel medical approaches for

the diagnosis of diverse ailments. In particular, a promising

direction to be investigated in the near future is related to

neurodegenerative disorders, such as, Alzheimer Desase (AD).

Even though the mechanisms linking the autonomic regulation

of the heart activity to AD are not fully understood, recent

studies have demonstrated a correlation between neurological

degeneration and aberrant ECG signals, indicating the latter

as a potentially useful bio-marker of AD progression [26].

Moreover, researchers have explored the neural basis of

bodily self-consciousness and have showni in very recent

studies that a tight relationship exists between the brain

processes and the body states, such as, the heartbeat [27].

Therefore, expected development of wearable cardiac monitors

has the potential to open up several new applications in neuro-

rehabilitation by exploiting the relationship between the brain

processes and cardiac factors, as well as enabling effective

mind training and improvement of children with learning

disabilities.

REFERENCES

[1] Y. Hao and R. Foster, “Wireless body sensor networks for health-
monitoring applications,” Physiological Measurement, vol. 29, no. 11,
p. R27, Oct. 2008.

[2] F. Chen, F. Lim, O. Abari, A. Chandrakasan, and V. Stojanovic, “Energy-
aware design of compressed sensing systems for wireless sensors under
performance and reliability constraints,” Circuits and Systems I: Regular
Papers, IEEE Transactions on, vol. 60, no. 3, pp. 650–661, Mar. 2013.

[3] M. Shoaib, K. Lee, N. Jha, and N. Verma, “A 0.6 –107 uw energy-
scalable processor for directly analyzing compressively-sensed eeg,”
Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. PP,
no. 99, pp. 1–14, 2014.

[4] H. Mamaghanian, N. Khaled, D. Atienza, and P. Vandergheynst, “Com-
pressed sensing for real-time energy-efficient ecg compression on wire-
less body sensor nodes,” Biomedical Engineering, IEEE Transactions
on, vol. 58, no. 9, pp. 2456 –2466, sept. 2011.

[5] K. Kanoun, H. Mamaghanian, N. Khaled, and D. Atienza, “A real-
time compressed sensing-based personal electrocardiogram monitoring
system,” in Conference on Design, Automation and Test in Europe
(DATE’ 11), Sep. 2010.

[6] D. A. Hossein Mamaghanian, Giovanni Ansaloni and P. Vandergheynst,
“Power-efficient joint compressed sensing of multi-lead ecg signals,”
in IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2014.

[7] Y. Eldar, “Analog compressed sensing,” in Acoustics, Speech and Signal
Processing, 2009. ICASSP 2009. IEEE International Conference on,
April 2009, pp. 2949–2952.

[8] H. Mamaghanian, N. Khaled, D. Atienza, and P. Vandergheynst, “Design
and exploration of low-power analog to information conversion based
on compressed sensing,” Emerging and Selected Topics in Circuits and
Systems, IEEE Journal on, vol. 2, no. 3, pp. 493–501, 2012.

[9] Y. Sun, K. L. Chan, and S. M. Krishnan, “ECG signal conditioning by
morphological filtering,” Computers in Biology and Medicine, vol. 32,
no. 6, pp. 465–479, Sept. 2002.

[10] C. Meyer and H. Keiser, “Electrocardiogram baseline noise estimation
and removal using cubic splines and state-space computation tech-
niques,” Computers and Biomedical Research, vol. 10, no. 5, pp. 459–
470, Oct. 1977.

[11] R. Braojos, G. Ansaloni, D. Atienza, and F. Rincon, “Embedded real-
time ecg delineation methods: A comparative evaluation,” in Bioinfor-
matics Bioengineering (BIBE), 2012 IEEE 12th International Confer-
ence on, Nov 2012, pp. 99–104.

[12] F. Rincon, N. Boichat, D. Atienza, and N. Khaled, “Wavelet-based ECG
delineation on a wearable embedded sensor platform,” in Wearable and
Implantable Body Sensor Networks, 2009. BSN 2009. Sixth International
Workshop on, June 2009, pp. 256–261.

