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MODEL REDUCTION BASED ON PROPER GENERALIZED
DECOMPOSITION FOR THE STOCHASTIC STEADY
INCOMPRESSIBLE NAVIER-STOKES EQUATIONS*
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Abstract. In this paper we consider a proper generalized decomposition method to solve the
steady incompressible Navier—Stokes equations with random Reynolds number and forcing term. The
aim of such a technique is to compute a low-cost reduced basis approximation of the full stochastic
Galerkin solution of the problem at hand. A particular algorithm, inspired by the Arnoldi method
for solving eigenproblems, is proposed for an efficient greedy construction of a deterministic reduced
basis approximation. This algorithm decouples the computation of the deterministic and stochastic
components of the solution, thus allowing reuse of preexisting deterministic Navier—-Stokes solvers.
It has the remarkable property of only requiring the solution of m uncoupled deterministic problems
for the construction of an m-dimensional reduced basis rather than M coupled problems of the full
stochastic Galerkin approximation space, with m < M (up to one order of magnitude for the problem
at hand in this work).
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1. Introduction. In recent years, functional approaches have been deeply in-
vestigated for the numerical solution of models driven by stochastic partial differential
equations [18, 21]. These approaches consist of searching for a functional expansion
of the random solution u on a basis of functions of a discrete set of random param-
eters modeling the input uncertainties. The solution u is thus a function defined on
a parameter space = equipped with a probability measure P, and with values in a
certain function space V. Classical approximation methods consist of searching for

an approximate M-term expansion 22/[:1 upPr(§) of u(§), where the Uy are some
suitable basis functions, typically polynomials or piecewise polynomials, and where
the ug € V are the coefficients that need to be computed. Approximate expansions
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can be computed using sampling-type approaches or Galerkin-type projection meth-
ods, these latter methods requiring the solution of a coupled system of M partial
differential equations (PDEs). For large-scale applications, the computation of these
approximations becomes simply intractable.

In order to address this complexity, various model reduction methods have been
proposed (see [31] for a short review). Model reduction methods based on nonlinear
approximation aim at constructing an approximation of the parameterized solution
w(€) under the form Y " u;\;(§), where the u; and \; constitute reduced bases
of functions that are not fixed a priori but simultaneously determined using some
suitable optimality criteria. These optimality criteria must be such that the m-term
approximation is computable without any a priori information on the solution u.

A first class of model reduction methods, the so called “reduced basis” methods,
define optimal approximations using a uniform norm on the parameter space [35, 25,
37]. For computational purposes, suboptimal approximations are introduced, using a
greedy construction of deterministic approximation spaces. Reduced basis functions
u; are progressively determined by the solution of successive deterministic problems
associated with parameters values &;, i.e., u; = u(&;), where a suitable error indicator
is detected to be maximum. These methods have been applied to a large class of PDEs
(see, e.g., [40, 36] for the application to Burgers and Navier—Stokes equations). Some
convergence results have been recently obtained for a class of linear elliptic problems,
under some regularity assumptions on the solution [5, 7]. These approaches, initially
introduced for parametric analyses, did not originally take into account the probability
measure on the parameter space; extension to problems with stochastic parameters
can be found, e.g., in [6].

A second class of model reduction methods, known as proper generalized de-
composition methods (PGD), is based on the approximation of the weak solution of
parametric/stochastic equations which is an element of a tensor product space V® S,
where S is a space of functions defined on the weighted parameter space =, typically
S = L2(Z,P). It has been introduced in [29] for the solution a class of linear stochastic
PDEs, and then extended to other classes of stochastic PDEs (see, e.g., [30, 34, 10]).
Different definitions of approximations have been proposed, which can be seen as gen-
eralized spectral decompositions (generalized singular value decompositions (SVDs)).
Based on the interpretation of the approximation problem as a nonlinear eigenprob-
lem, several algorithms have been proposed, which are inspired by methods for the
solution of eigenproblems; see [30]. Greedy-type algorithms that construct the func-
tions u; one after the other are of particular interest. Indeed, these algorithms only
require the solution of successive deterministic problems. Note however that, un-
like the aforementioned methods, these problems are not associated with a particular
parameter value.

The PGD methods have also been successively applied to the solution of other
high-dimensional problems formulated in tensor spaces (see review [11]). In partic-
ular, they have been used for the solution of high-dimensional stochastic problems
by further exploiting the tensor structure of stochastic function space [14, 33]. Gen-
eral convergence results have been recently obtained for particular classes of elliptic
problems [16, 8, 17]. Let us note that alternative solution strategies based on tensor
approximation methods have also been proposed for the solution of high-dimensional
stochastic problems [2, 19, 27]. These approaches are based on the use of classical
tensor approximation methods within iterative solvers.

