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Miniaturized electrical thrusters based on electrospray (or colloid) emitters could rev-
olutionize the spacecraft industry by providing e�cient propulsion capabilities to micro
and nano satellites (1-100 kg). We report on our recent advances in the development of
this technology within the MicroThrust (www.microthrust.eu) European consortium. We
present the design and operation of the currently fabricated and next generation emitter
arrays, describing their microfabrication process and measured performance. The emitters
are out-of-plane internally fed capillaries micromachined in monolithic silicon. They are
100 �m tall and have an inner diameter of 5-10 �m. We operate the devices in both unipolar
and bi-polar modes and �nd that the latest devices operate in a mixed regime, with the
emitted spray a composition of ions and droplets. Their speci�c impulse is consequently
in the few hundred seconds, highlighting the need for higher impedance, smaller emitters.
Onset voltages are of than 800-850V for 200 �m inner diameter extractors, current levels
for 19 emitter arrays of 2-3 �A. Preliminary analysis hints to plume half-angles of 35-40�,
although these values depend on the operation mode and beam composition.
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IL Ionic Liquid
Isp Speci�c impulse, Seconds
IT Total emitted current, Amperes
q Charge, Coulomb
m Mass, kg
Vb Beam potential, Volts
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I. Introduction

Due to their high performance and relative simplicity, electrospray thrusters have long been acknowledged
as a promising technology to provide propulsion capabilities to small spacecraft.1 They use a conductive
liquid propellant (often an ionic liquid), transported to an extraction site where they are subjected to a large
electrical �eld applied by an annular electrode.
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Figure 1. Operation of a bi-polar electrospray with extractor and ac-
celerator stage.

As the applied potential is increased,
the liquid meniscus deforms into an in-
creasingly sharp hyperboloid and even-
tually reaches an equilibrium between the
�eld, its surface tension and internal pres-
sure. The meniscus then has the shape
of a Taylor cone,2 with a tip radius in
the order of 10�8 m. The local tip elec-
tric �eld in this con�guration can reach
values of order 109 V/m, even with rel-
atively small voltages applied (0.5 - 1.5
kV), and drive the extraction of droplets,
ions3 or a combination of both from the
liquid.

Ensuring the liquid transport by cap-
illarity reduces considerably the footprint
of the propulsion system by removing
the need for pressurized tanks and lines,
an advantage over competing electrical
propulsion technologies. Capillary trans-
port has been demonstrated for inter-
nally,4{8 externally9 or porously fed emit-
ters.10,11

Intrinsic to the technology is also the
possibility to extract both positive and
negative species, making it an electrical
propulsion technology that does not require an external neutralizer.12 Preliminary analysis, completed
within the MicroThrusta project has shown that a complete system could be installed within a three-unit
cubesat and carry it to lunar orbit.

Another key element of the technology is the potential to control the nature of the species emitted, from
ion to droplet. These di�er fundamentally in their charge over mass (q/m) ratio and consequently in their
speci�c impulse (Isp) vs thrust (T ) characteristics, according to equations (1) and (2):
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where IT is the total current of the emitted beam and Vb is the beam potential.
The extraction voltage having a major in
uence on the extraction process, the thrust and specify impulse

can be adjusted by directly varying the potential on the extraction electrode. Adding an accelerator stage
(not included in this work) can amplify both Isp and thrust by increasing the beam potential Vb, resulting
in a system only limited by the available power.

Our group has focused on internally fed emitters microfabricated in silicon (Figure 2). The internal feeding
approach is advantageous has it a�ords a high level of propellant containment and reduced exposition to
the space environment. It is also possible to accurately control the emitter tip geometry. This geometry is
crucial as it will in
uence the local electric �eld and consequently the operation voltages. It also drives the
key parameter of 
uidic impedance. It has previously been shown that the nature of the emitted species is

awww.microthrust.eu

2 of 13

American Institute of Aeronautics and Astronautics



highly dependent on the liquid 
ow rate, such that the high speci�c impulse ionic mode of operation can be
more easily achieved with very low 
ow rates.13 In the past, we used silica microspheres to �ll the emitters
and therefore increase their hydraulic impedance.13 This approach has now been discarded as it led to high
variability in the �lling con�guration and e�ective impedance. Instead, the microfabrication methods are
being improved to build smaller, higher aspect ratio emitters. This strategy is expected, in the short term,
to yield devices that will not operate in ionic mode, but should, as the fabrication is optimized, to yield
devices that operate repeatably in this mode.

