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École Polytechnique Fédérale de Lausanne (EPFL)

EPFL/STI/IEL/GR-EB, Station 11, CH-1015 Lausanne, Switzerland

2School of Integrated Technology
Yonsei University

162-1 Songdo-dong, Yeonsu-gu, 406-840 Incheon, Republic of Korea

ABSTRACT

Sensation of reality refers to the ability of users to feel present
in a multimedia experience. As 3D technologies target to
provide more immersive and higher quality multimedia expe-
riences, it is important to understand Quality of Experience
(QoE) and sensation of reality. Recently, there have been
efforts to measure brain activity in order to understand im-
plicitly QoE for various multimedia contents. However, brain
activity accounting for sensation of reality has not been ade-
quately investigated. The goal of this paper is twofold. First,
we investigate how various aspects, such as perceived quality,
perceived depth, and content preference affect subjective sen-
sation of reality through explicit subjective ratings. Second,
we construct subjective classification systems to predict sen-
sation of reality from multimedia experiences based on elec-
troencephalography (EEG) and peripheral physiological sig-
nals such as heart rate and respiration.

Index Terms— EEG, heart rate, classification, sensation
of reality

1. INTRODUCTION

Sensation of reality in digitally created virtual environ-
ments refers to subjective sensation of being present in these
environments. 3D image and video are representative mul-
timedia technologies that can enhance sensation of reality.
Adding the depth dimension to the traditional 2D imaging
technologies enables users to feel like watching the real-world
in 3D visual scenes.

∗Refers to the corresponding author.
The research leading to these results has been performed in the frame-
work of Swiss National Foundation for Scientific Research (FN 200020-
149259-1, FN IZK0Z2-150904, and FN 200020-143696-1) and the Basic
Science Research Program through the National Research Foundation of
Korea funded by the Ministry of Science, ICT and Future Planning, Korea
(2013R1A1A1007822).

As 3D technologies target to enhance multimedia experi-
ences, it is important to understand perceived Quality of Ex-
perience (QoE). Subjective quality assessment has been pop-
ularly used for this purpose. In particular, human subjects
are hired and asked to explicitly rate the perceived quality of
given multimedia contents in pre-defined rating scales.

In addition, brain and peripheral physiological activities
provide an implicit channel to understanding QoE from im-
mersive multimedia. Brain-computer interfaces (BCI) have
recently received great attention as a more natural and con-
venient way to monitor user-specific responses to given mul-
timedia contents from non-verbal cues (e.g., [1]). Once ac-
curate implicit BCI-based QoE recognition systems are con-
structed, no overt response (i.e., explicit rating) will be re-
quired, facilitating real-time monitoring of QoE without bi-
ases that may be involved in explicit ratings.

Recently, there have been efforts to measure brain activ-
ity in order to understand QoE in various multimedia con-
tents. In [2], it was demonstrated that abrupt changes in 2D
visual quality give rise to specific components in the elec-
troencephalogram (EEG), which has potential to be used for
implicit subjective quality assessment. In the field of 3D im-
age/video, researchers attempted to detect fatigue caused by
3D visual media based on EEG. The study in [3] showed that
the power of the high frequency bands and the change of the
P700 component are strong candidates for measuring 3D vi-
sual fatigue. In [4], it was shown that 3D visual fatigue is
linked to human cortical activities measured by fMRI. These
results show that monitoring neurological responses can pro-
vide hints for the perceived QoE. However, this topic is still
in its infancy with many research questions unanswered. For
instance, measuring sensation of reality based on EEG and
peripheral physiological signals for 3D media has not been
considered previously. Also, most of the studies target to ex-
plore subject-independent patterns reflected in brain signals,
although experiencing multimedia is a rather subjective phe-
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nomenon.
This paper presents a novel approach to predict sensation

of reality in a subjective way, based on EEG and peripheral
physiological signals. We conduct extensive experiments to
acquire both explicit subjective ratings and implicit physio-
logical responses while 2D and 3D visual stimuli are shown.
The acquired data are analyzed in two ways. First, we study
influences of different aspects of media experience on the sen-
sation of reality by analyzing the explicit subjective ratings.
In particular, considered aspects include rendering mode (i.e.,
2D or 3D), objective quality, content, perceived quality, per-
ceived depth, and content preference. Second, we construct
subjective classification systems that predict sensation of re-
ality based on the recorded EEG and peripheral physiological
signals, such as heart rate and respiration. The performance
of the two modalities (EEG and peripheral signals) for pre-
diction is presented and compared.

