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1. Image categorization

The results presented in this section are encoded according to the nam-
ing convention presented in the paper, that is, by using capital letters to
represent the component names. For example, OLS-SPARSEIT-ABS-MAX-
PCA-SVM represents the pipeline where we first extract sparse features com-
puted by Iterative Thresholding using filters obtained with the Olshausen and
Field’s algorithm, then we use the absolute value function for rectification,
use a max-pooling operation, project the result into an eigenspace, and fi-
nally use a Support Vector Machine for classification. We sometimes use a
star (*) as the name of one component that is varied for an evaluation.

1.1. Filter learning

The filter learning procedure is based on Stochastic Gradient Descent
with Iterative Thresholding [1]. The objective function of Eq. (3) in the
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paper is minimized by alternating optimizations over the filters f j and the
coefficients tji . Table 1 reports the recognition rates when the filters learned
with two extreme values for λlearn, λlearn = 0 and λlearn = 7, are used. For
both the CIFAR-10 and the Caltech-101 datasets we have found that the
most effective gradient step for the feature maps is ηcoeffs = 10−1, and the
one on the filters is ηfilters = 10−5. Unless otherwise stated, the results for
the CIFAR-10 dataset refer to filter banks composed by 49 11 × 11 filters
learned with λlearn = 2. The filter bank used for the comparisons with [2], on
the other hand, is composed by 25 11× 11 filters learned with λlearn = 0.02,
the same value used to learn the 64 9 × 9 filters used in the Caltech-101
experiment.

In the tables below we present the `0 norm of the feature maps both
after the feature extraction (‖t‖0) and after the pooling (‖v‖0) steps (when
relevant). Also, throughout the text, the best-scoring configurations are
marked in bold.

1.2. Sparsification

When requested, we have sparsified the output of the convolutions by
using Iterative Thresholding. We have chosen to adopt fixed gradient de-
scent step, and we empirically found ηcoeffs = 210−3 was giving good results.
We analyzed the monotonic convergence of the optimization scheme by plot-
ting the reconstruction error, the `0 and `1 norms, and the corresponding
functional value for each λextract choice. We then opted for a termination cri-
terion based on the difference between the functional value in two subsequent
iterations, and we have set this threshold to 10−5.

1.3. Pooling

For the three different pooling strategies we have considered (GAUSS,
BOXCAR, and MAX ), we have performed different experiment to devise the
best parametrizations. For the CIFAR-10 dataset resized to 16×16 pixels the
best results were achieved with a 4× downscaling, and setting the variance
of the 9×9 Gaussian filter in the GAUSS case to either σ = 2 or σ = 3. The
experiments on the Caltech-101 dataset used instead a boxcar filter with size
10 × 10, followed with a 5× downscaling to match the procedure adopted
in [3].
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Figure 1: Confusion matrix for our best scoring configuration, OLS-CONV-POSNEG-
GAUSS-LDE-SVM, when applied on 32× 32 pixels grayscale images from the CIFAR-10
dataset. The abbreviations used for the class names are explained in Tab. 2. The final
recognition rate in this experiment is 75.28%.

1.4. Classification step setup

1.4.1. CIFAR-10

We identify two configurations for the SVM that prove to suit our needs:

• Fast classification setup. We use the LIBSVM library 1, and we per-
form a C-Support Vector Classification (C-SVC) by using Radial Basis
Functions as kernels, and setting the γ parameter to 10. This is a use-
ful configuration to explore a large parameter space, since classification
requires between 1 and 2 hours on a modern laptop.

• Best performing setup. We achieve our best results on the CIFAR-
10 dataset by solving an expensive multi-class bound-constrained SVC
problem with γ = 8 using the BSVM implementation bundled within
the libHIK library 2. We are unable to systematically adopt this clas-
sification scheme since each experiment on our computers requires up
to a day. The confusion matrix corresponding to the best result is re-
ported in Fig. 1. The adopted abbreviations for the class names in the
CIFAR-10 dataset are reported in Tab. 2.

1http://www.csie.ntu.edu.tw/~cjlin/libsvm.
2http://www.cc.gatech.edu/cpl/projects/libHIK.
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Table 2: Class abbreviations adopted for the CIFAR-10 dataet.

