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a  b  s  t  r  a  c  t

In  dynamic  optimization  problems,  the  optimal  input  profiles  are  typically  obtained  using  models  that
predict  the  system  behavior.  In  practice,  however,  process  models  are  often  inaccurate,  and  on-line  model
adaptation  is required  for  appropriate  prediction  and  re-optimization.  In  most  dynamic  real-time  opti-
mization  schemes,  the  available  measurements  are  used  to update  the  plant  model,  with  uncertainty
being  lumped  into  selected  uncertain  plant  parameters;  furthermore,  a piecewise-constant  parameteri-
zation  is used  for the  input  profiles.  This  paper  argues  that  the  knowledge  of  the  necessary  conditions  of
optimality  (NCO)  can  help  devise  more  efficient  and  more  robust  real-time  optimization  schemes.  Ideally,
the structuring  decisions  involve  the  NCO  as follows:  (i)  one  measures  or estimates  the  plant  NCO,  (ii)
a NCO-based  input  parameterization  is  used,  and  (iii)  model  adaptation  is  performed  to  meet the  plant
NCO. The  benefit  of using  the  NCO  in  dynamic  real-time  optimization  is  illustrated  in  simulation  through
the  comparison  of  various  schemes  for solving  a final-time  optimal  control  problem  in  the  presence  of
uncertainty.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Optimization is important in science and engineering as a way
of finding the best solutions, designs or operating conditions. Opti-
mization is typically performed on the basis of a mathematical
model of the object of attention. For example, engineers might be
interested in the optimal operation of processes that either operate
at steady state or undergo transient changes. The object of atten-
tion, or reality, is called the “plant”, whereas the “model” is a set of
algebraic, differential or differential-algebraic equations.

In practice, optimization is complicated by the presence of
uncertainty in the form of plant-model mismatch and unknown
disturbances. Without uncertainty, one could use the model at
hand, optimize it numerically off-line and implement the optimal
inputs in an open-loop fashion. However, because of uncertainty,
additional information such as uncertainty description or plant
measurements must be included. In the former case, robust opti-
mization computes a set of inputs that guarantees feasibility either
for all possible realizations or with a desired probability level,
however at the expense of a conservative solution (Srinivasan,
Bonvin, Visser, & Palanki, 2003; Terwiesch, Agarwal, & Rippin,
1994). In the latter case, the inputs are updated in real-time
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based on measurements. This is the field of real-time optimiza-
tion, which is labeled RTO for static optimization problems (Marlin
& Hrymak, 1997) and DRTO for dynamic optimization problems
(Biegler, 2009). This paper deals with two major implementation
issues in DRTO, namely, model quality and computational aspects.

The issue of model quality raises an important question: Does
good performance require a good model? This is not necessarily
the case for control, since errors resulting from a poor model can
be offset by the action of feedback. In optimization, without feed-
back to make up for modeling errors, the model needs to represent
the reality accurately, in particular the optimality conditions of the
plant. The situation is slightly different in real-time optimization
since the measurements available on-line represent some form of
feedback. However, this feedback is only partial as it is typically
limited to output information. Furthermore, it is important to adapt
the model appropriately, that is, there where it matters most for
the purpose of optimization. These issues of measurement loca-
tion and input update in the context of imperfect model are crucial
for reaching optimality. It is argued in this paper that the neces-
sary conditions of optimality (NCO) predicted by the model need
to match those of the plant for plant optimality. We  will discussed
how the NCO measurements can be incorporated in a model so as
to be most useful for optimization.

The computational aspects are also crucial for implementation.
A very reliable optimization scheme is model predictive control
(MPC), which incorporates state feedback, uses a receding hori-
zon and carries out the optimization repeatedly at each sampling

0098-1354/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
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time (Rawlings & Mayne, 2009). MPC  was initially developed to
track a reference trajectory by minimization of a quadratic error
term. It has recently been extended to “economic MPC” that uses
a non-quadratic cost function (Heidarinejad, Liu, & Christofides,
2012; Rawlings & Amrit, 2009). Furthermore, there has been con-
siderable efforts in recent years to speed up the computations by
formulating convex optimization problems and also using algo-
rithms that exploit the structure of the problem (Diehl, Ferreau,
& Haverbeke, 2009; Richter, Morari, & Jones, 2011; Wang & Boyd,
2010). On the other hand, recent trends in DRTO have included
attempts to move the heavy computations off-line, where time
and computational power are more available, and limit the on-line
operations to quick decisions and easy computations. For example,
multi-parametric programming generates off-line a lookup table of
control laws, which are then used on-line based on the estimated
states of the plant (Bemporad, Morari, Dua, & Pistikopoulos, 2002;
Pistikopoulos, Georgiadis, & Dua, 2007; Zeilinger, Jones, & Morari,
2011). Also, “advanced step NMPC” strategies have been proposed,
which solve the detailed optimization problem in background and
apply sensitivity-based update on-line (D’Amato, Kumar, Lopez-
Negrete, & Biegler, 2012; Zavala & Biegler, 2009). Another approach
is the nonlinear real-time iteration scheme, which uses a continu-
ation Newton-type framework and solves one QP at each iteration
(Diehl, Bock, & Schlöder, 2005; Diehl et al., 2002). This allows
for multiple active set changes and thus ensures that the non-
linear MPC  algorithm cannot perform worse than a linear MPC
controller. Yet a different approach is NCO tracking, which uses
a NCO-based parameterization of the input profiles to design a
multivariable feedback scheme that tracks the first-order opti-
mality conditions, thereby pushing the system toward optimality
(Srinivasan & Bonvin, 2007).