2. DATA COLLECTION

2.1. Participants

Sixteen subjects (5 females, 11 males) took part in our
experiments. They were between 19 and 30 years old with
an average of 23.8 years of age. All subjects were screened
for correct visual acuity (no errors on 20/30 line), color vision
and stereo vision using the Snellen, Ishiara and Randot charts,
respectively. They all provided written consent forms. Before
each experiment, a training session was organized to allow
participants to familiarize with the assessment procedure. The
content shown in the training session was selected by experts
in order to include 2D and 3D examples of various quality
levels.

2.2. Video stimuli

The dataset was composed of eight video contents: one
for the training and seven for the tests. All contents were
shot during a music festival, with two RED SCARLET-X
mounted on a Genus Hurricane Rig. All video sequences
were recorded in REDCODE RAW (R3D) format, DCI 4K
resolution (4096 × 2160 pixels), at 25 fps, and had a dura-
tion of about one minute long. Stereo audio was recorded
in PCM format, sampled at 48 kHz, 24 bits. Table 1 de-
scribes the contents and their characteristics. The recorded
video sequences were cropped and downsampled to Full HD
resolution (1920 × 1080 pixels) and then compressed with
H.264/MPEG-4 AVC. Two different quantization parameters
(QP) were selected: QP=2 for high quality (HQ) and QP=35
for low quality (LQ). For each content, four different versions
were considered: 2D HQ, 3D HQ, 2D LQ, and 3D LQ, lead-
ing to a total of 28 video sequences, 14 of which in 2D and
14 in 3D.

2.3. Monitor, sound system and environment

To display the video stimuli, a HD 46” Hyundai S465D
polarized stereoscopic monitor was used. The laboratory
setup was controlled in order to ensure the reproducibility of
results by avoiding involuntary influence of external factors.
The test room was equipped with a controlled lighting system
with a 6500K color temperature and an ambient luminance at
15% of the maximum screen luminance. For the audio play-
back, the PSI A14-M professional studio full range speakers
were used.

2.4. Physiological signal acquisition

The EEG was recorded from 256 electrodes placed at the
standard positions on the scalp. An EGI’s Geodesic EEG Sys-
tem (GES) 300 was used to record, amplify, and digitalize the
EEG signals. Additionally, two standard electrocardiogram
(ECG) leads were used and placed on the lower left ribcage
and on the upper right clavicle, as well as two respiratory in-
ductive plethysmography belts (thoracic and abdomen). All
signals were recorded at 250 Hz.

2.5. Experimental protocol

The participants were seated at a distance of 3.2 times
the picture height, corresponding to roughly 1.8 meters from
the stereoscopic monitor, as suggested in [5]. All video se-
quences were viewed with 3D glasses. Experiments were
conducted in three sessions. A fifteen-minute break was pro-
vided between two sessions, in order to avoid subjects’ fa-
tigue. Nine video sequences were presented in the first and
second sessions, and ten in the last one, leading to a total of
28 video sequences, and thus, to a total of 28 trials.

Each trial consisted of a ten-second baseline period and
a stimulus period. The biosignals recorded during the base-
line period were used to remove stimulus-unrelated variations
from the signals obtained during the stimulus period. Dur-
ing the baseline period, the subjects were instructed to remain
calm and focus on a 2D white cross on a black background
presented on the screen in front of them. Once this baseline
period was over, a video sequence was randomly selected and
presented. After the video sequence was over, the subjects
were asked to provide their self-assessed ratings for the par-
ticular video sequence without any restriction in time, follow-
ing the Absolute Category Rating (ACR) evaluation method-
ology [6]. An example of a trial is shown in Figure 1.

Once a trial was over, the next baseline period was
recorded and the next video sequence was randomly selected,
presented and rated. The procedure was repeated until all 28
video sequences were presented and rated.