Class airplane automobile bird cat deer
Abbreviation ai au bi ca de

Class dog frog horse ship truck
Abbreviation do fr ho sh tr

For the comparison with the approach presented in [2] we have used the
classifier provided with their code, that is, a linear SVM classifier, and with
approximate Nearest-Neighbor classification.

1.4.2. Caltech-101

We have used the logistic regression classifier accompanying [3]. In par-
ticular, we have set the learning rate to η = 0.25, the decay rate to 10−4, and
we have iterated for 200 epochs.

2. Extensive evaluation of pipeline components

We perform a thorough evaluation aimed at establishing the relative im-
portance of pipeline’s components, in order to properly tune our image cat-
egorization system.

Since extensive experimentations on the Caltech-101 dataset are pro-
hibitively expensive owing to the resolution of the images, the tests reported
below are performed on the CIFAR-10 dataset where the images are resized
to 16× 16 pixels.

Table 3 compares the recognition rates for different non-linearities. The
presence of a non-linearity step is important for getting good results [3].
POSNEG outperforms ABS with both learned and handcrafted filter banks,
even though the latter is the one traditionally used in state-of-the-art sys-
tems. Despite this result, in the experiments with the Caltech-101 dataset
we adopt the ABS nonlinearity, both to be consistent with the architecture
proposed in [3] and because POSNEG has the drawback of doubling the
descriptor’s size.

To assess the importance of a learned filter bank compared to using a
random or an handcrafted filter bank, we perform thorough experimentations
adopting different filter banks in the feature extraction step of our pipeline.
Table 4 shows the recognition rate when 49 randomly generated filters are

5



Table 3: Comparison between non-linearities for both learned and handcrafted filter banks.
The pipeline configuration is *-CONV-*-GAUSS-PCA-SVM. POSNEG outperforms ABS
with both learned and handcrafted filter banks

Method Rec. Rate [%]

OLS LM

POSNEG 67.16 66.18
ABS 63.17 62.83
NONE 35.61 37.01

employed, while Tab. 5 compares in the same way learned and handcrafted
filter banks, both using SVMs and approximate-NN classification schemes.

Even though the results presented in Tab. 5 seem to indicate that only
little advantage is gained by learning the filter bank compared to using an
handcrafted one, the results shown in Table 6 demonstrate that if one takes
the “off-the-shelf” Leung-Malik filter bank [4] (that is, it does not alter it by
a whitening step), the recognition rate drops below the one achieved by the
randomly generated filter bank.

3. Pixel classification

Figure 2 presents the ROC curves corresponding to the Precision/Recall
curves presented in the paper. In particular, Figs. 2(a-c) show the superiority
of learned filters with competing handcrafted approaches, while Fig. 2(d)
compares the sparsified descriptors obtained with different values of the λsegm

parameter with those resulting from plain convolution.
Figure 3 depicts the Precision/Recall and the ROC curves for two other

randomly chosen images from the DRIVE dataset, namely image 12 and
image 13. Again, learned filters outperform the other approaches and they get
very close to the human performance. Analytic measures of the performance
of the filter banks for the given experiments are reported in Tab. 7.

In Fig. 4 and Fig. 5 visual results on the DRIVE dataset are shown, using
the convention that True Positive pixels are colored in red, False Positives
in green, and False Negatives in blue. The results in the second column are
computed with a False Positive Rate fixed at 0.05, while those in the third
column with a True Positive Rate of 0.9. Even from a visual stance, the
results obtained with learned filters (Fig. 5(g-i)) are markedly more appealing

6



Table 4: Comparison of the recognition rates achieved with different λextract values when
random filters are used in the extraction stage RND-*-POSNEG-GAUSS-PCA-SVM. Ran-
dom filters work surprisingly well, but not as well as learned ones

Method λextract ‖t‖0 ‖v‖0 Rec. Rate [%]