In this paper, we address the solution of the stochastic steady incompressible
Navier—Stokes equations. Application of stochastic spectral methods to the Navier—
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Stokes equations, using Galerkin projection schemes, was first considered in [22, 24, 23,
42]; see also references in reviews [20, 28] and book [21]. Although successful, Galerkin
methods for the stochastic Navier—Stokes equations are challenged by the dimension
of the resulting nonlinear problem and the need for adapted solvers [26]. Therefore,
we propose in this work to apply the PGD method to the stochastic steady Navier—
Stokes equations (see also [39, 38] for other model reduction methods to Navier—Stokes
stochastic equations and [15] for a PGD approach to the unsteady Navier—Stokes prob-
lem without uncertainties). For this purpose, we extend to this nonlinear framework
an algorithm that has been proposed in [30] for the construction of the reduced basis
of functions u;. This construction can be interpreted as an Arnoldi procedure for
the solution of the associated nonlinear eigenproblem. Arnoldi iterations can be seen
as a greedy procedure for the construction of a reduced approximation space. This
algorithm has the remarkable property that for the construction of an m-dimensional
reduced basis it only requires the solution of m deterministic PDEs that possess a
classical structure, close to a deterministic incompressible Navier—Stokes problem.
These deterministic problems can be handled by classical deterministic solvers, thus
making the proposed algorithm a partially non-intrusive method. The algorithm is
applied to a divergence-free formulation of the Navier—Stokes equations, yielding an
approximation of the random velocity field on a reduced basis of divergence-free de-
terministic velocity fields. A methodology is then proposed for the reconstruction of
an approximation of the pressure field, the random velocity field being given. This
approximation is defined through a minimal residual formulation of the Navier—Stokes
equations. Two alternative methods are introduced for the construction of an approx-
imation of the pressure. The first method is a direct application of a PGD algorithm
to the minimal residual formulation of the Navier—Stokes equations, thus yielding to
the construction of a convergent decomposition of the pressure. The second method,
which is more computationally efficient, reuses as a reduced basis the deterministic
pressure fields associated with the deterministic problems that were solved during the
construction of the decomposition of the velocity field (i.e., the Lagrange multipliers
associated with the divergence-free constraint).

The outline of the paper is as follows. In section 2, the PGD method is presented
in a general framework for the solution of parametric stochastic PDEs. In section 3,
we introduce the formulation of the steady incompressible Navier—Stokes equations
and we detail the computational aspects of the application of the PGD. In section 4,
numerical examples illustrate the efficiency of the proposed method. Finally, the
methodologies for pressure reconstruction are introduced in section 5.

2. Proper generalized decomposition (PGD). In this section we introduce
the weak formulation of a generic problem with stochastic coefficients. We then
briefly discuss the stochastic discretization using polynomial chaos expansion and the
related Galerkin method. The PGD method is then introduced and algorithms for its
calculation are detailed.

2.1. Stochastic variational problem. Consider the following abstract deter-
ministic variational problem:

Find uw € V such that
(1) a(u,v; ) = b(v; ¢) Vv eV,

with V an appropriate vector space, ¢ the problem parameters, b(-;¢) : V — R a
linear form, and a(-,-;¢) : V x V — R a semilinear form which is linear with respect
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to the second argument. The deterministic space V can be here either infinite or finite
dimensional and is equipped with an inner product (-, -)y with associated norm || - ||y.
Note that if V has infinite dimension, it will have to be discretized at some point.
However, to remain as general as possible, we delay the discussion on discretized
spaces V to the next sections. In any case, we assume that problem (1) has a unique
solution (depending on ¢).

In this paper, we are interested in situations where the parameters ¢ of the prob-
lem are uncertain and therefore treated as random inputs. Let P := (0,%, u) be an
abstract probability space, where © is the set of random elementary events, ¥ the
o-algebra of the events, and p a probability measure. For ¢ defined on P, we denote
by ¢(0), 8 € ©, a realization of the random parameters. The expectation of a generic
random quantity & defined on P is denoted

E[] = /@ h(0) dpu(9).