Regarding the self-assessed ratings, subjects were asked
to evaluate the video sequences in terms of four different as-
pects, namely perceived overall quality, content preference,



Table 1. Characteristics of the multimedia contents used in our experiments.
Content Description and characteristics

Training Rock band playing. Dark. Bright spots. Shot from the back of the auditorium.
Jazz Jazz band playing . Wide shot.
Rock Rock band playing. Dark. Bright spots. Shot from the back of the auditorium.
Stage General manager on stage introducing the next artist. Very dark. Wide shot.
Speech1 General manager giving a speech at the Opening Party. Mid shot.
Speech2 Speech at the Opening Party. Mid shot.
Outdoor Crowd walking on the street near the lake. Lot of depth. Wide shot.
Interview Interview of an artist. Medium close up.

Fig. 1. Example of a trial

sensation of reality, and perceived depth quantity. Two dif-
ferent rating scales were used for each aspect, a 9-point and
a 3-point scale. The 9-point rating scale ranged from 1 to 9,
with 1 representing the lowest value, and 9 the highest value
of each aspect. In particular, the two extremes (1 and 9) cor-
respond to “low” and “high” for perceived overall quality and
content preference, “no presence” and “very strong presence”
for sensation of reality, and “no depth” and “a lot of depth” for
perceived depth quantity. Regarding the 3-point rating scales,
the choices were {“do not like it”, “neutral”, “like it”} for
perceived overall quality and content preference, {“low pres-
ence”, “middle presence”, “high presence”} for sensation of
reality, and {“low depth”, “middle depth”, “high depth”} for
perceived depth quantity. The 3-point scale was intended to
be used for classification purposes.

3. ANALYSIS

In this section, the analysis on the subjective ratings is
elaborated. Then, the biosignal processing is detailed, as well
as the classification scheme to automatically distinguish be-
tween low and high sensation of reality in a subjective way.

3.1. Subjective rating analysis

To detect and remove subjects whose ratings appear to
deviate significantly from others, outlier detection was per-
formed according to the guidelines described in Section 2.3.1
of Annex 2 of [7]. During the training session, examples of
the lowest and highest quality levels were shown, in order to
guide subjects to bound their own perceived overall quality

Fig. 2. Cumulative histogram per subject: sensation of reality.

Fig. 3. Mean opinion scores: sensation of reality.



ratings in a similar way. Since quality was the only factor
in which subjects could be trained, the outlier detection was
performed only on the perceived overall quality ratings. No
outliers were detected, thus, for the subjective ratings analysis
all sixteen subjects were included.

Figure 2 presents the cumulative histogram per subject us-
ing the 3-point scale on sensation of reality. Obviously, sen-
sation of reality from multimedia is very subjective, as indi-
cated by the fact that the ratio of “low presence”, “middle
presence”, and “high presence” values varies across subjects.

The mean opinion score (MOS) and associated 95% con-
fidence interval (CI) were computed for each test stimulus,
assuming a Student’s t-distribution on the subjective ratings,
to represent explicit estimates of perceived reality. Figure 3
shows the resulting MOS and CI for the sensation of real-
ity using the 9-point rating scale. As it can be observed, 3D
sequences generally obtained higher ratings for sensation of
reality than their corresponding 2D versions. Similarly, high
quality sequences generally obtained higher ratings for sensa-
tion of reality than their corresponding low quality versions.
As content Stage is very dark, the perceived 3D effect was not
very strong and the overall quality was rated lower, resulting
in lower sensation of reality.

To investigate quantitatively whether the objective factors,
such as the rendering mode, actual quality level, and con-
tent, have a significant influence on sensation of reality, an
ANOVA analysis was performed on the subjective ratings. In
particular, the null hypothesis was that the rendering mode,
quality level, and content do not influence sensation of real-
ity. The null hypothesis was rejected for all cases, p < 0.005,
indicating that the effects of the rendering mode, actual qual-
ity level, and content on sensation of reality were significant.
However, the interactions among these three different factors
were not significant, p > 0.3.