In addition to allowing smaller dimension with higher precision, microfabrication permits the seamless
manufacturing of large arrays of emitters operating in parallel, circumventing the Isp vs T tradeo�. The
small dimensions are also particularly adapted to small spacecraft applications. The currently fabricated
thruster chips with wafer-level integrated extractor electrodes have an area of 10 x 10 mm2 and are less than
a mm thick.

This paper will summarize our recent advances on the development of the thruster chips. It will de-
scribe the latest generations of emitter designs, particularly with respect to the key parameter of hydraulic
impedance. The microfabrication of the chips will be described, including the recently introduced wafer level
bonding of the extractors. Finally, the performance of the thrusters will be presented following preliminary
IV, time of 
ight and beam shape measurements.

II. Design
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Figure 2. Cross-section diagram (a) and SEM photo (b) of internally fed electrospray emitters.

Figure 2 shows a cross-section diagram of the microfabricated electrospray emitters. The capillaries are
standing out of plane from the silicon bulk and fed with the ionic liquid EMI � BF4 from their backside.
They are 100�m tall and have an inner diameter ranging from 5 to 10 �m. Their edge is sharpened with
an isotropic silicon etch to reduce the in
uence of the conductive silicon capillary on the �eld reaching the
liquid cone and increase liquid containment (Figure 3). The extractor electrodes are placed 15 to 50 �m
above the emitter tip and have an inner diameter ranging from 150 to 300 �m. Both the capillaries and
extractors are fabricated separately and assembled at wafer level.

In operation, a positive or negative potential is applied to the liquid while the extractor level is grounded.

II.A. Hydraulic impedance

Hydraulic impedance plays a key role in the operation mode of the thrusters. Having a low 
ow rate (high
impedance) is crucial for accessing the high Isp ionic mode so that increasing the impedance has for some time
been the subject of considerable development e�orts. The present limitations lie with the microfabrication
process, which limits the aspect ratio of the etch that de�nes the capillary interior. As mentioned earlier,
earlier generations of the emitters used a process of silica microbead �lling and silanization as a workaround
to e�ectively reduce the inner diameter of the capillary (Figure 4).

To quantify this reduction, we use, as Lenguito,6 a model adapted from Ergun14 to compute the e�ective
inner diameter Deff of the emitter (Equation 3),
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(a) (b)

Figure 3. SEM closeups of sharpened (a) and unsharpened (b) emitter tips.

Deff = 4

√
16

75

D2
sD

2ε3

(1− ε)
2 (3)

where Ds is the diameter of the microspheres, D is the inner diameter of the capillary and ε is the void
fraction. The hydraulic impedance Rfl is then computed from the well-known Hagen-Poiseuille equation:

Rfl =
128µL

πD4
eff

(4)

where µ is the dynamic viscosity of the fluid (0.038 Pa · s for EMI − BF4
15), L is the length of the

capillary and Deff its inner diameter.

Figure 4. SEM image of 22µm inner diam-
eter emitter from the 1st generation filled
with 5µm silicon dioxide beads.

Table 1 gives a summary of the inner diameter of the fabricated
first and second generation emitters, including the estimation of the
effective inner diameter due to the bead filling. The estimation of
minimum and maximum values for the inner diameter of the bead
filled emitters were done by using a void fraction ranging from 0.25
to 0.65. Given the observed variation in the filling arrangement, and
based on other work,16–18 this was felt to be a reasonable assump-
tion. The resulting estimated effective hydraulic impedance varied
by nearly 1000%, indicating that different emitters, even within a
single chip, could have significantly different flow rates and operation
mode. This was also observed experimentally, as devices required
different back pressures to operate stably. Focus was thus shifted
to the optimization of the deep etch fabrication process to increase
the impedance without making use of the bead filling method. The
dimensions of the latest generation emitters are presented in Table
1, which also includes the expected dimensions of the next generation devices. It is clear from the table that
the present devices have a much lower impedance than the bead filled ones - so that they are not expected
to operate in ionic mode - but that the upcoming generation will display both high impedance and low
variability.

