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Abstract: The generation of pulses in dual-pump fiber optical parametric 
amplifier is investigated. Theoretically, it is shown that in an analogical 
manner to pulse generation in single-pump fiber optical parametric 
amplifiers, the generated pulse shape depends on the linear phase mismatch 
between the interacting waves. However the dual-pump architecture allows 
for the bounding of the phase mismatch over a wide bandwidth. This 
feature permits the generation of uniform pulses over a wide bandwidth, 
contrary to the single-pump architecture. Using the developed theory, a 
pulse source with uniform pulses at 5 GHz repetition rate and duty cycle of 
0.265 over 40 nm is demonstrated. 
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1. Introduction 

Optical short pulse generation has been subject to a great interest due to its many applications 
in medical imaging, microscopy, spectroscopy as well as optical communication. One 
commonly used short pulse source is the modelocked laser (MLL). Although various MLLs 
with remarkable performance in terms of amplitude and phase jitter have been realized [1], 
their strict phase-locking constraint results in non-trivial operation as well as high sensitivity 
to external perturbation. Moreover, not only is the repetition rate dictated by the cavity mode 
spacing, but also the lasing bandwidth limits the pulse duration as well as operational 
wavelength. An alternative approach to the generation of optical short pulses is to rely on a 
cavity-less source. The single pass structure of such pulse source leads to less sensitivity 
toward environmental fluctuations. It also allows for the sweeping of the repetition rate over 
some range without the need for tuning the cavity correspondingly. Wavelength tunability can 
also be achieved. In [2] a stable 40 GHz cavity-less pulse source based on linear pulse 
compression in a dispersion-flattened dispersion compensating fiber (DF-DCF) was 
demonstrated reaching a 95 nm bandwidth tunability. 

Another approach to generate pulses on a cavity-less all-fiber architecture is to exploit the 
quasi-instantaneous response of the Kerr effect in highly nonlinear fibers (HNLF). Indeed, 
using the four-wave mixing process (FWM), different pulse sources with interesting features 
such as high repetition rate [3], flat frequency comb [3] or multi-wavelength generation [4] 
were demonstrated. Among these approaches, fiber optical parametric amplifiers (FOPA) are 
of particular interest. FOPA is based on FWM in which the dispersion of the amplifying 
waveguide was designed so that an efficient transfer of energy takes place from one or two 
pump wave(s) to a signal wave and a generated idler. It is an energy conserving process and 
its efficiency is based on phase matching between the interacting waves [5]. FOPAs have 
widely been used to generate optical pulses; moreover they allow for the generation of optical 
time windows that have been applied for optical regeneration [6], optical sampling [7] and 
demultiplexing [8]. 

Although most studies on short pulse generation in single-pump FOPA with a sinusoidal 
modulated pump were focused on the exponential gain region [9], it has been shown that the 
generated pulse shape and pulse duration depend on the signal frequency relative to the pump 
frequency [10]. In particular, operating at one of the extremities of the gain spectrum 
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associated with the pump peak power generates the shortest pulses with a near-sinc shape 
[11]. While it is possible to tune the wavelength of the generated pulse by simultaneously 
adjusting pump and signal wavelengths, the pulse amplitude and width will vary with its 
frequency detuning from a fixed pump position. As a result temporal dynamics for pulse 
generation in single-pump FOPA is limited to a very narrow bandwidth at any spectral gain 
region. 

In this paper we study the theory of short pulse generation in a dual-pump FOPA and 
demonstrate that by taking advantage of phase-matching bounding, it is possible to generate 
an identical temporal window over an extended frequency range. As a proof of concept we 
experimentally demonstrate the generation of identical pulses based on a dual-pump FOPA 
where both pumps are modulated simultaneously. The remainder of the paper is organized as 
follows. In section 2 by introducing the gain sensitivity, it is shown how a small decrease of 
one or both of the pumps powers from their peaks induces an abrupt decrease of the idler 
power that depends on the phase matching and leads to the generation of pulses. By 
highlighting that the linear phase mismatch can be bound to any desired value, it is shown 
that uniform pulses can be generated over a wide bandwidth. In section 3, we present an 
experimental demonstration of uniform pulse generation over a wide bandwidth based on 
dual-pump FOPA. Discussion and conclusion are provided in section 4. 

2. Theoretical analysis 

2.1 Gain sensitivity 

In this section, we introduce, in a similar manner as in [10], the concept of gain sensitivity 
and highlight its impact on pulse generation in dual-pump FOPAs. 