This paper deals with the model-quality issue in DRTO. In the
presence of significant plant-model mismatch, the use of a fixed
nominal model is typically insufficient to drive the plant to opti-
mality. With MPC  for example, the estimated states are often
inaccurate, and one would need to update the model, which is
difficult to do in closed-loop operation due to the so-called dual
control problem (Aström & Wittenmark, 1995). This work adopts
the viewpoint that, in real-time optimization, the model is a vehi-
cle to process plant measurements and compute the optimal inputs.
This step involves two major decisions, namely, the choice of the
measured quantities and the choice of a finite number of decision
variables via input parameterization. Note that these choices can
benefit from knowledge of the NCO since the NCO are intimately
linked to plant optimality. The structure of the optimal solution
and the corresponding NCO can be determined off-line by numeri-
cal optimization. These measurement and input-parameterization
issues are briefly addressed next.

Measurements and uncertainty description. The measurements
are typically the plant outputs yplant. The uncertainty, which is
observed as the difference between the plant measurements and
the corresponding model predictions, can be represented as para-
metric variations of the plant model. Alternatively, if the NCO
elements can be measured, say yNCO, the model uncertainty can be
expressed as the difference between the measured and the pre-
dicted yNCO values. It is interesting to notice the close relation
between the type of measurements (the plant outputs yplant vs.
the NCO elements yNCO) and the uncertainty description (the plant
parameters �plant vs. the NCO deviations �NCO).

Parameterization and update of the inputs. The traditional way
of parameterizing infinite-dimensional inputs is control vector
parameterization (CVP), whereby the inputs are approximated as
piecewise-constant profiles. The main advantage is universality,
that is, any solution can be closely approximated by introducing a
sufficient number of pieces (barring certain numerical issues such
as ringing around discontinuities). However, CVP typically contains

Fig. 1. Measurement and input-parameterization features of various DRTO
schemes. The measured plant outputs are labeled yplant , the measured NCO elements
yNCO; the inputs are parameterized via control vector parameterization, �CVP , or via
the  elements of the NCO, �NCO . Plant-model mismatch can be absorbed in the plant
model parameters �plant or via an additive disturbance to the NCO values, �NCO .
“Ident” means the use of parameter identification, “Diff” the computation of a dif-
ference, “Opt” the use of numerical optimization, and “Control” the use of feedback
control.

a large number of piecewise-constant input values, denoted here
�CVP. In contrast, a parsimonious input parameterization, �NCO, can
be obtained from the knowledge of the NCO, that is, the input
elements correspond to switching times between arcs and input
values associated with certain arcs. The way  the inputs are param-
eterized impacts on the way  there are updated. With �CVP, the only
efficient way  to compute the inputs is through numerical opti-
mization. With �NCO, the few input parameters can be adjusted via
feedback control to regulate the deviation �NCO to zero.

Various DRTO schemes are possible based on the choice of the
measurement and input-parameterization options, some of which
are illustrated in Fig. 1 and discussed next.

• In the “two-step approach” of repeated parameter identification
and performance optimization, the measurements are used to
adapt the model parameters and estimate the current states. The
estimated states serve as initial conditions for the optimization
that is repeated on-line with the updated model (Chen & Joseph,
1987; Eaton & Rawlings, 1990). The input parameterization is of
the CVP type.

• In the modifier-adaptation approach, modifier terms are added
to the cost and constraint functions. Upon measurement of yNCO,
the modifiers are updated in order for the model and the plant
to have matching first-order optimality conditions (Chachuat,
Srinivasan, & Bonvin, 2009; Marchetti, Chachuat, & Bonvin, 2007).
These schemes use the measurements yNCO and the inputs �CVP
for optimization.