Table 1. Effective inner diameter and corresponding hydraulic impedance of latest generations of electrospray emitters
fabricated at EPFL. Values under parenthesis represent an estimation

Gen. Beads Status L (Effective) D (µm) (Effective) Rfl (kg s−1 m−4)

Min Median Max Min Median Max Variation

1.0 yes Fabricated 100 (3.0) (5.4) (8.9) (1.58e17) (1.82e17) (1.96e18) (990%)

2.0 no Fabricated 100 9.5 10.2 10.9 3.34e15 1.43e16 1.90e16 109%

3.0 no Planned 50 4.5 5.0 5.5 3.93e16 1.24e17 1.89e17 120%
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III. Fabrication

III.A. Emitter and extractor fabrication

The fabrication steps for the extractor wafers are shown in �gure 5. The starting wafer has a 400 �m thick
handle layer and a 50 �m thick device, with 2�m oxide insulation. A wet oxidation is done to provide a 2.2
�m hard mask (Figure 5a). The extractors are de�ned though standard photolithography and Deep Reactive
Ion Etch (DRIE) processes (Figure 5b). The backside of the wafer is patterned in a second front-to-back
aligned lithography to provide the opening in the extractor handle, with su�cient clearance for the emitted
spray. The oxide of the hard masks and suspended membranes are then removed with a wet HF etch. A
2 �m PECVD oxide is then re-deposited on the extractor front side to improve electrical isolation with
the emitter. Finally, a thin aluminum layer is deposited to connect the extractor device and handle layers
(Figure 5c).

(a) (b) (c)

Silicon Oxide Aluminum

Figure 5. Fabrication steps for the extractor wafers. The SOI wafers have 50 �m thick device layer, 2 �m thick buried
oxide layer and 400 �m thick handle layer.

The starting emitter wafer has a 400 �m handle and a 100 �m device, with again 2�m oxide insulation. A
2.2 �m oxide hard mask is again grown (Figure 6a). The critical lithography and etch de�ning the capillary
inner diameter of the emitters are done �rst to ensure optimal conditions. The liquid feedthrough reservoir
is then etched from the backside of the wafer in a two step process. First, an inner reservoir region is de�ned
by etching the oxide hard mask. A thick resist (AZ9260) is then re-spun and patterned to de�ne the reservoir
outer dimensions (Figure 6b). The two-step reservoir is etched in a Silicon/Silicon dioxide/Silicon sequence.
To pattern the exterior of the capillaries on the front side, a 15 �m dry �lm negative resist (DuPont MX5015)
is laminated and patterned in a critical front-to-front alignment (Figure 6d). The tips of the capillaries are
then sharpened with an isotropic silicon etch. Follows the silicon DRIE which de�nes the stando� height of
the emitters (Figure 6e). The emitters are �nally opened by a vapor phase HF release (Figure 6f). Future
devices will also include the deposition of a thin MVD R
 coating to increase the hydrophobicity of the exterior
of the emitters.

 

(a)

(b) (d)

(e)

(f)

(c)

Silicon Oxide Resist

Figure 6. Fabrication steps for the emitter wafers. The SOI wafers have 100 �m thick device layer, 2 �m thick buried
oxide layer, and 500 �m thick handle layer. The thermal oxide on both faces is 2.2 �m thick.
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III.B. Wafer level assembly

                   

                   

Dicing Saw

(a)
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Figure 7. Process for the bonding and dicing of the emitter/extractor
stacks.

The emitter and extractor wafers are
bonded by thermo-compression with a
laminated 50 �m dry �lm (DuPont
MX5050) interface. The �lm is �rst ap-
plied to the extractor wafer and pat-
terned to provide clearance for the spray
and allow some deformation of the poly-
mer during bonding (Figure 7a-b). Both
wafers are aligned and pressed for 60 min-
utes at 115�, with a pressure load of
100 N=cm2 (Figure 7c). The resulting
bond provides high alignment accuracy,
has high dielectric insulation (>3kV experimental) and can be reversed with an isopropanol or acetone soak
for failure analysis. The stacks are �nally diced with protective tape applied on both sides (Figure 7d).