Dual-pump parametric amplification in a silica fiber is based on non-degenerate FWM 
whereby two high power pumps at angular frequencies ωP1 and ωP2 are launched into a highly 
nonlinear fiber (HNLF) together with a signal at ωs, which is assumed to be located in the 
inner band of the two pumps. When the signal is located far from the pumps, FWM satisfying 
energy conservation condition ωP1 + ωP2 = ωs + ωi, where ωi is the idler frequency, is 
sufficient to model the output optical gain spectrum. This model is referred to as the two-
sideband (TS) interaction model. When the signal is located close to either of the pumps, the 
TS model is no longer applicable and one must include the two generated outer sidebands to 
correctly predict the gain behavior [12, 13]. This latter model is referred to as the four-
sideband (FS) model and its solutions have to be calculated numerically. 

The efficiency of the energy transfer from the pumps to signal and idler through that 
FWM process depends on the phase-matching condition between the signal, idler and the two 
pumps. Assuming scalar waves, no pump depletion and neglecting loss, one can write the 
idler gain Gi and signal power gain Gs according to the TS interaction model as [5]: 

 
2

sin h( )i

r
G gL

g

 
=  
 

 (1a) 

 1s iG G= +  (1b) 

where r and the parametric gain coefficient g are given by: 

 1 22r P Pγ=  (2) 

 ( )2
2 2

2g r κ= −  (3) 

In Eq. (2), γ denotes the nonlinear coefficient of the waveguide and P1, P2 refer to the pumps 
power. P0 is also defined as the total pump power (P0 = P1 + P2). In Eq. (3), κ represents the 
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total phase matching between the interacting waves and can be written as the sum of the 
linear phase mismatch Δβ, which is induced by the dispersion of the HNLF, and nonlinear 
phase mismatch ΔβNL, which is related to self-phase and cross-phase modulations of the 
pumps: 
 NLκ β β= Δ + Δ  (4) 

 2 2 4 44
2 ( ) ( ) ( ) ( )

12s p s p

ββ β ω ω ω ω   Δ = Δ − Δ + Δ − Δ     (5) 

 1 2 0( )NL P P Pβ γ γΔ = + =  (6) 

If we denote ωc = (ωP1 + ωP2)/2 as the central angular frequency of the pumps, then  
Δωs = ωs−ωc = (ωs−ωi)/2 and Δωp = ωP1−ωc = (ωP1−ωP2)/2 are signal and pumps detuning 
from ωc, respectively. β2 and β4 are also second and fourth order dispersion coefficients of the 
waveguide at ωc, respectively. We now introduce 

0

G
PS  the gain sensitivity parameter: 

 
( )

0

0

0

lnG
P

G
P G

S
G P

 ∂ ∂ ∂ = =
∂

 (7) 

As shown in Eq. (7), this parameter is a measure of how sharp the parametric gain G 
varies with a small perturbation ∂P0 from the total pump power P0. Higher sensitivity will 
therefore lead to more abrupt change of the signal and idler power. Applying the partial 
derivative rule, Eq. (7) can be decomposed in two terms,

0 1 20 1 2
G G G
P P PS P S P S P∂ = ∂ + ∂ . In 

Appendix A, we show that
1,2

G
PS  has the following closed form analytical solution: 

 3 32

1
(4 / 2) (4 / 2)coth( ) for n=1,2

n

G
P n n

n

L
S P P gL

P gg

γ γγ κ γ κ− −= − − + −      (8) 

Equation (8) shows that the sensitivity parameter
0

G
PS depends on the linear phase mismatch Δβ 

through κ. Note that the unit of
0

G
PS is Np.W−1. A more practical definition of the gain 

sensitivity
0

dBG
PS in dB.W−1 units can also be used: ( )

0 00log 10 log(10)dBG G
P PS G P S= ∂ ∂ =  

0
4.343 G

PS≈ × , which is a measure of the gain variation in dB for 1 watt of total pump 

variation. 
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Fig. 1. (a) Gain sensitivity versus normalized phase mismatch term Δβ/γP0 for different pumps 
total power and HNLF lengths. (b) Gain sensitivity for different linear phase mismatch terms 
as a function of α = |P1/P2|. 
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Figure 1(a) depicts the evolution of the sensitivity as a function of Δβ/γP0 for different 
values of P0 and L in a typical HNLF with γ = 15 W−1.Km−1, assuming that the two pumps 