Let L2(©, u1) be the space of second-order real-valued random variables, equipped with
the inner product (-,-), and associated norm || - [|r.2(0,.),

V(h,g) € L*(©, ), (h,g), = /@h(9)g(9) du(8),  lIhllze.m = (b h),/?,

sothat h € L2(©, 1) < | hllL2(o,,) < +0o. Since the parameters ¢ in (1) are random,
the solution of (1), so denoted U, is also random and defined on P. It satisfies (1)
almost surely, that is

findU : © =V such that a.s.
(2) a (U(0),v;6(0)) = b(v; ¢(6) ) Vv e
It will be further assumed that U € V ® L?(0, u), so that one can derive the fully
weak variational form of the stochastic problem given by the following problem.

Stochastic problem.

Find U € V @ L?(0, ) such that
3) AU, V;¢) = B(V;9) VVeVaLi(o,u),

with the forms A and B given by

AU V;6) =Ela(U,V;6)] = / o (U(6). V(6): (6)) du(6),

S}

B(V;6) = E[b(V:9)] = / b(V(6); 6(6)) dyu(6).

S}

2.2. Stochastic discretization. For computational purposes, numerical dis-
cretizations need to be introduced. These will concern both the deterministic space
V, to be discussed in the following sections, and the stochastic space L2(O, ), for
which we rely on polynomial chaos (PC) expansions.

For the sake of simplicity, we restrict ourselves to the case of PC approximations
for a set of N independent and identically distributed (i.i.d.) random variables, & =
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{&, i =1,...,N}, defined on P, with range = and known probability law P. Any
functional h : € € =+ R is then a real-valued random variable and we have

E[h] = /@ h(&(6)) du(6) = / h(y) dP(y).

In this context, we assume the knowledge of the random model parameters ¢ as a
functional of £ (see examples in the results sections), specifically ¢(6) = ¢(£(9)) a.s.
Since the model parameters are the only source of stochasticity in the problem, we
have U(6) = U(&(0)) for the solution of (2) with ¢(&). In other words, the solution is
computed in the probability space P(€) := (2, Xz, P), called the image space, instead
of in the abstract space P. Further, we denote L?(Z,P) the space of second-order
random variables, equipped with the inner product defined by

(A, B) = / Aw)By)dP(y) =ENG] VA8 € L2(E.P)

and the associated norm [|Al[r2=zp) = ANY? = JE[N?]. Next, we introduce a
Hilbertian basis (complete orthonormal set) {U1, ¥o, ...} of L%(Z,P), and denote by
SM the subspace of L2(Z, P) spanned by the first M elements of the stochastic basis,
that is L2(Z,P) D SM := span {VUy,..., ¥y }. Any element A € L2(Z,P) can be
approximated by AM € SM defined by the expansion

M
M) = N6, Jim A = |z py = 0.
i=1

Classically, the basis functions W; are N-variate polynomials in €. FEach standard
measure P(€) over = leads to a different classical polynomial family [41], the case of
&; standard Gaussian random variables corresponding to (normalized) Hermite poly-
nomials [18]. All developments below immediately extend to other types of stochastic
bases, including piecewise polynomial approximations and hierarchical stochastic mul-
tiwavelets. For spectral polynomial bases, a common truncation strategy is based on
the maximal total degree of the basis functions retained in the construction of SM.

Denoting N, the maximal total degree, the dimension of SM is
) My ap . (NN,
dlm(S ) =M= W,

highlighting its combinatoric increase with both the number of random variables in
¢ and the expansion degree N,. Other possible construction strategies for SM have
been investigated, e.g., in [1].

2.3. Stochastic Galerkin formulation. The stochastic problem (3) can be
recast in S™ by means of the Galerkin method, resulting in the following problem.

Discrete stochastic problem.

Find UM ¢ V ® SM such that
AUM VM 9) =B(VY; ) Wt evesh

Inserting the PC expansion of the solution, UM = le\il u;¥;, in the previous equa-

tions results in a set of M coupled problems for the deterministic modes u; € V of
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the solution [18, 21], namely,

M
(4) A <Zui\lli,vl\lll;¢> = B(v;¥y; ¢) VoyeVandl=1,..., M.
=1

It is seen that the dimension of the Galerkin problem is M times larger than the size of
the original deterministic problem. Consequently, its resolution can be very costly, or
even prohibitive, whenever N or N, needs to be large to obtain an accurate approxi-
mation UM of the exact stochastic solution. An additional difficulty appears when the
form «a is nonlinear in its first argument, making difficult the practical computation
of the stochastic form A. These two difficulties call for improvement. First, regarding
the dimensionality of the Galerkin problem, one can reduce complexity by relying on
a more appropriate expansion basis, e.g., by means of adaptive strategies and enrich-
ment of the polynomial basis (see, e.g., [3, 13, 12]). However, adaptive approaches
are complex to implement and often remain computationally intensive, while they
do not address the difficulties related to nonlinearities. On the contrary, the PGD
approaches discussed in the following aim at tackling the issues of dimensionality and,
to some extent, are better suited to the reuse of deterministic code without special
treatments of nonlinearities as a result. This latter point will be further discussed in
the following.