CONV 1.000 0.999 58.13
SPARSEIT 1e-4 0.811 0.999 59.40
SPARSEIT 2e-4 0.802 0.999 59.39
SPARSEIT 3e-4 0.794 0.999 59.39
SPARSEIT 4e-4 0.786 0.999 58.97
SPARSEIT 5e-4 0.778 0.999 59.45
SPARSEIT 6e-4 0.769 0.999 57.28
SPARSEIT 7e-4 0.761 0.999 58.95
SPARSEIT 8e-4 0.752 0.999 58.92
SPARSEIT 9e-4 0.744 0.999 59.55
SPARSEIT 1e-3 0.736 0.999 59.71
SPARSEIT 2e-3 0.654 0.999 58.88
SPARSEIT 3e-3 0.579 0.999 58.26
SPARSEIT 4e-3 0.507 0.999 60.17
SPARSEIT 5e-3 0.434 0.998 57.18
SPARSEIT 6e-3 0.353 0.993 59.65
SPARSEIT 7e-3 0.251 0.970 57.70
SPARSEIT 8e-3 0.130 0.887 52.61
SPARSEIT 9e-3 0.058 0.787 53.02
SPARSEIT 1e-2 0.044 0.747 51.98
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Table 6: Comparison of the recognition rates achieved with different λextract values when
non-whitened Leung-Malik filters [4] are used (LM-*-POSNEG-GAUSS-PCA-* ). The
performances are much worse than the ones obtained with the whitened filters

Method λextract ‖t‖0 ‖v‖0 Rec. Rate [%]

SVM NN

CONV 0.999 0.997 55.52 37.03
SPARSEIT 1e-4 0.610 0.840 50.54 30.85
SPARSEIT 2e-4 0.595 0.838 51.61 30.93
SPARSEIT 3e-4 0.583 0.837 51.33 30.78
SPARSEIT 4e-4 0.572 0.836 51.43 31.01
SPARSEIT 5e-4 0.562 0.834 52.12 30.79
SPARSEIT 6e-4 0.554 0.833 52.17 30.48
SPARSEIT 7e-4 0.545 0.832 51.85 30.87
SPARSEIT 8e-4 0.538 0.831 52.26 30.72
SPARSEIT 9e-4 0.531 0.831 52.16 30.99
SPARSEIT 1e-3 0.524 0.830 52.37 30.81
SPARSEIT 2e-3 0.474 0.823 52.02 30.85
SPARSEIT 3e-3 0.438 0.816 52.92 30.87
SPARSEIT 4e-3 0.410 0.809 52.88 31.36
SPARSEIT 5e-3 0.386 0.801 53.79 31.33
SPARSEIT 6e-3 0.365 0.792 53.73 30.99
SPARSEIT 7e-3 0.347 0.783 53.63 31.12
SPARSEIT 8e-3 0.331 0.774 53.58 30.93
SPARSEIT 9e-3 0.316 0.763 53.75 31.50
SPARSEIT 1e-2 0.302 0.753 53.39 31.92
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(a) DRIVE, ROC curve (b) Neurons, ROC curve

(c) Roads, ROC curve (a) DRIVE, different refinements, ROC curve

Figure 2: ROC curves (with the False Positive Rate expressed in logarithmic scale to
better distinguish the curves) corresponding to the P/R curves presented in the paper.

than those achieved with competing approaches, and they get very close to
the results obtained by the second human expert (Fig. 4(c)). A detailed
view on a randomly chosen region is presented in Fig. 6. An analogous
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(c) DRIVE, image 12, P/R curve (d) DRIVE, image 13, P/R curve

(a) DRIVE, image 12, ROC curve (b) DRIVE, image 13, ROC curve

Figure 3: Precision/Recall and ROC curves (with the False Positive Rate expressed in
logarithmic scale to better distinguish the curves) curves for two randomly chosen images
from the DRIVE dataset.
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Table 7: Analytic measures of the quality of the pixel classification for the experiments
presented in Fig. 2(d) and Fig. 3. Both the VI and the RI are computed on the images
thresholded at the value found using the F-measure. Please note that VI assumes values
in [ 0,∞), the lower the better, and RI assumes values in [0, 1], the higher the better.