IV. Experimental results

IV.A. Test setup

The basic test setup for thruster characterization is shown in Figure 8(a) and consists of two chambers.
The main chamber holds the mounting interface to receive the test assembly, a modi�ed Thorlabs lens cap
(Figure 8(b)) that can be quickly exchanged. The second chamber holds the ionic liquid reservoir, kept under
vacuum to avoid liquid contamination by ambient humidity. The liquid is itself transferred using a glass
capillary by applying a pressure di�erential and dropped on the backside of the assembly, where capillarity
transports it to the emitter tip. An EPDM rubber o-ring, clamped down in between the die and holder,
prevents the ionic liquid from spilling out and creating short circuits. The basic setup sprays downwards,
although alternate setups have been used to successfully spray sideways, indicating that gravity has little
in
uence on the liquid feed.

For standard tests, the front clamping plate, connected to the extractor, is grounded while the lens cap
is set to high voltage, either positive or negative. The current carried by the spray is collected by a Kimball
physics Faraday cup and measured by a Keithley 6487 pico-ammeter. The current on the extractor and the
high voltage source are also measured. The instruments are controlled a semi-automated Matlab routine
and the current measurements recorded using a Texas Instruments NI-USB 4211 DAQ card.

(a) Schematic of the test rig for thruster characterization. 1)
Main chamber 2) Chip Holder 3) Thruster chip 4) O-Ring 5)Ex-
tractor addressing 6) Liquid addressing 7) Faraday cup 8) Pico-
ammeter 9) High voltage source 10) Glass capillary 11) Liquid
chamber 12) Liquid reservoir

(b) Photograph of test assembly with
19x emitter array installed.

Figure 8. Setup and assembly for IV measurements.
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IV.B. IV characteristics

In an initial characterization of the fabricated devices, IV curves can been traced for individual or arrays of
emitters, both in unipolar and bi-polar operation. Figure ?? shows plots of a 19x emitter array composed of
10 �m inner diameter emitters with 200 �m diameter extractors. The current is swept up in 10 V steps from
500V to 1000V (Figure 9(a)), then swept down (Figure 9(b)). While some hysteresis is clearly seen between
the two curves, the "onset" and "o�set" voltages are both at approximately 825 Volts, with current values
quickly reaching 2 �A. Very low leakage current was seen in this case, with almost no di�erence between the
collected current (PAM current) and the source current.
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Figure 9. Unipolar IV curves for a 19x emitter array, with 200�m diameter extractors. The voltage steps are of 10V
and, in the case of bipolar operation, the switching frequency is 0.5 Hz.
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Figure 10. Bipolar IV curves for a 19x emitter array, with 200�m diameter extractors. The voltage steps are of 10V
and, in the case of bipolar operation, the switching frequency is 0.5 Hz.

The same device could be operated in bipolar mode (0.5 Hz frequency), with the alternated emission
of positive and negative particles (Figure 10). The negatively charged spray initiated at lower voltage,
which is consistent with the smaller mass of the BF�

4 anions. This device could be operated for several
hours, but eventually failed from an apparent surface wetting probably due to a back 
ux of particles. Ionic
liquid escaping the con�nement of the capillary continues to be a life limiting factor, as it eventually leads
to the electrical shorting of the emitter and extractor. The addition of the hydrophobic layer is believed
instrumental to the resolution of this problem.

7 of 13

American Institute of Aeronautics and Astronautics



IV.C. Beam composition (Time-of-Flight)

Various Time-of-Flight (ToF) experiments were completed as part of the investigations. The experimental
set-up for ToF data collection is the same as in Figure 8, except with the addition of a relatively simple
electrostatic gate 10mm downstream from the emitter.19 The gate is attached to a DEI PVX-4150 high
speed switch, enabling the gate to switch from ground to emitter voltage in 20 nanoseconds. Also, rather
than the Kimball physics Faraday cup illustrated in Figure 8, the plume is collected on a 70mm diameter flat
plate situated up to 400mm downstream. This larger collection area allow for ToF to be collected without
the use of a Einzel lens-like focussing device. A fine mesh is situated above the plate, to which is applied a
negative potential difference to suppress secondary electron emission. The current collected is amplified by
a Femto variable-gain high-speed current amplifier. The signal is then supplied to a Wavesurfer oscilloscope
for analysis and collection. ToF analysis was completed for the 2nd generation devices, with on average a
10.2 µm inner diameter, as listed in Table 1.