2.4. PGD: Principles. Let us go back to formulation (3). The PGD method
seeks for a separated representation of the solution U € V @ L2(Z, P) as

U€) =Y uNi(8),
=1

where the u; € V are the deterministic components and the \; € L?(Z, P) the stochas-
tic components of the PGD. The m-term PGD approximation of U, denoted U™,
corresponds to the truncated series

(5) U(m) = Zui)\i ~U.

i=1

The objective is then to construct the expansion (5) to minimize the approximation
error in some sense, without a priori selection of deterministic and stochastic compo-
nents. PGD thus has to be contrasted with the classical Galerkin approach where the
stochastic components, the W;, are selected a priori, before the computation of the
deterministic coefficients.

The simplest PGD algorithms determine the couples (u;, \;) € V x L%(Z, P) one
after the other. Specifically, assuming that U has been already determined, let
(u, A) be the next couple of components. Here we look for a correction uA which lives
in the manifold of rank-one elements in V @ L?(Z,P), and we impose on u to satisfy
a Galerkin orthogonality with respect to the tangent manifold of the set of rank-one
elements at u), which is {uf + v)\;8 € L2(Z,P),v € V}. We therefore obtain the
following necessary conditions for the definition of u:

Find (u,\) € V x L2(Z,P) such that

6) A (U<m> +ud, uf + vA; qs) = Buf+v\¢) V(v fB) €V xLAE,P).



PGD FOR THE STOCHASTIC NAVIER-STOKES EQUATIONS A1095

Note that if (3) were the Euler equation of a minimization problem (which is, however,
not the case here), (6) would represent the local necessary optimality conditions for
a minimizer u\ in the set of rank-one elements.

For some classes of semilinear forms A, we can prove the existence of solutions
uX satisfying (6); see [17]. Moreover, for some particular symmetric elliptic linear
problems, the couples (u, A) can be interpreted as left and right generalized singular
vectors of U —U(™); see [16]. Among the solutions of (6), the best ones are selected by
the algorithms described below that can be interpreted as algorithms for capturing
approximations of the dominant singular vectors of U — U(™). Note that for the
present steady Navier—Stokes equations, the analysis of existence of solutions is still
an open problem. Two coupled problems for u, A can be derived from (6).

Deterministic problem.

Find u € V such that

(7) A (UW Fud, o) ¢>) — B(uX; ) Yo € V.

For X given, we denote hereafter u = D(\; U(™) the solution of deterministic problem
(7).
Stochastic problem.

Find X € L%(Z,P) such that
(8) A (U<m> T uh, uf; qs) = B(uB; ¢) VB € L(Z, P).

Similarly, for u given, we denote A\ = S(u;U™)) the solution of stochastic problem
(8).

2.5. PGD: Algorithms. The above interpretation of an optimal couple (u, \)
as a couple of dominant singular vectors of U — U™ suggested to translate to the
present situation techniques for the resolution of eigenvalues problems, like power
iterations or Arnoldi methods (see [30]). Their application to scalar nonlinear prob-
lems has been thoroughly investigated in [34]. Note that these algorithms have also
been investigated for other problems formulated in tensor product spaces, such as
time-dependent PDEs [32].

2.5.1. Power iterations. The power method for the computation of (u,\) is
stated in Algorithm 1.

ALGORITHM 1. POWER METHOD.

1: U+ 0 [element 0 of V]
2: for[in 1,2,...,m do

3:  Initialize A le.g., at random)]
4:  repeat

5: Solve deterministic problem: u + D(X; U)

6: Normalize u: u < u/||ully

7: Solve stochastic problem: A < S(u;U)

8  until u\ converged

9: U+ U+ u\
10: end for




A1096 L. TAMELLINI, O. LE MAITRE, AND A. NOUY

Note that v and A may not converge individually (see [30, 29] for discussion of the
convergence of the iterations). In practice, we limit the number of iterations. We also
remark that A and u have equivalent roles in the algorithm, so that the normalization
step at line 6 could be performed on A rather then wu.

The convergence of the resulting PGD obtained by the power iterations algorithm
can be improved by introducing an update of the stochastic components {1, ..., A}
after the determination of the first m couples. More specifically, given the determin-
istic components w1, us, ..., Un, the update problem consists of the solution of the
following set of m coupled equations.