• It is also possible to perform numerical optimization using a NCO-
based input parameterization. Such a scheme has been developed
by Schlegel and Marquardt (2006a) and applied to an indus-
trial polymerization process in Schlegel and Marquardt (2006b).
The corresponding DRTO scheme consists in measuring yplant and
updating the model parameters accordingly, followed by numer-
ical optimization using the �NCO parameterization.

• Finally, NCO tracking uses the measurements of yNCO to update
�NCO using feedback control to meet the plant NCO (Srinivasan &
Bonvin, 2007).

This paper considers the implementation of optimal control in
the presence of significant uncertainty in the form of plant-model
mismatch, which requires some form of adaptation based on plant
measurements. Three possible adaptation strategies are consid-
ered, namely adaptation of the process model, adaptation of the
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cost and constraint functions, and direct adaptation of the inputs. A
similar investigation has already been proposed for the static opti-
mization case (Chachuat et al., 2009). Note also that the emphasis
in the present study is not on computational aspects as this has
been the case in numerous recent investigations involving non-
linear MPC  (Diehl et al., 2009), but rather on alternatives ways
to compensate for plant-model mismatch and drive the plant to
optimality.

The paper is organized as follows. Section 2 formulates the opti-
mization problem and presents the corresponding NCO. Section 3
addresses numerical optimization using a plant model and touches
upon the topics of “model adequacy” and “modeling for optimiza-
tion”. Optimizing control using a solution model is presented in
Section 4. Section 5 discusses the choice of a DRTO scheme with
regard to both measurements and input parameterization. The var-
ious ideas developed in this paper are illustrated through a simple
dynamic example in Section 6, and Section 7 concludes the paper.

2. Dynamic optimization problem

2.1. Problem formulation

Consider the constrained dynamic optimization problems with
finite operational time, where the objective is to determine the
input profiles that optimize a final-time cost function. In addition to
constraints corresponding to the dynamic system equations, there
might be path constraints (involving inputs and states) as well

as terminal constraints. Input bounds are dictated by actuator lim-
itations, while state-dependent constraints typically result from
safety and operability considerations. Terminal constraints usually
arise from quality or performance considerations.

Since the inputs are infinite dimensional, numerical solution of
the optimization problem requires input parameterization. Here
the inputs are parameterized using a set of finite parameters � and
numerical optimization then computes the optimal values of �.

The main challenge addressed in this paper is that of uncer-
tainty, that is, the plant does not quite behave as predicted by the
model. One way to incorporate the uncertainty in the model is via
the set of uncertain parameters �. The dynamic optimization prob-
lem can be formulated mathematically as follows (Bryson & Ho,
1975; Kirk, 1970):

min
�

�(x(tf ), �, �) (1)

s.t. ẋ(t) = F(x(t), u(t), �, �), x(0) = x0(�, �) (2)

S(x(t), u(t), �, �) ≤ 0 (3)

T(x(tf ), �, �) ≤ 0 (4)

[u(t), �] = U(t, x, �, �), (5)

where � is the final-time cost functional to be minimized, x the
states with the known initial conditions x0, u the inputs, � the time-
invariant decision variables, S the path constraints, T the terminal
constraints, F the system dynamics, � the uncertain plant model
parameters, U the input parameterization, � the input parameters,
and tf the final time that is finite but can be either fixed or free. If
tf is free, it is part of �. Note that the initial conditions can also be
considered as decision variables.

The solution of Problems (1)–(5) is typically discontinuous and
consists of several intervals or arcs (Srinivasan, Palanki, & Bonvin,
2003). Yet, the input profiles are continuous and differentiable in
each interval. Each interval is characterized by a different set of
active path constraints, that is, this set changes between two suc-
cessive intervals.

2.2. Necessary conditions of optimality

Let us define the following functions:

H(t) = �T (t) F(x(t), u(t), �, �) + �T (t) S(x(t), u(t), �, �) (6)

˚(tf ) = �(x(tf ), �, �) + 	T T(x(tf ), �, �) (7)


 (tf ) = ˚(tf ) +
∫ tf

0

H(t)dt (8)

�̇T (t) = −∂H

∂x
(t), �T (tf ) = ∂˚(tf )

∂x(tf )
, (9)

where H(t) is the Hamiltonian function, ˚(tf) the augmented ter-
minal cost, 
 (tf) the total terminal cost, �(t) /= 0 the adjoint
variables (Lagrange multipliers for the system equations), �(t) ≥ 0
the Lagrange multipliers for the path constraints, and 	 ≥ 0 the
Lagrange multipliers for the terminal constraints.