have identical powers. For equal pumps power 
0

dBG
PS is always strictly positive, which means 

that if the total pump power decreases, gain decreases by a higher rate. It can therefore be 
deduced that for a sinusoidal modulation of the pumps with total peak power P0, narrower 
pulses will be generated on signal and idler side. For all demonstrated cases in Fig. 1(a), 
highest sensitivity is obtained for Δβ = –3γP0. Appendix A provides a mathematical proof of 
this last statement. Figure 1(a) also shows that changing either L or P0 is not equivalent, as is 
the case with the parametric gain. Indeed, doubling the HNLF length induces a drastic 
increase of the sensitivity, whereas doubling P0 increases the sensitivity only close to the 
edges of the horizontal axis. Figure 1(b) depicts the influence of unequal pumps powers on 
sensitivity. In this figure sensitivity is plotted as a function of α = |P1/P2| while the total pump 
power is constant (P0 = 0.5 W). The results show that gain sensitivity decreases as the power 
imbalance is increased. Note that Eqs. (7) and (8) show a symmetrical influence of P1 and P2. 
It is also verified that Eq. (8) is in good agreement with the FS interaction model for  
0.25 ≤ α ≤ 1. 

2.2 Generation of optical short pulses in dual-pump FOPA 

The study of gain sensitivity to pump power variations showed that a periodic pulse 
modulation of the pumps P1(t) and P2(t) will generate shorter pulses on the signal and the 
idler side. Moreover, by choosing the appropriate linear phase mismatch Δβ, HNLF length L 
and pumps peak power P0, a specific gain sensitivity is obtained, which influences the 
temporal dynamic of the FOPA and hence the pulses that are generated. Since the FOPA is 
seeded with a continuous wave (CW) signal, a constant optical power remains on the pulse 
generated on the signal side. Therefore higher extinction ratio will be obtained on the idler 
side. For this reason, the study is solely focused on pulse generation on the idler side. 

In general, the two pumps could be modulated independently with arbitrary modulation 
format. However in the remainder of this paper we will only focus on the case of sinusoidal 
intensity modulation. In the most general case, each pump power can be written as: 

 2
0( ) cos ( ), 1, 2n n n nP t P f t nπ ϕ= + =      (9) 

Equation (9) infers that by tuning frequencies f1, f2 and phases φ1, φ2 along with the gain 
sensitivity, different repetition rate and pulse widths could be obtained. As an example, if the 
dual-pump FOPA is designed to have very high sensitivity when the pump peaks coincide in 
the time domain, there would be significant gain only at that points and therefore the pulses 
would be generated at a period that is the least common multiple of 1/f1 and 1/f2. This 
highlights the potential of dual-pumps FOPA for generating flexible pulse sources in term of 
repetition rate and pulse width. As this paper is intended to provide a first insight on pulse 
generation using dual-pump FOPAs, we limit our study to the case where f1 = f2 = fR and  
φ1 = φ2. Consequently, the period of idler pulses in this case is 1/fR. We also consider in the 
remainder of the paper that P0 is the total peak power, i.e. P0 = P10 + P20. Since it was shown 
in the previous section that the highest gain sensitivity, hence the shortest pulses are obtained 
when P10 = P20, we assume in the following that the pumps powers remain equal and 
undepleted. Note that the slope of the sensitivity near α = 0 dB in Fig. 1(b) is small so that a 
slight imbalance in the two pumps power can be tolerated. 

Injecting Eq. (9) into Eqs. (1)–(3), the duty cycle (DC = TFWHM × fR) of generated pulses 
as a function of Δβ/γP0 can be numerically calculated. Note that this is justified as long as the 
pumps modulation frequency fR is negligible compared to Δωp [14]. The results are depicted 
in Fig. 2(a) in the range −3 ≤ Δβ/γP0 ≤ 1, using the same parameters as in Fig. 1. Figure 2(a) 
infers that an inverse relation between DC evolution and gain sensitivity evolution as a 
function of Δβ exists. Indeed, the shortest pulse widths are obtained when Δβ = −3γP0. 
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Likewise in Fig. 1(a), an inflexion point that shifts towards lower values of Δβ is obtained for 
higher P0 and L. For a given set of P0 and L, the shortest pulses are therefore generated when 
Δβ = −3γP0. However, contrary to the gain sensitivity, when either P0 or L is doubled, DC is 
drastically decreased in the same manner. Figure 2(b) depicts the peak gain as a function of 
Δβ/γP0. As expected, the highest pulses peak gain is obtained for perfect phase-matching at 
the pumps peak power (Δβ = −γP0), which corresponds to the case of exponential gain regime 
whereas the lowest pulses peak gain are obtained in the parabolic regimes where Δβ = −3γP0 
or Δβ =  + γP0 [5]. Hence, Figs. 2(a) and 2(b) highlight a tradeoff between pulse width and 
pulse peak power in an analogical manner to the pulse generation in single-pump FOPA [9]. 
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Fig. 2. (a) Idler pulse duty cycle (solid line) defined as DC = TFWHM × fR versus normalized 
phase mismatch term Δβ/γP0 (b) Gain as a function of phase mismatch term Δβ/γP0 for  

P0 = 0.5 W and L = 350 m. The inset shows the inverse relation between
0

G

P
S and DC. 