Update problem.
Find M1, ..., \m € L2(Z,P) such that

i=1
Denoting A™) = {\;...\,,}, the update problem is compactly written formally as
A = y(wm),

where W™ = {u; ... u,,} is called the reduced deterministic basis (of V). The power
iterations algorithm with update is stated in Algorithm 2. Note that it is not necessary
to solve the update problem (line 13 of Algorithm 2) at every step [. Moreover, it
would be possible to update W instead of A. This would result in solving a Galerkin
problem similar to the classical one, but with the stochastic basis {\;} instead of the

{W}.

ALGORITHM 2. POWER METHOD WITH UPDATE.

1: U<+0

22 W« {} [initialization of the reduced basts in V)

3 A+ {} [initialization of the reduced basis in L*(Z, P)]
4: for lin 1,2,...,m do

5:  Initialize A le.g., at random)]

6: repeat

7: Solve deterministic problem: u < D(X; U)

8: Normalize u: u < u/||ully

9: Solve stochastic problem: X\ <— S(u;U)

10:  until (u, \) converged

11:  Add u to its reduced basis: W + W U {u}
12:  Add X to its reduced basis: A + AU {\}
13:  Solve update problem: A «+ U(W)

14: U+ 22:1 Uk Ak

15: end for

2.5.2. Arnoldi iterations. One disadvantage of power iterations methods is
that they discard all the intermediate solutions within the repeat-until loops. The
so-called Arnoldi algorithm is a possible solution to overcome such a “waste”: the
temporary solutions are used to build a deterministic orthogonal basis W(m)7 and then
an update problem is solved to compute A™). The main advantage of this algorithm
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ALGORITHM 3. ARNOLDI METHOD.

1: 1+0 [initialize counter for modes]

22 W« {} [void container for deterministic modes]
3 A+ {} [void container for stochastic modes]

4: U+0

5: Initialize A [e.g., at random)]

6: while [ < m do

ol 14+1

8:  Solve deterministic problem u* <— D(X\;U)
9:  Orthogonalize u*: u  u* — Y0} (ug, u*)y
10:  if |Jully < € then

11: l+<1-1 [stagnation of Arnoldi detected)
12: Solve update problem: A < U(W)

13: U Sk urhs

14:  else

15: Normalize u: u + u/||uly

16: Solve stochastic problem: X\ <— S(u;U)
17: Add wu to its container: W < W U {u}
18: Add X to its container: A < AU {\}
19: if [ = m then

20: Solve update problem: A « U(W)
21: U+ 22:1 Uk Ak

22: end if

23:  end if

24: end while

is therefore that it requires a lower number of resolutions for the deterministic and
stochastic problems. The Arnoldi algorithm is stated in Algorithm 3.

Whenever the generation of deterministic modes stagnates into invariant sub-
spaces (detected using the small positive parameter € at line 10), an update step is
performed. This update step can be interpreted as a deflation in the Arnoldi method.
Note also that the update problems at lines 12 and 20 concern the whole stochas-
tic components A generated so far, but one could as well perform a partial update
considering only the Arnoldi subspace generated after the last detected stagnation.

2.6. Practical considerations. Obviously, the algorithms above need a stochas-
tic discretization as well. Again, we shall rely on PC expansions for the stochastic
components and approximate the stochastic modes ); in the finite-dimensional S by
Zkle AWy Further, with this stochastic discretization, the stochastic problem (8)
and the update problem (9) translate into the Galerkin problems

M
(10) A <U<m> +uZAf\I/k,uxpl;¢> = B(u¥y; ¢), I=1,...,M,
k=1

and

m M
A <Zu (ZA?%) ,uquj;qs) =Bw¥;;¢), I=1,...,m, j=1,..., M.
k=1

i=1
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For a given stochastic approximation space S, one can expect the PGD solution
U™ to converge quickly to the Galerkin solution UM € V @ 8™, with m <« M
modes. This expectation comes from the fact that the PGD constructs the most
relevant stochastic components \; for the expansion, contrary to the Galerkin case
where one chooses a priori the stochastic components (as the elements of the PC
basis) and then seeks for the solution in S™.