The NCO for optimization problem (1)–(4),  that is, without
parameterization of the input, can be written as follows (Bryson
& Ho, 1975; Srinivasan, Palanki, et al., 2003):

lanimreThtaP

Constr aints μT (t) S x(t), u(t), ρ, θ = 0, μ(t) ≥ 0 νT T x(tf ), ρ, θ = 0, ν ≥ 0

Sensiti vities
∂H

∂u
(t) = 0

∂Ψ(tf )

∂ρ
= 0

(10)

3. Numerical optimization using a plant model

The best representative of this class of methods for the case of
plant-model mismatch is the two-step approach, which (i) uses a
plant model and output measurements to identify uncertain model
parameters and (ii) optimize the updated model using CVP. The
plant model is of the form:

ẋ(t) = F(x(t), u(t), �, �), ymodel(t) = G(x(t), u(t), �, �), (11)

with the state vector x and the output variables predicted by the
model ymodel. After a brief description of the model-building pro-
cedure, the two concepts of “model adequacy” and “modeling for
optimization” will be developed. Special attention will be paid to
the choice and adaptation of � to deal with uncertainty.

3.1. Model building

To construct a mathematical model, the modeler typically uses
both prior knowledge and measurements from the plant. The mod-
eler goes through several steps that include (i) abstraction from
the reality to define the “system”, (ii) simplification to arrive at
a mathematical model of manageable complexity, (iii) parameter
identification to fit the model to the plant, and (iv) model validation
to ensure that the model will be useful for its intended goal. Since
the later steps influence the early ones, this procedure is typically
iterative.

Model identification and validation are typically done by com-
paring the model prediction ymodel(t) with the observed plant
outputs yplant(t). However, parameter identification is a difficult
task in the presence of structural plant-model mismatch, that is,
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when the plant does not belong to the model set (Ljung, 1999).
In this case, parameter identification requires appropriate exper-
imental design (Montgomery, 2005) and persistency of excitation
(Walter & Pronzato, 1997).

The model validation step is very important. How can one ensure
that the model will be adequate for solving the optimization prob-
lem at hand? The criterion Jid =‖ ymodel(t) − yplant(t) ‖ is convenient
because the outputs are, by definition, available. Furthermore, it is
fully justified if the main purpose of the model is to predict the out-
puts, for example in a simulation study. But is it still justified if the
model is used for optimization? This question is addressed next.

3.2. Model adequacy

It  is well known that the two-step approach of repeated
parameter identification and performance optimization works well
provided that (i) there is no structural plant-model mismatch,
that is, the plant lies in the model set and (ii) the operating
conditions yield sufficient excitation for all the uncertain model
parameters to be estimated (Chen & Joseph, 1987; Marlin &
Hrymak, 1997). If these conditions are satisfied, convergence to
the plant optimum can be achieved in one iteration (Forbes &
Marlin, 1996). Yet, these conditions are rarely met  in practice.
Regarding the latter condition, in particular, the situation is some-
what similar to that found in the area of system identification
and control, where the two tasks of identification and control are
typically conflicting (dual control problem Aström & Wittenmark,
1995).

Hence, in the realistic case of plant-model mismatch and/or
insufficient excitation, whether the scheme converges, or to which
point it converges, becomes anyone’s guess. This is due to the fact
that the objective for parameter adaptation might be unrelated to
the cost and constraints that drive optimality in the optimization
problem. Hence, minimizing the mean-square error of the plant
outputs, ‖ymodel(t)− yplant(t) ‖, may  not help in our quest for feasi-
bility and optimality.

On the other hand, convergence under plant-model mismatch
has been addressed by Biegler, Grossmann, and Westerberg (1985)
and Forbes, Marlin, and MacGregor (1994).  It has been shown
that optimal operation is reached if model adaptation leads to
matched KKT conditions for the model and the plant. Hence, the
basic idea is to adjust the value of � in such a manner that the
NCO predicted by the model match those of the plant, which
naturally leads to the next section concerned with modeling for
optimization.

3.3. Modeling for optimization

The basic idea is that the validity of a model depends on its
intended use. This concept has been studied extensively in the
1990s in the area of system identification and control under the
label “identification for control” (Aström, 1993; Gevers, 2004). The
proposed solution has been to use matching criteria for the identifi-
cation and control tasks. This is obtained by filtering the prediction
error (identification) to make it resemble the closed-loop perfor-
mance criterion (control).

Similarly in optimization, one can consider” modeling for
optimization”, whereby the synergy between the modeling and
optimization steps is improved by reconciling the objective func-
tions of the two problems. In concrete terms, the objective function
of the identification problem can be set up to minimize the
error between the plant and model NCOs (Srinivasan & Bonvin,
2002).