In order to gain further insight on the behavior of generated pulses and following the 
discussion on gain sensitivity, it is sufficient to study pulse generation in the vicinity of 
pumps peak powers and make the following assumption [10]: 

 2
0( , ) [1 ( ) ]RP z t P f tπ≈ −  (10) 

where P(z,t) is the total pump power. This assumption is valid as long as the generated pulses 
width is short compared to the repetition rate. Replacing Eq. (10) in Eqs. (1)–(3) leads to 
closed-form analytical expression for the temporal gain for the cases Δβ =  + γP0 (GOUT,1),  
Δβ = −γP0(GOUT,-1) and Δβ = −3γP0(GOUT,-3), as derived in Appendix B: 

 2 2
, 3 0 0( ) ( ) sin c ( 3 )out RG t P L P Lf tγ γ−   (11) 

 2
, 1 0 0( ) exp(2 ) 4 exp( 2 ( ) )out RG t P L P L f tγ γ π− × −  (12) 

 2 2
,1 0 0( ) ( ) sin c ( )out RG t P L P Lf tγ γ  (13) 

where sinc(x) = sin(πx)/πx. Equations (11)–(13) show that the pulses that are generated in the 
exponential gain regime exhibit a Gaussian profile, while those that are generated in the 
parabolic gain regimes exhibit near-sinc shapes. These latter pulses are of particular interest 
for all-optical generation of Nyquist pulses and time windows [11]. The value of DC in each 
case can straightforwardly be obtained. Noting from inset in Fig. 2(a) that there is an inverse 
relation between DC and 

0

G
PS , an empirical relation for DC was obtained using linear 

regression: 
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ln 2 coth( )ln G
P
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P L L P LP Sπ γ γ γ

 
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 (14) 

Equation (14) is plotted in dashed line in Fig. 2(a) and shows a good agreement with 
calculated duty cycles (solid line). Figures 3(a) and 3(b) illustrate the evolution of the 
generated pulse shapes as a function of Δβ/γP0 for L = 350 m and P0 = 0.5 W. It is verified 
that for Δβ = −γP0 and Δβ = −3γP0 the derived shapes fit well with the calculated shapes. In 
the case Δβ =  + γP0, the DC is accounted for by Eq. (13) but the sinc shape is not retrieved. 
This is due to the fact that when the pulse width is too large, Eq. (13) does not fit the 
generated pulse over the entire period. It can be verified that for higher L or P0, the formula 
fits the generated pulse. Figure 3(b) and Eqs. (11)–(13) show that in order to generate near-
sinc pulses, it is preferable to operate at Δβ = −3γP0. 
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Fig. 3. (a) Idler pulse shapes over one period as a function of Δβ/γP0 (b) Normalized intensity 
of idler pulses over one period for different phase matching condition. 

2.3 Generation of identical shaped pulses over a wide bandwidth 

The previous section showed that depending on the linear phase mismatch Δβ, different pulse 
shapes can be obtained. In this section, it will be shown that it is possible to bound Δβ over a 
wide bandwidth and thus generate uniform pulse shapes over that bandwidth. This is a 
significant advantage of dual-pump FOPAs compared to single-pump FOPAs where the pulse 
shape depends on the signal detuning from the pump frequency. Note that this was 
demonstrated for CW dual-pump FOPA operating in the exponential gain regime [15].  
The novelty of this work is to show that such bounding can be extended to any Δβ in the  
interval [−3γP0, γP0]. 

Consider m∈[˗3,1]. When β2·β4 < 0, Δβ can be expressed in terms of a Chebyshev 
polynomial as shown in Eq. (15): 

 4
0

s

t

m T
P

ωβ ρ
γ ω

 ΔΔ = +  Δ 
 (15) 

where T4(x) = 8x4−8x2 + 1 is the fourth order Chebyshev polynomial, ρ is the relative ripple in 
Δβ, and Δωt denotes half the bandwidth over which the ripple remains between the 
Chebyshev extrema [15]. Using Eq. (5), the two sides of Eq. (15) are identical for any Δωs if 
we have: 
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when the conditions given in Eqs. (16a)–(16c) are met, the normalized phase mismatch is 
bound to m in the 2Δωt frequency range with ripple amplitude of ρ. It is important to note that 
Eq. (16c) is satisfied if and only if sgn(β4)m < |ρ|. Therefore depending on the sign of β4 and 
the value of m, four different types of operating regions can be determined. 