Another point to be underlined in view of the above algorithms is that in each of
them the computationally intensive steps are the resolution of the deterministic and,
to a lesser extent, the stochastic problems plus the update problems (optional in the
power-iteration algorithm). As seen in (7) and (10) the sizes of the deterministic and
stochastic problems are constant and equal to the dimension of the discretized spaces
V and SM | respectively; this is in general much lower than the size of the Galerkin
problem which is the product of the two, with a significant complexity reduction as a
result (provided that the number of systems to be solved is small enough). Concerning
the update problem, we observe that its dimension is m x dim(SM) so that if m is
less than the dimension of the discretized space V the update problem is again much
smaller in size than the Galerkin problem.

In addition, it will be shown in the following sections that for the Navier—Stokes
equations the actual deterministic problems to be solved have structures very similar
to the original Navier—Stokes equations, facilitating the reuse of existing deterministic
codes, while implementing a Galerkin solver would require a greater implementation
effort.

We also remark that instead of updating the stochastic components of the PGD
solution, one could instead derive an update problem for the deterministic components
{ui,i = 1,...,m}, which would in fact have the structure of the Galerkin problem
in (4) but for the approximation in the stochastic space spanned by the {);} instead
of the {¥;}. This alternative should be considered for problems where the dimension
M of the stochastic space exceeds that of the discretized space V.

3. Navier—Stokes equations with uncertain parameters. We consider the
bidimensional, steady, incompressible (constant density) Navier—Stokes equations on
a bounded, simply connected domain © C R? with boundary 9Q. The dimensionless
Navier—Stokes equations are

(11a) u-Vu=-Vp+V. .5(u)+f,
(11b) Vou=0,

where u : € Q — R? is the velocity field, p : & € Q + R is the pressure field,
f :x € Q R?is the external force field, and @ the viscous stress tensor. For a
Newtonian fluid, 7 in (11a) is expressed as

(u) = g (Vu+vau’),

where v > 0 is the viscosity parameter (inverse of a Reynolds number), measur-
ing relative influence of the inertial (nonlinear) and viscous (linear) contributions.
Accounting for the mass conservation equation (11b), the Navier—Stokes equations
reduce to

(12a) u-Vu=—-Vp+vViu+f,
(12b) V-u=0.
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These equations have to be complemented with boundary conditions; for simplicity,
we shall restrict ourselves to the case of homogeneous Dirichlet velocity boundary
conditions on 052,

(13) u(x) =0, x €.

The case of non-homogeneous Dirichlet boundary conditions can be tackled by intro-
ducing a suitable affine space for the velocity, as shown in [34].

3.1. Functional framework. Next, we classically denote by L?(£2) the space
of functions that are square-integrable over ). It is equipped with the following inner
product and associated norm: (p,q) := [, pgd<2, |qllL2() = (¢,9)'/?. We define the
constrained space

L2(Q) = {qeL2(Q):/quQ:O}.

Then, let H'(Q) be the Sobolev space of vector-valued functions with all compo-
nents and their first partial derivatives being square-integrable over €, and H}(Q)
the constrained space of such vector functions vanishing on 952,

H{(Q) = {v e H'(Q), v=00n 09} .

With the above notation, the Navier—Stokes system (12) with boundary conditions (13)
then admits the following weak formulation.

Navier—Stokes equations.

Find (u,p) € Hy(Q2) x L3(Q) such that

(14) c(u,u,v) +vg(u,v) +d(p,v) = b(v) Vo € Hy(Q),
d(q,u) =0 Vg € L§(9),

with the forms defined by
c(u,w,v) = /(u -Vw) - vd{, g(u,v) == / Vu: VoudQ,
Q

Q
d(p,v) ::—/QpV-de, b(v) ::/Qf-de.

Pressure can also be formally suppressed in this weak formulation, by introducing the
subspace of weakly divergence-free functions of Hg(€), denoted hereafter Hg 4, (),

H{ 4, (Q) == {v € H)(Q) : d(p,v) =0, Vp € L*(Q)}.

Seeking u € H(l)) 20 (), the weak form simplifies to the following problem.
Divergence-free Navier—Stokes equations.

Find w € H 4,(Q) such that
(15) (s, 0) + v g1, v) = b{o) Vo € HY 41, ().

Finally, we introduce the uncertain parameters. In this paper, we are concerned
by situations where the external forcing f and viscous parameter v are uncertain
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and, consistently with the previous sections, are seen as functions of a set of IV
random variables (e.g., normalized centered Gaussian random variables), v = v(&)
and F = F(x,£). As a consequence, the divergence-free Navier—Stokes equation (15)
has now a stochastic solution U (§). We can therefore state the following formulation:

Find U =U(§) : E — Hg 4, (Q) such that

cU(£),U(€), V) +v(€)gU(§),V) =bV;F(§))
VV € Hj 4, (Q), for a.e. £ €E,

whose fully weak counterpart can be written immediately as the following problem.
Stochastic Navier—Stokes problem.