Figure 11. ToF traces with varying emitter voltage. In Unipolar mode. Monomer and dimer ions present, and tail of
droplets

Figure 11 illustrates the time-of-flight traces for a positive emitter voltage polarity unipolar voltage sweep,
similar to that shown in Figure 9(a). A mixture of ions and droplets is illustrated, with the ionic current
dominating, but droplets still being present with a substantially different charge/mass ratio.

An approximate value of the thrust and specific impulse can be calculated from the Time-of-Flight data.20

From Figure 11 the specific impulse is approximately 180s, with the emitter thrust being of the order of 0.5
µN .

ToF experiments were also completed in bipolar mode, with again the emitter voltage varied. The
experiments were similar to the current voltage sweep illustrated in Figure 10. The ToF data for these bipolar
emitter voltage-varying tests is illustrated in Figure 12, for negative and positive polarities respectively. The
bipolar frequency of the particular experiment shown was 0.5Hz. The ToF traces all show a mixed mode of
operation, dominated by the ionic current, as was the case for the experiments generally.

Figure 13 show the calculated approximate values of the thrust and specific impulse for the negative and
positive polarities of the bipolar sweep respectively. Both polarities demonstrate a specific impulse of the
order of 200s, and an emitter thrust of 0.3 - 0.8 µN . The polarity seems to have little effect on the plume
composition, and also the specific impulse values are in agreement with the values found for unipolar mode.

The generally low specific impulse values indicate that, as expected, the latest fabricated devices have an
hydraulic impedance too low to allow stable ionic mode operation. To improve the specific impulse requires
the removal of the droplet component of the electrospray plume, which can be achieved by reducing the flow
rate. In the past, we have experienced this situation either by using the high impedance, bead filled emitters,
or by pressure feeding the propellant.20 In the latter, instead of feeding the EMI −BF4 propellant into the
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(a) Negative polarity (b) Positive polarity

Figure 12. Variation of time-of-flight traces with emitter voltage in negative polarity for bipolar spraying. Completed
at a bipolar frequency of 0.5Hz.

(a) Negative polarity (b) Positive polarity

Figure 13. Variation of specific impulse and emitter thrust with emitter voltage, in negative polarity for bipolar
spraying. Completed at a bipolar frequency of 0.5Hz.

thruster chip holder using droplets, the chip holder was directly attached to the capillary feed line and the
pressure in the liquid chamber (no. 11 in Figure 8(a)) adjusted. It was found that this propellant feeding
method was unreliable, with the initial 100mBar reservoir pressure often resulting in the uncontrollable
flooding of the emitter and extractor surfaces. Therefore this ”reservoir fed” method is currently not being
used, but may be revisited with upcoming high impedance emitters.

Even with the current devices, though, recent tests have demonstrated that, in some conditions, a seem-
ingly ionic mode could be reached. Indeed, long duration bipolar tests showed a switch after several hours
of operation. Such ToF data is illustrated in Figure 14. Two ToF traces are shown, one after 1/2 an hour
of operation, and the second after 4 and hours of operation. The data after a longer duration demonstrates
an ionic mode of operation, with no (or at least very little) droplets present. The specific impulse for the
two ToF trace are 190s and 2500s respectively. Interestingly the mode change was also accompanied by
a change in the emitter current from 1200nA to 250nA, but the amount of collector current remains rel-
atively constant. This suggest that ionic mode has a smaller plume half-angle, decreasing from 34 degrees
in mixed mode (in approximate agreement with the data shown in Section IV. D. below), to 17 degrees in
ionic mode. The reason for this change in mode remains unclear though. The emitter eventually failed after
approximately 10 hours of spraying, due to an accumulation of liquid between the emitter and extractor.
This accumulation of liquid may be the reason for the change in mode, with the electric field changing as
the accumulation increased possibly resulting in a lower flow rate and therefore ionic mode.