Type (i) corresponds to sgn(β4) > 0, m∈[−3,0] and type (ii) to sgn(β4) < 0, m∈[0,1], where 
sgn(β4)m is always negative and hence readily verifies the condition for any set of m and ρ. In 
these cases, m and ρ can be arbitrary chosen. In order to have |ρ| < |m|, (i.e. ripples are small 
compared to m) it is necessary to set the central frequency of the pumps such that: 
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 (17) 

from which we obtain 
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 (18) 

where Δω4 = (|12mγP0/β4|)
1/4. Equations (17) and (18) reveal that as Δωp ranges from Δω4 to 

23/4 Δω4, Δωt ranges from 0 to Δωp while |ρ| ranges from 0 to |m|. As a result, there is a trade-
off between the bandwidth of the pulses and the ripples of Δβ, which will induce fluctuations 
on the pulses width (or DC) and peak power. 

Type (iii) corresponds to sgn(β4) > 0 and m∈[0,1], while in type (iv), sgn(β4) < 0 and 
m∈[−3,0]. These two operating conditions lead to |m| < |ρ|, indicating that the minimum 
achievable ripple is higher than the absolute value of m. Therefore, one must use the 
operating conditions described in type (i) or (ii) in order to confine the linear phase mismatch 
with low ripples. This study therefore shows that fibers with positive dispersion curvature (β4) 
are advantageous for generating Gaussian or sinc shaped pulses over a wide bandwidth. 

Figure 4(a) describes how Δβ/γP0 ripples influence the ripples of DC in a type (i) 
operating condition. As the normalized phase mismatch is confined between m−ρ and m + ρ 
over 2Δωt, the DC of the generated pulses is also bound over that same bandwidth. The 
amplitude of the oscillations of DC is determined by ρ and the slope of the DC curve versus 
Δβ/γP0 at the operating point m. 
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Fig. 4. (a) Basic principle of pulse generation in dual-pump FOPA. As Δβ/γP0 is bound to m 
with a ripple ρ, the DC of generated pulses follows a similar trend in frequency. Instantaneous 
dual-pump FOPA gain spectra (b) two synchronously modulated pumps (c) one modulated and 
one CW pump. The peak power of each pump is P0/2 = 0.25W. 

To illustrate uniform pulse generation over a wide bandwidth in a dual-pump FOPA, we 
have depicted in Fig. 4(b) the gain spectra of a typical dual-pump FOPA when both P1 and P2 
are varied simultaneously and in Fig. 4(c) when either P1 or P2 is varied, the other being fixed 
at P0/2. This latter case that was experimentally studied in [16] is more cost effective as it 
requires only one pump to be modulated. The nonlinear coefficient of the HNLF is the same 
as in Fig. 1 while the dispersion parameters are β2 = −5.8 × 10−31 s2m−1, β3 = 3.6 × 10−41 s3m−1 
and β4 = 5 × 10−56 s4m−1 so as to achieve m = −0.28 and ρ = 0.001. The spectra were 
calculated using the FS model. In all cases, the gain is decreased by a substantial amount over 
the whole bandwidth when at least one pump is slightly decreased. When both pumps are 
simultaneously decreased by 20%, Fig. 4(b) shows that the gain drops by more than 7 dB over 
40 nm in the inner band of the two pumps, while remaining flat. In Fig. 4(c), when one of the 
two pumps is decreased by 20%, the gain drops by more than 3 dB over the same bandwidth. 
Indeed in [16], it was shown that for Gaussian pulses; the full width half maximum is 

increased by a factor of 2 when only one of the pumps is modulated compared to the case of 
two synchronous modulated pumps. Note that apart from the region close to the pumps, the 
behavior is similar if either P1 or P2 is decreased, in agreement with Eq. (8) where the TS 
model was used. Therefore, modulating either of the pumps will induce the generation of the 
same pulses over the region where the TS model holds valid. Although more complex 
experimentally, modulating simultaneously both pumps induces the generation of shorter 
pulses than modulating one of the pumps. 
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3. Dual-pump FOPA pulse generation experiment 

3.1 Experimental setup 

 

Fig. 5. Experimental setup of pulse generation in dual-pump FOPA. TL: tunable laser; IM: 
intensity modulator; PM: phase modulator; PC:polarization controller; TBF: tunable bandpass 
filter; WDM: wavelength division multiplexer; OSA: optical spectrum analyzer. 