Find U € H 4,,(Q) ® L*(E,P) such that
(16) CU,U,V)+G,(U,V)=B(V) vV € Hj 4, (Q) @ L*(E, P).
The forms C, G, and B are given by
CUW,V)=E[c(UW,V)], G,(U,V):=E[vg(U,V)], B(V):=E[Db(V; F)|.

The previous formulation is ready to be discretized with the stochastic Galerkin
method, introducing the discretized stochastic space SM as in section 2.3. In practice,
the divergence-free constraint is treated by adding a stochastic pressure field P(€);
see, e.g., [21]. Moreover, the size of the Galerkin problem is large, as all stochastic
modes are coupled through the random viscosity and the nonlinearity, so that efficient
strategies for its resolution are needed; see, for instance, [26]. We will however base
the following discussion on PGD on the formulation in Hj 4, () ® L*(Z,P) since
we are looking for a PGD decomposition of U. We will return back to the issue of
pressure later on.

3.2. PGD formulation. We now detail the deterministic, stochastic, and up-
date problems associated with the iterations of the PGD algorithms.

Deterministic problem. We here detail problem (7). We assume that an m-
terms reduced approximation U™ — 221 u;\; has been computed. For a given
stochastic mode A € L2(Z, P), the associated deterministic mode u = D(\; U™) is
defined by the following problem.

Find w € Hy 4,(Q) such that
C (O, Au, ) +C (A, U™ 2) + C(U™), Au, W) + G, (Au, Av)
= B(W) — G, (U™ M) —C(U™ U™ () Vv eHf 4, (Q).

For convenience and to stress the deterministic character of this problem we rewrite
it as

Find w € H 4,/(Q) such that

c(u, u,v) + ¢ (u, v (A),v) + ¢ (v (N), u,v)
(17) +Ug(u,v) =b(v; U™, \) Vo e H 4,().
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In the previous equation we have denoted

~ E[\b(v; F " E [\ = E
b(o; U™ ) = [E[(Ag] )]—Zl Ié[Ag]]g(ui,v)—Zzgcwuu]’w%

It is therefore seen that the structure of the deterministic PGD problem is essentially
the same as the weak formulation of the deterministic incompressible Navier—Stokes
equations, with a few remarkable differences. In particular, (i) we have two new linear
convective terms, associated with convective velocity vgm); (ii) the viscosity parameter
is different, since its value is now v = E [vA?] / (E [A3]; (iii) the forcing term contains
all the information about the previous modes which have been already computed. We
further observe that we can always make v > 0, by changing \ to —\, owing to the
homogeneity of the sought couple (A, u).

As a result, the resolution of this problem can reuse existing deterministic flow
solvers with minimal adaptations for the computation of the right-hand side and
the additional convection term. In addition, the enforcement of the divergence-free
character of u can be achieved by introducing a deterministic Lagrange multiplier
€ L3(Q).

Stochastic problem. We now detail problem (8). Let us assume again that an
m-term reduced approximation U™ = it wiA; has been computed. For a given
deterministic mode u € Hy 4, (Q), the associated stochastic mode A = S(u; U™) is
the solution of the following problem.

Find A € SM such that

C O, A, Bu)+C (U™ \u, fu) + COu, U™, Bu) + G, (\u, fu)
= B(Bu) - C(U™ U™ pu) -G, (U™, pu) V3eSM.

This is a quadratic equation for A in weak form. We can highlight this by recasting
the previous formulation as

find X € SM such that

E [A°8] c(u, u, u) + ZIE A\iO] (e(us, w,u) + c(u, u;,uw)) + E[pAS] g(u, uw)
i=1
(18) =E[Bb(u; F)] = > E[NAB] clu, uj,u)
ig=1
- ZIE [\if] g(ui,u) VB e SM.

=1

To actually compute the PC expansion of A in SM, \ = ZkM:O Xk\I/k, one has next
to choose 8 = ¥, in (18) and solve the following set of M quadratic equations in the
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coefficients Xk: Vi=1,...M,

u u, u Z )\k/\k’gkk/l+z uz,u u —|—cu u;,u Z )\k)\z k/gk;k;/

k,k'=1 k,k'=1

g(u, u) Z N D Epry = Z b(Frow) E Wy 0]

Kok =1 k=1
m M m M

- E c(ui, uj,u) E Ai k Aj gl — E g(u;,u) E Ui 1 Ekkr 1
ij=1 ek =1 i=1 kb =1

where & = E[¥, Py ¥;] and we have supposed that F admits a PC expansion,
M
F(x, &) =31 fro(@) Vi (§).
Update Problem. Finally, we detail the update problem (9). Given an m-term

decomposition U = o wiA;, the update problem consists of recomputing all
the m modes A; by solving the following problem.