The idea can be formulated as follows. Let N  be used to represent
the components of the NCO in (10). Plant optimality under plant-
model mismatch is given by,

0 = Nplant︸  ︷︷  ︸
objective

= Nmodel︸  ︷︷  ︸
optimization

+ Nplant − Nmodel︸ ︷︷  ︸
identification

. (12)

Plant optimality implies zeroing the necessary conditions,
Nplant = 0. For its part, numerical optimization of the model
enforces Nmodel = 0. Hence, if the identification step can mini-
mize Jid = ‖Nplant − Nmodel‖, the identified model will be suited for
optimization. Such a choice of objective function is referred to as
“modeling for optimization”.

If the components of the NCO can be measured, yNCO, then the
identification criterion based on the minimization of the output
error addresses the optimization objective directly. However, the
evaluation of certain components of the NCO, such as the plant
gradients, is difficult and requires special care with respect to both
excitation and noise filtering.

4. Optimizing control using a solution model

As shown in Fig. 1, optimization can also be implemented
via feedback control. NCO tracking is organized around a solu-
tion model, that is, qualitative knowledge of the optimal solution.
This solution model is used to identify the NCO and select the
corresponding measurements yNCO and input elements �NCO. To
illustrate the NCO-based input parameterization, consider the
input u1(t) in a given time interval. CVP would parameterize u1(t)
using a number of constant values, which are then optimized
numerically. However, if we know that the path constraint S1 is
active during that interval and u1 is the input that pushes S1 to
its bound, an alternative parameterization would be u1(t) = Gc(S1),
where Gc is an appropriate controller that keeps S1 active. Hence,
the parameterization looks for manipulated variables (MVs, the
input parameters �NCO) that can be used to track controlled vari-
ables (CVs, the elements of yNCO) so as to satisfy the NCO. The
solution model is not unique since the NCO depend on the param-
eterization that is used. Hence, the diversity in solution models can
be exploited to ease up implementation.

The development of a solution model involves three steps:

(1) The optimal solution is first characterized in terms of the types
and sequence of arcs. This step typically uses the available plant
model and numerical optimization to compute the input pro-
files using CVP.

(2) A finite set of parameters �NCO is selected to represent the input
profiles (MVs), the corresponding NCO are formulated from
which the CVs are obtained, and the MVs  and CVs are paired
to form a multivariable control problem.

(3) A robustness analysis is performed to ensure that the structure
of the optimal solution is invariant in the presence of uncer-
tainty and the nominal optimal solution are structurally the
same. If this is not the case, it is necessary to modify the struc-
ture of the solution model and repeat the procedure.

The solution model considers the different parts of the NCO
(path constraints, path sensitivities, terminal constraints and ter-
minal sensitivities) that need to be enforced for optimality. The
various NCO elements can be implemented with various degrees
of ease or difficulty: a path constraint is often enforced on-line via
constraint control; a path sensitivity is more difficult to implement
as it involves the adjoint variables, which are not available on-line
without the use of a plant model; the terminal constraints and sen-
sitivities call for prediction, which requires a model, or else they
can be met  iteratively over several runs. To ease implementation,
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it is often possible to approximate the optimal inputs with sim-
pler profiles. This represents the strength of the approach, as the
approximations introduced at the solution level can be assessed in
terms of optimality loss.

The MVs  of the control problem are the handles available to
reach optimality. The CVs are the NCO for the selected input param-
eterization. By definition, there are as many optimality conditions
as there are degrees of freedom, thus resulting in a square control
system. The pairing of MVs  and CVs can be done in a centralized
(multivariable control) or decentralized (multi-loop control) fash-
ion. Note that there are different ways of implementing a given
solution model, for example using alternative MVs  via a change of
variables, using different pairings of MVs  and CVs, or using a plant
model for prediction, each way defining a different NCO-tracking
option (Srinivasan & Bonvin, 2007).

5. Choice of a DRTO scheme

The choice of a DRTO scheme is intimately linked to the mea-
surements and the input parameterization as illustrated in Fig. 1
and discussed next.

5.1. Measurements

Measurement availability is key in real-time optimization and
determines the way the uncertain model elements can be updated
to account for the observed uncertainty:

(1) If the outputs yplant are measured, the uncertainty is accounted
for by varying the parameters �plant of the plant model. Note,
however, that optimality cannot in general be guaranteed in
the presence of structural plant-model mismatch.

(2) If the NCO elements yNCO are measured, the uncertainty can
be expressed as additive disturbances that represent the devi-
ations of the NCO from their ideal values of zero. Hence, special
effort is needed to measure or estimate the NCO, which requires
excitation and specific measurements.