Method AUC F-measure VI RI

DRIVE image 19, refinements

λsegm = 1.0 · 10−1 0.9402 0.7906 0.5263 0.9004
λsegm = 7.5 · 10−2 0.9467 0.7955 0.5380 0.8977
λsegm = 5.0 · 10−2 0.9612 0.8134 0.4910 0.9096
λsegm = 2.5 · 10−2 0.9628 0.8068 0.5112 0.9046
λsegm = 1.0 · 10−2 0.9659 0.8139 0.4813 0.9115
λsegm = 1.0 · 10−3 0.9660 0.8147 0.4986 0.9077
Convolution 0.9690 0.8299 0.4626 0.9166

DRIVE image 12

Ground truth 0.8031 0.5078 0.9049
Frangi 0.8696 0.6294 0.7202 0.8400
Random filters - SVM 0.9181 0.6931 0.6999 0.8528
Rotational features - SVM 0.9170 0.7372 0.6038 0.8782
Oriented Flux Filter 0.9258 0.7164 0.6318 0.8698
Learned Filters - SVM 0.9377 0.7660 0.5737 0.8879

DRIVE image 13

Ground truth 0.7913 0.6101 0.8821
Frangi 0.8697 0.6510 0.7562 0.8323
Random filters - SVM 0.9185 0.7158 0.7154 0.8510
Rotational features - SVM 0.9131 0.7402 0.6513 0.8670
Oriented Flux Filter 0.9326 0.7217 0.6995 0.8550
Learned Filters - SVM 0.9465 0.7698 0.6110 0.8792

comparison for the neurons dataset, with TPR fixed to 0.9, is reported in
Figs. 7-12, while a detailed view with FPR 0.05 is given in Fig. 13. Finally,
colorized classifications for the roads dataset are shown in Fig. 14 and Fig. 15
for a FPR of 0.05.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Visual results of pixel classification for the image 19 of the DRIVE dataset (part
I). True positive pixels are shown in red, false positives in green, and false negatives in blue.
(a) Original image. (b) Ground truth created by the first human expert. (c) Comparison
between the ground truth provided by the two human experts. The presence of faint vessels
accounts for most of the differences between the two. (d) Probabilistic output obtained
using the method presented by Frangi et al. [5]. (e) Colorized classification for a FPR of
0.05 (method: Frangi et al. [5]). (f) Colorized classification for a TPR of 0.9 (method:
Frangi et al. [5]). (g) Probabilistic output obtained using Random Filters. (h) Colorized
classification for a FPR of 0.05 (method: Random Filters). (i) Colorized classification for
a TPR of 0.9 (method: Random Filters).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Visual results of pixel classification for the image 19 of the DRIVE dataset (part
II). True positive pixels are shown in red, false positives in green, and false negatives in
blue. (a) Probabilistic output obtained using Rotational Features [6]. (b) Colorized clas-
sification for a FPR of 0.05 (method: Rotational Features [6]). (c) Colorized classification
for a TPR of 0.9 (method: Rotational Features [6]). (d) Probabilistic output obtained
using the Oriented Flux Filter [7]. (e) Colorized classification for a FPR of 0.05 (method:
Oriented Flux Filter [7]). (f) Colorized classification for a TPR of 0.9 (method: Oriented
Flux Filter [7]). (g) Probabilistic output obtained using Learned Filters. (h) Colorized
classification for a FPR of 0.05 (method: Learned Filters). (i) Colorized classification for
a TPR of 0.9 (method: Learned Filters)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Detailed view of the colorized classification results for the image 19 of the DRIVE
dataset at a FPR of 0.05. True positive pixels are shown in red, false positives in green,
and false negatives in blue. (a) Cropped segment of the original image. (b) Cropped
segment of the segmentation created by the first human expert. (c) Cropped segment
of the segmentation created by the second human expert. The substantial differences in
the segmentations provided by the two experts outlines the difficulty of the task. (d)
Comparison of the results created by the two human experts. (e) Colorized classification
obtained using the method proposed by Frangi et al. [5]. (f) Colorized classification
obtained using Random Filters. (g) Colorized classification obtained using Rotational
Features [6]. (h) Colorized classification obtained using the Oriented Flux Filter [7]. (i)
Colorized classification obtained using Learned Filters.