The experimental setup used to test the theory is depicted in Fig. 5. Two tunable high signal 
to noise ratio (SNR) CW external cavity lasers (TL1 and TL2) are used as FOPA pumps. The 
lasers are intensity modulated by a sinusoidal wave at 5 GHz. A tunable RF delay line is 
inserted to ensure the synchronization of the two pumps. Both pumps are phase modulated by 
a 2.5 GHz pseudo random bit sequence (PRBS) in order to suppress the stimulated Brillouin 
scattering (SBS). The delay of each PRBS source is tuned so that each phase jump occurs 
during the dip of the sinusoidal intensity modulated pump [10]. Using an out-of-phase 
modulation scheme, it is possible to cancel any pump phase modulation induced distortion 
[17, 18]. However, because of lack of equipment we were not able to realize this scheme. The 
pumps are amplified and filtered to suppress amplified spontaneous emission (ASE) and 
coupled with a wavelength division multiplexer (WDM). An additional tunable CW laser 
(TL3) acting as a signal source is combined through a 10/90 coupler. The signal could be 
swept across both C and L bands. The three optical waves are then launched into a 350 m 
long HNLF with nonlinearity coefficient γ = 15 W−1.Km−1 and zero dispersion wavelength 
(ZDW) λ0 = 1568.9 nm. The third and fourth order dispersion parameters of the fiber are  
β3 = 3.6 × 10−41 s3m−1 and β4 = 5 × 10−56 s4m−1, respectively. The power of injected signal 
during the experiment is kept low enough to avoid pump depletion and multiple FWM 
process. At the output of the fiber the parametric process is monitored through a 1% tap on an 
optical spectrum analyzer (OSA). Finally a WDM and a tunable filter are employed to 
separate the generated idler from the high power pumps and signal. The temporal and spectral 
characteristics of the generated pulsed idler are then monitored on an OSA and a 50 GHz 
oscilloscope covering the C and L band. 

3.2 Results 

Two cases corresponding to different operating conditions described in section 2.3 were 
examined in order to verify the theory. In the first case the pumps are set at λ1 = 1532.3 nm 
and λ2 = 1608.3 nm leading to β2 = −1.5 × 10−29 s2m−1, which corresponds to m = 0.35 with 
high ripples amplitude of ρ = 0.55. In the second case λ2 is adjusted in order to provide a 
phase matching that is bound with minimum ripple. The second pump wavelength was set at 
λ2 = 1607.2 nm, for which the dispersion β2 = −5.8 × 10−31 s2m−1 led to m = −0.28 and  
ρ = 0.001 over 2Δωt/2π = 4.9 THz. Table 1 summarizes these settings. Note that because 
higher ripples are tolerated in case 1, the bandwidth is also larger compared to the second 
case. Also, due to the positive β4 of the fiber under test, our experiments were limited to the 
operating region of type (iii) for case 1 and type (i) for case 2. 
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Table 1. Summary of the Settings and Parameters for the Three Experimental Cases 
Studied 

 Pump 1 Pump 2 β2 (s
2m−1) m |ρ| 2Δωt/2π 

Case 1 532.3 nm 1608.3 nm −1.5 × 10−29 0.35 0.55 Non applicable 

Case 2 532.3 nm 1607.2 nm −5.8 × 10−31 −0.28 0.001 4.9 THz 

 

Fig. 6. Results of pulse-width behavior in dual-pump FOPA for case 1 and case 2 parameters. 
(a) and (c): experimental (dot) and theoretical gain spectrum obtained from TS (dash line) and 
FS (solid line) interaction model as well as normalized phase mismatch for case 1 and 2, 
respectively. (b) and (d): experimental (dot) DC values along with theoretical results derived 
from TS (dash line) and FS (solid line) interaction model case 1 and 2, respectively. 

For both cases experimental and theoretical gain spectra are plotted in Figs. 6(a) and 6(c) 
along with the normalized phase mismatch terms derived from the theory. The corresponding 
experimental DC measurements are shown in Figs. 6(b) and 6(d). Both TS and FS interaction 
models are employed to obtain theoretical data in all figures. Figures 6(a) and 6(b) show that 
in case 1, Δβ/γP0 varies significantly between 0.45 to 0.95 over the 54 nm bandwidth between 
the pumps, leading to fluctuations of over 0.005 of the pulses duty cycle, or 1.72% of the 
averaged duty cycle. In the second case depicted in Figs. 6(c) and 6(d), low-ripple of the 
linear phase mismatch is experimentally demonstrated over 40 nm. Flat gain close to 23 dB 
and flat linear phase mismatch of −0.28γP0 are simultaneously achieved. The measured DC 
value of the generated pulses remains close to 0.265 over a 40 nm wavelength range with less 
than 0.04% variations. In both cases an increase of DC in the vicinity of the pumps is 
observed, which is correctly predicted by the FS interaction model and is therefore due to the 
sidebands generated in the outer band of the two pumps. 