Which measurements should be used? If both yplant and yNCO
are available, it seems easier to implement DRTO via modifier-
adaptation or NCO tracking since the two-step approach requires
system excitation and numerical optimization to estimate the
parameters, another numerical optimization in the re-optimization
step and, in many cases, a time-scale separation for the two iterative
steps, namely, identification and optimization, to converge. Yet, the
two-step approach has been used extensively since it represents
the only available option when yNCO is not available. Furthermore,
measuring, estimating and approximating certain elements of the
NCO is not trivial and represents an open field of research. Hence,
for the time being, measuring yplant and expressing the uncertainty
through parametric variations of the plant model remains the main
option.

5.2. Input parameterization

The input parameterization is important as it affects the choice
of the adaptation strategy:

(1) The simplest and most generally valid way of parameterizing
input profiles is via �CVP, following which the optimal inputs
are determined by numerical optimization.

(2) The alternative is to consider the NCO-based parameterization
�NCO, which lends itself to the design of control loops to reject
the uncertainty in the NCO seen as additive disturbances.

Table 1
Model parameters and operating bounds.

m 1300 kg
f  0.5 N s2

m2

umin −8000 N
umax 3600 N
vmax 40 m

s
xdes 1000 m

The parameterization of choice depends on the problem at hand.
The �NCO parameterization is initially more involved as it requires
numerical optimization to compute the nominal optimal solution
that is used to characterize the NCO. Yet, this parameterization may
turn out to be very convenient as optimality can be reached using
feedback control, that is, without having to repeat optimization on-
line. The success of the NCO-based parameterization depends on its
validity since a tailor-made parameterization is seldom universally
valid.

5.3. Choice of a scheme

The choice of a scheme depends on several factors:

(1) Are the NCO known and can they be measured or estimated?
(2) Have the NCO been verified to be robust with respect to uncer-

tainty?
(3) Is a multivariable feedback control scheme easily imple-

mentable?

In the case of a positive answer to all three questions, NCO tracking
is clearly an option for implementing DRTO. Modifier adaptation is a
valid option when only question (1) is verified. Otherwise, the two-
step approach is still the method of choice because of its generality.

6. Illustrative example

The use of plant and solution models for real-time optimization
will be illustrated on the simple car example that is presented next:

• System: Movement of a car from one point to another.
• Uncertainty: Slope of the road ±5%.
• Objective: Minimize final time.
• Manipulated input: Accelerating/braking force.
• Path constraints:  Input bounds; speed limit.
• Terminal constraints: Zero velocity at final time; cover at least the

prescribed distance.

6.1. Formulation of the optimization problem

6.1.1. Variables and parameters
x: position, v: velocity, u: accelerating/braking force, s: slope of

the road, f: friction coefficient, g: gravitational constant, and m:
mass of the car. The numerical values of the model parameters and
operating bounds are given in Table 1.

6.1.2. Model equations
ẋ = v x(0) = 0, (13)

v̇ = u − f v2

m
− s(x)g, v(0) = 0. (14)

The nominal model assumes zero slope, that is s(x) = 0, while in
reality the unknown elevation profile, which is the integral of the
slope profile, is as shown in Fig. 2.
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Fig. 2. Elevation profile.

6.1.3. Optimization problem
The optimization problem can be formulated mathematically as

follows:

min
u(t), tf

J = tf

s.t. dynamic system (13) and (14)

umin ≤ u(t) ≤ umax

v(t) ≤ vmax

v(tf ) = 0

x(tf ) ≥ xdes .

(15)

6.2. Characterization of the optimal solution

Fig. 3 shows that the optimal solution consists of three arcs, with
the successive inputs umax, upath and umin:

• The first arc umax corresponds to maximum acceleration in order
to reach vmax as quickly as possible. The duration of this arc, t1,
depends on the slope, which is uncertain. However, t1 can be
determined implicitly upon reaching vmax, that is v(t1) = vmax.

Fig. 3. Nominal optimal solution (s = 0): input u/100 [N], velocity v [m/s] and position
x/20  [m]  profiles.

Table 2
Pairing of MVs and CVs.

Path objectives Terminal objectives

Constraints t1 : v(t1) = vmax t2 �→ x(tf) = xdes

upath(t) : v(t) = vmax tf : v(tf ) = 0
Sensitivities – –

• The second arc keeps the velocity at vmax, for which the cor-
responding input value upath can be determined from (14) as

upath = fv2
max + s(x)mg. The value upath is also a function of the

uncertain slope.
• The third arc corresponds to full braking in order to achieve

v(tf ) = 0. The switching time t2 between the second and third
arcs is chosen so that x(tf) = xdes, that is, the desired dis-
tance will be exactly covered when the velocity goes to zero.
The final time is determined upon reaching zero velocity,
v(tf ) = 0.