Also, to understand the impact of the perceptual factors,
such as perceived depth quantity, content preference, and per-
ceived overall quality, on sensation of reality, the correlation
between the MOS of each pair of all four factors was mea-
sured using the Pearson correlation coefficient. Table 2 re-
ports the estimated correlation coefficients. Results show that
there is a strong correlation between sensation of reality and
perceived depth quantity (ρ > 0.88), as well as between sen-
sation of reality and perceived overall quality (ρ > 0.73).
However, the correlation between perceived overall quality
and perceived depth quantity is relatively low (ρ = 0.42),
but statistically different from zero, p = 0.03. Since the
correlation between sensation of reality and perceived depth
quantity, as well as between sensation of reality and perceived
overall quality, is strong, it is rational that the correlation be-
tween perceived overall quality and perceived depth quantity
is also different from zero, due to the transitivity property.
The correlation between sensation of reality and content pref-
erence is very low (ρ < 0.3) and not statistically different
from zero, p = 0.12.

Table 2. Pearson correlation coefficients between the ratings
of different perceptual aspects.

Content Sensation Depth
preference of reality quantity

Overall 0.3392 0.7308 0.4172quality
Content - 0.3017 0.1527preference

Sensation - - 0.8835of reality

Overall, the results from the ANOVA analysis revealed
that content has an impact on sensation of reality. However,
the results from the correlation analysis revealed that content
preference does not influence perceived reality. These find-
ings indicate that sensation of reality is influenced by content
per se, but not by content preference.

3.2. Physiological signal analysis

For the purpose of classification, only the two extreme
classes of the 3-point scale (“Low presence” and “High pres-
ence”) were used to predict sensation of reality in a subjective
way. Subjects 1, 8, 12, and 15 were not taken into account,
because they provided at most two values for one of the two
classes (see Figure 2), making the training and testing of a
binary classifier impossible.

3.2.1. Biosignal pre-processing

EEG electrodes in which muscle activity was discernible
were rejected manually, leading to a total 216 electrodes for
processing and analysis. EEG signals were filtered between
3-47 Hz using a third order Butterworth filter, in order to re-
move electrooculogram (EOG) and electromyogram (EMG)
artifacts. Remaining artifacts were removed by cubic interpo-
lation. All signals were visually inspected to make sure they
did not contain further artifacts. EEG signals were initially
referenced to the Cz electrode and re-referenced to the com-
mon average.

ECG signals were used to extract the heart rate variability
(HRV), which reflects the sympathetic/parasympathetic mod-
ulation. HRV is the physiological measurement of variation
in the time interval between consecutive heart beats. In order
to extract the HRV, the interval between two QRS complexes
defined as R-R interval (tR−R) was estimated using the real-
time algorithm developed by Pan and Tompkins [8]. Then the
heart rate (HR, in beats per minute) was estimated as:

HR =
60

tR−R
. (1)

The HRV is the variation of HR over time. As the HR is a
time-series of nonuniform R-R intervals, the HR was regu-



larly resampled at 4 Hz rate. Then, the respiration drift was
removed using a morphological operator.

Both respiratory signals (abdomen and thoracic) were fil-
tered by a second-order Butterworth bandpass filter with cut-
off frequencies at the range of 0.1-1 Hz.

Only the last 45 seconds of all signals were used in our
analyses, considering that inducing sensation of reality may
take some time.

3.2.2. Feature extraction

Regarding the EEG signals, the frequency power of the
signals was extracted for frequencies between 4 and 47 Hz,
using the Welch’s method with windows of 128 samples.
The mean trial power was then divided by the mean baseline
power, in order to extract the power changes without con-
sidering the pre-stimulus period. These power changes were
captured for different frequency bands, namely theta band
(4-7 Hz), alpha band (8-13 Hz), beta band (14-29 Hz) and
gamma band (30-47 Hz). Apart from the power division, a
novel distance metric between trial and baseline power is also
used as a feature, namely the Wasserstein distance [9]. This
metric is less sensitive to the location of the frequency peaks,
but provides, instead, information about the global structure
of the frequency domain.

Physiological signals of living organisms appear to vary
over time in a complex manner. These temporal variations re-
sult from intrinsic disturbances and actions, such as the activ-
ity of an organism. In physiological signals these fluctuations
are non-periodic. In the current study, the Normalized Length
Density (NLD) [10] index is extracted in order to capture the
self-similarities of the EEG, HRV and respiration signals dur-
ing reality perception processes.