The variations of the idler pulses peak power follow the same trend as the gain spectrum. 
Figures 7(a) and 7(b) show the experimental averaged pulse shape evolution with idler 
wavelength for the two cases. Figures 7(b) and 6(d) demonstrate that a truly identical pulse 
generation both in terms of DC and peak power is realized when the phase mismatch is 
correctly bound according to Eqs. (16)–(18). In Fig. 7(c) the actual idler pulses and their 
averaged profiles are depicted when Δβ/γP0 = 0.9, which corresponds to an idler wavelength 
close to 1570 nm in case 1, and when Δβ/γP0 = −0.28, which corresponds to an idler 
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wavelength anywhere between 1548 nm and 1588 nm in case 2. The difference in pulse width 
between these two pulses is 5 ps, in agreement with theoretical predictions. 
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Fig. 7. (a) and (b) depict average pulse shape evolution with idler wavelength respectively 
regarding the first and second phase matching condition described in Table 1. (c) Actual (act) 
and averaged (avg) pulse shape for Δβ/γP0 = 0.9 in the first case and for Δβ/γP0 = −0.28 in the 
second case. 

4. Discussion and conclusion 

We have studied the theory of pulse generation in dual-pump FOPA for the first time to the 
best of our knowledge. Introducing the gain sensitivity parameter, the duty cycle (DC) or 
pulse width of the generated pulses has been shown to depend on the total input power P0, 
fiber length L, and the linear phase matching between the interacting waves. An analytical 
formula was derived for the DC of the generated pulses. The gain sensitivity could also be 
used to investigate other properties of dual-pump FOPAs such as pumps relative intensity 
noise (RIN) transfer, or multicasting with data-modulated pump. 

It was shown that it is possible in dual-pump FOPA to bound the linear phase mismatch 
term over a wide bandwidth to any value between −3γP0 and γP0 and hence to achieve a 
constant peak gain and DC over that bandwidth. Theory was experimentally verified by 
generating uniform pulses at 5 GHz repetition rate over 40 nm of bandwidth with less than 
0.04% DC fluctuations. The setup was limited by the 50 GHz electrical bandwidth of the  
C + L oscilloscope and could easily be extended to higher repetition rate. Note that pulse 
generation based on single-pump FOPA has been shown at repetition rates up to 40 GHz [14, 
19]. The good agreement between theoretical and experimental results shows that the impact 
of walk-off between the interacting waves is negligible. However at higher pump repetition 
rate, a dedicated study of walk-off is needed to adequately comprehend how the pulse shape 
would be affected. One solution for reducing walk-off is to decrease the HNLF length. Note 
however that the pumps powers should be increased accordingly while the pumps position 
should be recalculated in order to obtain uniform operation over a wide bandwidth. 

It worth to note that the generated pulses amplitude exhibit a phase that is equal to 
β3Δωs

3L/6 + γP0cos2(πfRt)L [5]. This expression shows that β3 is responsible for walk-off [20] 
whereas γP0cos2(πfRt)L that originates from cross-phase modulation, induces a chirp on the 
generated pulse. Thus, the generated pulses are not transform-limited. Note that in analogy 
with the single-pump FOPA case, Gaussian pulses could be shortened by using a dispersive 
medium to reach a transform-limited pulse, whereas sinc-like pulse chirp compensation is 
more challenging [11]. In our experiment, the SNR of the generated pulses in the case of 
wideband uniform pulse generation was measured at 27 dB. The focus of this study was to 
demonstrate uniform pulse generation over a wide bandwidth; however by improving the 
optical signal to noise ratio (OSNR) of the pumps, using for example narrower filters and/or a 
two-stage amplifying module for the pumps, it could be possible to further improve the pulses 
SNR [21, 22]. 

The limitations of the EDFAs in terms of bandwidth prevented a wideband linear phase 
mismatch bounding close to m = −1 where the highest peak power can be achieved. Also, by 
further increasing the distance between the pumps, it could be possible to achieve m = −3 
over a wide bandwidth and hence generate near-Nyquist pulses over a broad bandwidth. 
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Efficient wavelength conversion techniques to expand the distance between the two 
sinusoidally modulated pumps can alleviate these limitations [23]. As an example, using the 
same parameters as in the experiment, generation of uniform Gaussian and sinc shape pulses 
requires the pumps to be 11 THz and 15 THz apart, respectively. Thus, a Nyquist sampler 
over 6.8 THz (56 nm), which could sample at the Nyquist rate without inter symbol 
interference (ISI) could be demonstrated. 