6.2.1. Remarks

(1) This car example does not involve sensitivities, that is, the opti-
mal  solution is entirely determined by active constraints. The
reader is referred to Srinivasan and Bonvin (2007) for cases
where sensitivities are involved.

(2) The types and sequence of arcs (umax followed by upath and then
umin) hold for any car regardless of its weight and accelera-
tion/braking power. They even hold generically for a bicycle, for
which the second arc vanishes (t1 does not exist). This generic
aspect of the optimal solution provides much robustness to the
solution-model approach.

6.3. NCO tracking

Input parameterization is straightforward in this problem, with
the input parameters � = [t1 upath t2 tf]T. The pairing of MVs  (t1, upath,
t2 and tf) and CVs (v(t1) = vmax, v(t) = vmax, x(tf) = xdes, and v(tf ) = 0)
follows directly from the characterization of the optimal solution
and is given in Table 2.

Since there is a prediction involved in the pairing t2 �→ x(tf) = xdes,
meeting this constraint will either require a predictive model or
be implemented over several runs. Next, we present two control
strategies that correspond to different ways of adjusting t2 to meet
the terminal constraint x(tf) = xdes.

6.3.1. Run-to-run adaptation of t2
In the absence of a model to predict x(tf) during the run, NCO

tracking will encompass on-line control to enforce v(t) = vmax in
the second arc and run-to-run control to adapt t2 so as to sat-
isfy x(tf) = xdes over several runs. The time instants t1 and tf are
determined by the velocity reaching vmax and 0, respectively. It is
assumed that the plant (the car with varying unknown slope) will
have the same types and sequence of arcs, but different values of
t1, upath, t2 and tf.1

6.3.2. On-line adaptation of t2
Prediction of the final position x(tf) to initiate breaking at t2

can be done during the run using the nominal plant model that
assumes s(x) = 0. Since t1, upath and tf can be determined from their

1 This can be verified numerically off-line by perturbing the nominal model and
computing the corresponding optimal inputs.
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Table 3
Constraint and cost values for various optimization scenarios: Iv+ =

∫ t2

t1
v+(t)dt, where v+(t) = v(t) − vmax if v(t) > vmax and 0 otherwise; vm: maximal velocity; xf: final

position; tf: final time (cost); tfaug : cost penalized for deviation from constraints, each deviation being weighted 5 times the corresponding Lagrange multiplier.

Optimization scenario Iv+[m] vm[m/s] xf [m] tf [s] tfaug [s]

Ideal solution 0 40 1000 35.31 35.31
Open-loop use of nominal optimal input 34.57 43.87 1045.3 35.71 43.70
Re-optimization – no adaptation 1.85 40.87 1003.8 36.00 36.56
Re-optimization – adaptation 0.05 40.08 1004.4 35.44 35.90
NCO  tracking – t2 not adapted 0.003 40.001 1012.2 35.64 36.86
NCO  tracking – run-to-run t2 adaptation 0.002 40.001 1000 35.31 35.31
NCO  tracking – on-line t2 adaptation 0.002 40.001 996.5 35.22 35.57

corresponding NCO during simulation (integration) of the dynamic
model, the optimization problem (15) can be rewritten as:

min
t2

J = tf

s.t.dynamic system (13) and (14)

u(t) =

⎧⎪⎨⎪⎩
umax for 0 ≤ t < t1

fv2
max for t1 ≤ t < t2

umin for t2 ≤ t < tf

t1 : v(t1) = vmax

tf : v(tf ) = 0.

(16)

Problem (16) is simpler to solve than the original problem
(15) for at least two reasons: (i) the number of degrees of
freedom has been reduced from ∞ to 1 and (ii) the discon-
tinuities at the switching instants can be handled much more
easily and without oscillations (Schlegel & Marquardt, 2006a).
For implementation, the current state information is used as
initial conditions for re-optimization at each sampling time.
Note that the slope is not updated. The optimal value of t2
is computed at each re-optimization instant, and breaking is
implemented when the running time equals the value of t2 com-
puted last. As with run-to-run adaptation of t2, the time instants
t1 and tf are determined by the velocity reaching vmax and 0,
respectively.

6.4. Optimization results

The performance of various DRTO schemes is summarized in
Table 3 and discussed next. The case of no measurement noise is
considered here to be able to focus on the distinguishing features
of the various approaches.

The reference scenario is the ideal solution, which is computed
with knowledge of the varying slope and is shown in Fig. 4. As
expected, this scenario meets exactly all the path and terminal con-
straints. In comparison, the open-loop use of the nominal optimal
input leads to significant violation of the speed constraint as there is
no possibility to compensate for the fact that the road goes downhill
initially.