[13] Y. Sun, K. Luk Chan, and S. Muthu Krishnan, “Characteristic wave
detection in ECG signal using morphological transform,” BMC Cardio-
vascular Disorders, vol. 5, pp. 1–7, Sep 2005.

[14] R. Braojos, G. Ansaloni, and D. Atienza, “A methodology for embed-
ded classification of heartbeats using random projections,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2013, March
2013, pp. 899–904.

[15] D. Achlioptas, “Database-friendly random projections: Johnson-
Lindenstrauss with binary coins,” Journal of Computer and System
Sciences, vol. 66, no. 4, pp. 671– 687, June 2003.

[16] H. Mamaghanian, N. Khaled, D. Atienza, and P. Vandergheynst, “Com-
pressed sensing for real-time energy-efficient ecg compression on wire-
less body sensor nodes,” Biomedical Engineering, IEEE Transactions
on, vol. 58, no. 9, pp. 2456–2466, Sept 2011.

[17] M. F. Duarte, M. B. Wakin, and R. G. Baraniuk, “Fast reconstruction
of piecewise smooth signals from incoherent projections,” in Signal
Processing with Adaptative Sparse Structured Representations (SPARS’
05), November 2005.

[18] R. Braojos Lopez, I. Beretta, G. Ansaloni, and D. Atienza Alonso,
“Hardware/Software Approach for Code Synchronization in Low-Power
Multi-Core Sensor Nodes,” in Proceedings of the IEEE/ACM 2014
Design Automation and Test in Europe (DATE) Conference, vol. 1, no. 1.
IEEE/ACM Press, 2014, pp. 50–55.

[19] J. Constantin, A. Dogan, O. Andersson, P. Meinerzhagen, J. Rodrigues,
D. Atienza, and A. Burg, “Tamarisc-cs: An ultra-low-power application-
specific processor for compressed sensing,” in VLSI and System-on-
Chip (VLSI-SoC), 2012 IEEE/IFIP 20th International Conference on,
Oct 2012, pp. 159–164.

[20] H. Gesche, D. Grosskurth, G. Kuchler, and A. Patzak, “Continuous blood
pressure measurement by using the pulse transit time: comparison to a
cuff-based method,” European Journal of Applied Physiology, vol. 112,
no. 1, pp. 309–315, Jan 2012.

[21] J. M. Solaı̈¿ 1
2

i Caros, “Continuous non-invasive blood pressure estima-
tion,” Ph.D. dissertation, ETH Zurich, 2011.

[22] P. Laguna, R. Jane, O. Meste, P. Poon, P. Caminal, H. Rix, and
N. Thakor, “Adaptive filter for event-related bioelectric signals using an
impulse correlated reference input: comparison with signal averaging
techniques,” Biomedical Engineering, IEEE Transactions on, vol. 39,
no. 10, pp. 1032–1044, Oct 1992.

[23] K. Pilt, K. Meigas, J. Lass, M. Rosmann, and J. Kaik, “Adaptive impulse
correlated filter (aicf) improvement for photoplethysmographic signals,”
in Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th
Annual International Conference of the IEEE, Aug 2008, pp. 273–276.

[24] SmartCardia. [Online]. Available: http://smartcardia.com/
[25] F. Rincon, P. Grassi, N. Khaled, D. Atienza, and D. Sciuto, “Automated

Real-Time Atrial Fibrillation Detection on a Wearable Wireless Sensor
Platform,” in Proceedings of 34th IEEE Annual International Conference
of the Engineering in Medicine and Biology Society (EMBC 2012), 2012,
pp. 2472–2475.

[26] M. Vilhena Toledo and J. Junqueira, LuizFernando, “Cardiac autonomic
modulation and cognitive status in alzheimer’s disease,” Clinical Auto-
nomic Research, vol. 20, no. 1, pp. 11–17, Feb. 2010.

[27] O. Blanke, “Multisensory brain mechanisms of bodily self-
consciousness,” Nature Reviews Neuroscience, vol. 13, no. 8, pp.
556–571, 2012.