15



(a) (b)

Figure 7: Visual results of pixel classification for the neurons dataset for a TPR of 0.9
(part I). True positive pixels are shown in red, false positives in green, and false negatives
in blue. (a) Original image. (b) Ground truth created by a human expert.
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(a) (b)

Figure 8: Visual results of pixel classification for the neurons dataset for a TPR of 0.9
(part II). True positive pixels are shown in red, false positives in green, and false negatives
in blue. (a) Probabilistic output obtained using the method presented by Frangi et al. [5].
(b) Colorized classification derived from the output of the method of Frangi et al. [5].
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(a) (b)

Figure 9: Visual results of pixel classification for the neurons dataset for a TPR of 0.9 (part
III). True positive pixels are shown in red, false positives in green, and false negatives in
blue. (a) Probabilistic output obtained using Random Filters. (b) Colorized classification
derived from the output obtained using Random Filters.
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(a) (b)

Figure 10: Visual results of pixel classification for the neurons dataset for a TPR of
0.9 (part IV). True positive pixels are shown in red, false positives in green, and false
negatives in blue. (a) Probabilistic output obtained using Rotational Features [6]. (b)
Colorized classification derived from the output obtained using Rotational Features [6].
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(a) (b)

Figure 11: Visual results of pixel classification for the neurons dataset for a TPR of 0.9
(part V). True positive pixels are shown in red, false positives in green, and false negatives
in blue. (a) Probabilistic output obtained using the Oriented Flux Filter [7]. (b) Colorized
classification derived from the output obtained using the Oriented Flux Filter [7].
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(a) (b)

Figure 12: Visual results of pixel classification for the neurons dataset for a TPR of
0.9 (part VI). True positive pixels are shown in red, false positives in green, and false
negatives in blue. (a) Probabilistic output obtained using Learned Filters. (b) Colorized
classification derived from the output obtained using Learned Filters.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 13: Detailed view of the colorized classification results for the neurons dataset at
a FPR of 0.05. True positive pixels are shown in red, false positives in green, and false
negatives in blue. (a) Cropped segment of the original image. (b) Cropped segment of
the classification created by the human expert. (c) Cropped segment of the classifica-
tion obtained using the method proposed by Frangi et al. [5]. (d) Colorized classification
obtained using the method proposed by Frangi et al. [5]. (e) Cropped segment of the
classification obtained using Random Filters. (f) Colorized classification derived from the
output obtained using Random Filters. (g) Cropped segment of the classification ob-
tained using Rotational Features [6]. (h) Colorized classification derived from the output
obtained using Rotational Features [6]. (i) Cropped segment of the classification obtained
using the Oriented Flux Filter [7]. (j) Colorized classification derived from the output
obtained using the Oriented Flux Filter [7]. (k) Cropped segment of the classification ob-
tained using Learned Filters. (l) Colorized classification derived from the output obtained
using Learned Filters.
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(a) (b)

(c) (d)

(e) (f)

Figure 14: Visual results of pixel classification for the roads dataset for a FPR of 0.050
(part I). True positive pixels are shown in red, false positives in green, and false negatives
in blue. (a) Original image. (b) Ground truth created by a human expert. (c) Prob-
abilistic output obtained using the method presented by Frangi et al. [5]. (d) Colorized
classification derived from the output of the method of Frangi et al. [5]. (e) Probabilis-
tic output obtained using Random Filters. (f) Colorized classification derived from the
output obtained by using Random Filters.
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Visual results of pixel classification for the roads dataset for a FPR of 0.050
(part II). True positive pixels are shown in red, false positives in green, and false negatives
in blue. (a) Probabilistic output obtained using Rotational Features [6]. (b) Colorized
classification derived from the output obtained by using Rotational Features [6]. (c) Prob-
abilistic output obtained using the Oriented Flux Filter [7]. (d) Colorized classification
derived from the output obtained by using the Oriented Flux Filter [7]. (e) Probabilis-
tic output obtained using Learned Filters. (f) Colorized classification derived from the
output obtained by using Learned Filters.

24



References

[1] I. Daubechies, M. Defrise, C. D. Mol, An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint, Comm. Pure Appl.
Math. (2004).

[2] A. Coates, A. Y. Ng, The Importance of Encoding Versus Training with
Sparse Coding and Vector Quantization, in: Int. Conf. on Mach. Learn.

[3] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, Y. LeCun, What is the
Best Multi-Stage Architecture for Object Recognition?, in: Int. Conf. on
Comput. Vis.

[4] T. Leung, J. Malik, Representing and Recognizing the Visual Appearance
of Materials using Three-dimensional Textons, Int. J. Comput. Vision
(2001).

[5] A. F. Frangi, W. J. Niessen, K. L. Vincken, M. A. Viergever, Multiscale
vessel enhancement filtering, in: Med. Image Comput. Comput. Assist.
Interv.
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