Regarding the peripheral signals, mean, standard de-
viation, and mean absolute values of the first and second
derivatives were extracted for both HRV and respiration [11].
Regarding the frequency domain, the power of the Very Low
Frequency (VLF, 0.0033-0.04 Hz), the Low Frequency (LF,
0.04-0.15 Hz), High Frequency (HF, 0.15-0.4 Hz), and the
LF/HF ratio were extracted from HRV [12]. Finally, the
power of three different bands was extracted from the respi-
ration signals (0.1-0.2 Hz, 0.2-0.3 Hz, and 0.3-0.4 Hz).

3.2.3. Classification

A Support Vector Machine (SVM) classifier with radial
basis function (RBF) kernel was trained for each subject, and
was used to predict high and low sensation of reality, in a
within-subject classification scheme. The RBF kernel was
used due to the fact that this kernel considers the possible non-
linear relationships between class labels and features. The
LIBSVM package was used for this study [13]. The param-
eters of the classifier, as well as the most relevant features,
were optimized for each trial, using a grid search in a leave-

one-trial-out cross-validation scheme [13]. Fisher’s linear dis-
criminant, which is defined as

J(f) =
|µ1 − µ2|
σ2
1 + σ2

2

, (2)

was used to estimate the most significant features. In eq. (2),
µ and σ are the mean and standard deviation for each fea-
ture f , respectively. The training and testing of the classifier
were also carried out in a leave-one-trial-out cross-validation
scheme. For subjects with highly unbalanced classes (e.g.,
subjects 4, 10, 16, 18, and 19), the Smote algorithm (Syn-
thetic Minority Over-sampling Technique, [14]) was imple-
mented and applied to the feature space, in order to generate
more data for the minority class. According to the Smote,
synthetic samples are estimated as the difference between
each feature vector under consideration and its nearest neigh-
bor. The estimated value is then multiplied by a random
number in (0, 1), and added to the value of the feature vector.

To evaluate the performance of the classifiers, the Matthews
Correlation Coefficient (MCC) and the F1-score were esti-
mated. The MCC was selected as a measure of performance
of a binary classifier. It takes into account true and false pos-
itives and negatives, and is considered as an accurate metric
of performance of a classifier with unbalanced classes [15].
It is defined as

MCC =

= TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

, (3)

where TP, FP, TN, and FN refer to True Positives, False Posi-
tives, True Negatives, and False Negatives, respectively.

F1-score is a combination of precision and recall, thus
provides information only about the positive class [15]. Usu-
ally the minority class corresponds to the positive class, thus
F1-score assesses the performance of the minority class.

3.2.4. Results

Figures 4(a)-4(b) present the MCC and the F1-score, re-
spectively, both for the EEG and for the Peripheral signals.
Regarding the EEG signals, the MCC is higher than random
for all subjects, except for subject 5. The mean MCC across
subjects is significantly higher than random for the EEG sig-
nals (mean MCC = 0.65, p < 0.001), indicating that EEG-
based classification is possible and can be used to automati-
cally recognize sensation of reality, in a within-subject classi-
fication framework. Regarding the peripheral signals, classi-
fying automatically sensation of reality is also possible for the
majority of the subjects (for 7 subjects out of 12), with mean
MCC = 0.16 that is again statistically significant from ran-
dom (p < 0.05). However, as expected, classifying sensation
of reality through EEG signals yields an overall significantly
better performance (p < 0.01) than through peripheral sig-
nals.
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Fig. 4. (a) MCC and (b) F1-score for EEG and peripheral
physiological signals for each subject.

4. CONCLUSION

In this paper we analysed the results of our experiments
in which 2D and 3D sequences of various quality levels were
presented to human subjects, while their subjective ratings on
various aspects were captured, and their EEG, ECG and res-
piration signals were recorded. Regarding the analysis on the
subjective ratings, this study revealed that actual quality level,
rendering mode (i.e., 2D or 3D), and content influence sensa-
tion of reality. Moreover, it was shown that perceived overall
quality and perceived depth quantity also influence sensation
of reality, indicating that 3D enhances whereas sensation of
reality whereas quality degradation due to compression atten-

uates sensation of reality. Regarding the classification analy-
sis, it was demonstrated that EEG-based classification is pos-
sible and can be used to automatically recognize high from
low sensation of reality, in a subjective framework. Finally,
classification of sensation of reality from HR and respiration
was also possible, but less accurate than using EEG signals.
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