Finally, generation of pulses with dual-pump FOPAs offer the unique flexibility of 
modulating each pump independently, thus generating a wide variety of pulse and time 
window shapes. In [16], we showed that modulating one of the two pumps is sufficient to 
generate uniform pulses with dual-pump FOPA. However the corresponding pulse width is 

wider by a factor of 2  when compared to the two synchronous modulated pumps. The 
possibility of modulating the pumps at different frequencies could also pave the way for pulse 
sources where the width and repetition rate of the pulses could be tuned independently. This 
scheme could also be used to compress in the time domain, WDM pulses carrying data for 
subsequent optical time division multiplexing, thus allowing transparent modification of the 
network granularity. 

Appendix 

A. Gain sensitivity 

To obtain
1

G
PS we first find the derivative of G with respect to P1: 
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 (19) 

To proceed with Eq. (19) we take the partial derivative of Eq. (3) with respect to P1 to obtain 
dg/dP1 = r(2γP2-κ/4)/g. Therefore Eq. (19) can be calculated as: 
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 (20) 

According to the definition of Eq. (8) and using Eqs. (1a) and (20), the gain sensitivity is: 
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calculating the expression for
2

G
PS leads to a similar expression as Eq. (21) except that P1 is 

replaced with P2 and vice versa. 
Equation (21) has a determinate value for any phase matching condition in the rage  

−3 < Δβ/γP0 < 1. However, when Δβ/γP0 = −3,1 it takes an indeterminate form of 0/0. To 
evaluate 

1

G
PS  when ΔβγP0 → −3,1 which leads to g→0, one can replace coth(gL) with its 

Laurant series expansion in the range 0 < |gL| < π i.e. coth(gL) = 1/gL + gL/3 + O((gL)3). 
Therefore we can rewrite Eq. (21) as: 
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       (22) 

from which we obtain 
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It worth to note that the value of gain sensitivity at Δβ/γP0 = −3 is the supermum of 
1

G
PS . 

Accordingly, based on the definition of gain sensitivity it is assured that the generated pulses 
experience lowest DC when operating at Δβ/γP0 = −3. To confirm this theory we employ the 
approximation of Eq. (21) when |gL| > π where: 
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       (24) 

Equation (24) can be inspected together with Eq. (22) to show that the gain sensitivity at 
Δβ/γP0 = −3 is an upper bound for

1

G
PS . In fact the second expression at the right hand side of 

both equations consists of two multiplied terms. In the one hand the first term (4γ2P2−κγ /2) is 
maximized at Δβ/γP0 = −3 in the range −3 ≤ Δβ/γP0 ≤ 1. On the other hand the second term 
takes the maximum value L2/3 for all |gL| > 0. As a result 1/P1 + γ2L2(4P2 + P0)/3 which is 
also derived is Eq. (23) is the supermum of

1

G
PS . 

B. Pulse shape 

In this section we derive expressions for the output generated optical pulses at different values 
of Δβ/γP0 = −3, −1, 1. Since the pumps are sinosuidally modulated, according to Eqs. (2)–(4) 
we can write 

 2
0( ) cos ( )Rr t P f tγ π=  (25) 

 2
0( ) cos ( )Rt P f tκ β γ π= Δ +  (26) 

Considering Eq. (26), we can obtain the values of κ(t) at Δβ/γP0 = m as follows: 

 2
0 0( ) ( cos ( ))RP m t P m f tβ γ κ γ πΔ =  = +  (27) 

Based on Eqs. (25)–(27), Eq. (3) and making the assumption mentioned in section 2.2 (pump 
expression can be replaced with its development to the second order in t), one can derive the 
approximated g as follow: 

 0 0 03 : 3 sin( ) 3R RP g j P f t j P f tβ γ γ π πγΔ = −    (28a) 

 2 1 2 2
0 0 01: (1 sin ( )) (1 ( ) )R RP g P f t P f tβ γ γ π γ πΔ = − − −   (28b) 

 0 0 01: sin( )R RP g j P f t j P f tβ γ γ π πγΔ =    (28c) 

From Eqs. (28a)–(28c) and Eqs. (1)–(3), we can write the following expression for the output 
optical generated pulses: 

 2 2
0 0 03 : ( ) ( ) sin c ( 3 )out s RP P t P P L P Lf tβ γ γ γΔ = −   (29a) 

 2
0 0 01: ( ) exp(2 ) 4 exp( 2 ( ) )out s RP P t P P L P L f tβ γ γ γ πΔ = − × −  (29b) 

 2 2
0 0 01: ( ) ( ) sin c ( )out s RP P t P P L P Lf tβ γ γ γΔ =   (29c) 
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