In conclusion, substantial Time-of Flight data suggests that the current devices can emit sprays with
a range of beam compositions, from mixed ion/droplets to nearly ionic. The operation is currently not
well controlled, though; a situation which it is believed will be improved with the higher impedance third
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Figure 14. ToF traces with varying emitter voltage. In Unipolar mode. Monomer and dimer ions present, and tail of
droplets

generation emitters described in Table 1.

IV.D. Beam shape

The shape and angle of the emitted beam are of great importance to the system performance of the thrusters.
First, particle emission off the desired thrust direction will reduce the thrust to power efficiency of the system
and result in propellant waste, reducing the achievable ∆v of the system. Second, asymmetry or off-centering
of the emitted beam would generate a lateral thrust vector and lead to spacecraft attitude control issues.
Third, from the design point of view, the spray angle drives the minimum dimensions of the extractor and
accelerator electrodes as well as the pitch between emitters, driving the packing density of arrays. For
accelerator design, the divergence of the beam is also necessary as input to the beam shaping design and
simulations.

Figure 15. Photograph of 19x electrode target plate for beam shape analysis.

To characterize the beam shape and emission angle, a multiple electrode detector scheme has been
implemented. In the first attempt, 19 hexagonal detector plates have been fabricated on a FR4 printed
circuit board (PCB) as shown in Figure 15. Switching electronics have been built to switch through all
plates sequentially during the spray process and record the spray current from the plates in bipolar spray
conditions. So far, two devices have been characterized for beam shape and emission angle results with this
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19-plate hexagonal con�guration. Figure 16 shows the spray currents recorded in the 19-plate detectors as
a function of the emission angle at two di�erent emission voltages with both polarities. In Figure 17(a), a
simple second order extrapolation of the current readings in 5 plates along the cross-section of the plates is
used to estimate the beam emission angle as a function of the emission voltage. This shows that the emission
angle, while starting with half-angles just under 20�, tends, for both polarities, to double as the voltage is
increased. In Figure 17(b), the total spray currents recorded in the 19 plates as a function of emission voltage
are plotted. The estimate of emission angle relies on only 5 data point along the cross section of emission.
To improve the accuracy of beam angle measurement, a new 19-plate annular ring con�guration has been
built, using the same switching electronics. Tests on the beam shape with this con�guration will be reported
later.

(a) Negative (-1000V) emission (b) Positive (1000V) emission

Figure 16. Spray current at distribution across the detector plates as a function of spray angle for (a) -1000V emission
voltage and (b) 1000V emission voltage.

(a) (b)

Figure 17. (a) An approximate estimation of the beam angle as a function of the emission voltage. (b) Total spay
current as a function of the emission voltage.

11 of 13

American Institute of Aeronautics and Astronautics



V. Conclusion

We have shown our latest advances in the development of electrospray thrusters for small satellites.
By operating in internally fed bi-polar mode, arrays of microfabricated emitters can to be integrated in
a propulsion system suitable for micro and nano satellites. Speci�c impulses of several thousands have
been observed and depend strongly on the operating conditions of the device - a particularity that can be
utilized to allow tunable Thrust vs Isp characteristics. High speci�c impulse remains di�cult to attain stably,
requiring the very low propellant 
ow rate associated with high hydraulic impedance capillaries. The method
of silica micro bead �lling previously used to achieve this high impedance was dismissed with focus turned
to the optimization of the capillary etch process. Current devices have an impedance an order of magnitude
below the bead �lled ones, explaining their mixed mode operation, but are considerably more reproducible.
Upcoming devices are expected to have impedances comparable to the bead �lled capillaries while having
high uniformity.

The full microfabrication process was presented, including a wafer-level assembly method using a thin
laminated resist �lm.

Fabricated, "low impedance" devices were tested for their "turn-on"/"turn-o�" voltages, beam compo-
sition and plume angle. Initial analysis shows slight hysteresis and asymmetry between the positive and
negative extracted species. The composition, while mostly ionic, also still includes a signi�cant fraction of
droplets, e�ectively reducing the Isp and e�ciency of the spray, and highlighting the importance of the high
impedance.

A new target plate setup was also introduced, used to map the beam shape in various operation mode.
First results indicated beam half-angles in the range of 35-45�, although this angle is seen to be dependent
on the operation voltage and beam composition.
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