The fives DRTO schemes analyzed below correspond to different
re-optimization and NCO-tracking choices:

• Re-optimization – no adaptation: Uncertainty is considered as
additive state disturbances, and CVP is used for numerical opti-
mization. Re-optimization every two seconds without slope
adaptation gives the profile shown in Fig. 5 (top-left). There is
considerable chattering caused by the need for additional bra-
king in the initial downhill part followed by additional power in
the uphill part. The path constraint is not met  accurately, as seen
by the Iv+ values in Table 3. Note that this scheme corresponds
to economic nonlinear MPC  (Rawlings & Amrit, 2009) and shows

the negative effect of not being able to adapt for plant-model
mismatch.

• Re-optimization – adaptation: Uncertainty is considered as both
parametric variations and additive state disturbances, and CVP
is used for numerical optimization. With adaptation of the slope
parameter, chattering and the deviation from vmax in the second
arc are reduced (compare the corresponding Iv+ values in Table 3).
Treating the uncertainty as parametric variations helps track the
path constraints, but there is still some residual error. Note that
it is very difficult to control the terminal position in a single run
because of modeling errors. A comparison of the two input pro-
files for re-optimization shows that parameter adaptation helps
approximate the ideal input (compare Figs. 4 and 5 (top row)).

• NCO tracking – t2 not adapted: Uncertainty is considered as NCO
deviations, and NCO tracking is implemented. Without t2 adapta-
tion, the path constraint v(t) = vmax and the final velocity v(tf ) = 0
are met, but not x(tf) = xdes.

• NCO tracking – t2 adapted over several runs: Similar to the previous
case, but t2 is now adapted on a run-to-run basis. After 5 runs,
all the constraints are met  and optimality is reached, which in
this problem is guaranteed by satisfaction of the constraints on
maximum velocity and final position.

• NCO tracking – on-line adaptation of t2: Even when t2 is adapted,
the terminal position constraint x(tf) = xdes is not met  exactly since
it is adapted on the basis of an inaccurate model. Such terminal
objectives can only be met  over several runs.

Fig. 4. Ideal solution for known varying slope: input u/100 [N], velocity v [m/s] and
position x/20 [m]  profiles.
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Fig. 5. Optimal input obtained with four DRTO schemes. The case of NCO tracking with t2 adapted over 5 runs is not shown here as the converged solution corresponds to
the  ideal solution shown in Fig. 4.

7. Conclusions

This paper has addressed the quality of models used for real-
time optimization. According to the quote “All models are wrong
but some are useful” (Box, 1979), the model is not viewed as the
“truth”, but rather as a tool that must be tailored to the optimization
scheme. Modeling is really about making educated approximations
to arrive at a model of acceptable complexity that is adequate for
optimization in the presence of uncertainty. When dealing with a
real plant, it is important to find a good way of introducing approx-
imations. Is it at the plant-model level, before going through the
optimization machinery? Or is it at the implementation level, when
the user can see the implications of selected approximations? It has
been argued that the parameters of the plant model adjusted using
output measurements might not be the best handles to adjust in
real time, since they might only be loosely connected to optimal-
ity. By contrast, if the NCO elements are measured or estimated, the
optimization objective can be incorporated in the parameter iden-
tification step, thereby accommodating the objective of “modeling
for optimization”.

The paper has also discussed the various elements of a solution
model. Its primitive version is to use piecewise-constant profiles.
However, one could devise a more appropriately parameterized
solution structure by dissecting the nominal optimal input profiles
and relating their elements to different parts of the NCO. Since the
complexity of solution models depends on the number of inputs,
and not on the number of states or the nonlinearity of the plant, the
solution model is easier to obtain for problems with only a few arcs
(and thus also only a few input elements �NCO), and this regardless
of the order of the system. Such a tailor-made parameterization has
been shown to be more efficient than CVP.

One strength of NCO tracking is the possibility of combin-
ing off-line tasks (numerical optimization based on the nominal
plant model to determine the set of active constraints) and on-
line activities (optimizing control that adjusts the inputs on the
basis of measurements). Another nice feature is the possibility, if
necessary, of introducing approximations in the various profiles to
ease implementation. This is particularly effective in dealing with
sensitivity-seeking arcs, which are often difficult to compute but,
at the same time, contribute only negligibly to the cost. Instead
of building a model that will predict the plant performance from
scratch, NCO tracking starts with a robust parameterized model of
the solution and adjusts the few input parameters that are inti-
mately linked to plant optimality. The synergy between off-line
and on-line computations for real-time optimization needs to be
studied in more details. Multi-parametric programming and NCO
tracking represent two such initial attempts. A big push could come
from researchers in the field of optimization once they realize that
the available models are not sufficiently accurate to drive plants to
optimality.
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