Find i e SM,i=1,...,m, such that

C (Z Ui)\i,zui/\uﬁU) +G, <Z Ui/\uﬁU) = B(Bu;)
im1 i1 i1
(19) vBeSM, vi=1,....m

In the present case, it consists of a system of m quadratic equations for A;, all mutually
coupled, but whose structure is close to the stochastic problem (18). Denoting \; =
Z,iw:l S\i)k\Ilk and taking 5 = ¢, k= 1,..., M, in (19), we end up with a system of
quadratic equations for the coefficients S\i,k, whose dimension is therefore m x M.

4. Numerical results. In this section we consider two test cases of increas-
ing complexity and computational cost: in the first one the viscous parameter v is
the only uncertain parameter, while in the second one we consider both the viscous
parameter and the forcing term as uncertainty sources. The aim of the tests is to
compare the PGD approximation against the Galerkin solution, to assess the effec-
tiveness of the method. All PGD approximations will be computed with the Arnoldi
method described in section 2.5.2. In particular, here we set the Navier—Stokes prob-
lem in a square domain Q = (0,1)2. Moreover, as already stated in (13), we consider
homogeneous Dirichlet boundary conditions. The motion is thus only induced by the
(possibly uncertain) forcing term f, that we will specify later on.

As for the spatial discretization, we will consider a classical spectral element
method discretization; see, e.g., [9]. In particular, we will use a grid of Ngr x Ngr
Gauss—Lobatto points for the approximation of the components of the velocity, while
the pressure is approximated over an (Ngr, — 2) X (Ngr, — 2) grid. Note that with
this choice no specific treatment of the additional convective term in (17) is needed.
If finite elements were instead used, classical stabilization techniques could be used.
The nonlinearity in the Navier—Stokes equation is solved with a preconditioned quasi-
Newton method, and at each step the linear system is solved with a GMRES solver.
Once more we remark that the efficiency of the PGD method in determining the
reduced approximation of U does not depend on the discretization method or Navier—
Stokes solver considered, and any technique may be used.
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4.1. Test 1: Random viscosity parameter. In the first test we consider a
random viscosity v given by

v(f) =v. +1/'(0),

where v, > 0 and v/(#) has a log-normal distribution with median value 7’ > 0 and
coefficient of variation C,» > 1. For these settings, the random viscosity can be
expressed as

. log C,/
285

where £ ~ N(0,1), ensuring that v/ € [7'/C,,,7'C,/] with a probability = 0.995.

Regarding the deterministic force field, it is well known that force fields deriving
from the gradient of a potential induce no flow for homogeneous boundary conditions.
Therefore we consider the deterministic function ¢ (x) and define f as

(20) v(0) = ve + 7 exp (9€(0))

F=VA©00 97",

so that V A f = (0, 0, —V2¢)T. For simplicity, we restrict ourselves here to forcing
terms having constant rotational @,

(21) VAF=(0,0,®7,

and a zero normal component on 92. This leads to the definition of ¢ by
Zp=—® inQ
(22) VY in Q,
=0 on 0.

It is useful to further define the operator £ : H=1(Q) — H}() that maps the forcing
term @ in (22) to the corresponding solution, that is,

L]®] = .

The magnitude of the forcing term is fixed by ®, which in this test is set to ® = 1007’
to ensure that ||U||q & 1. The spatial structure of f is shown in Figure 1(a).

Galerkin solution. We start by setting 7/ = 1/200, C,, = 1.5, Ngi, = 51,
and v, = 0.017, and we consider the classical stochastic Galerkin method for the
approximation of U. Guided by the expression of the viscosity in (20), we rely on a
PC expansion of the solution using a single normalized Gaussian random variable £
and corresponding Hermite PC basis. The Galerkin approximation is therefore sought
as

k=1

with N, denoting the expansion order and ¥ denoting the kth-degree Hermite poly-
nomial in £. For this random viscosity distribution, a well-converged solution is ob-
tained for N, = 10, as shown in the following discussion.

The Galerkin solution for N, = 10 is depicted in Figures 1(b)-1(d), showing the
expected velocity field (that is the first mode of the Galerkin solution u§’; see Figure
1(b)), and the expectation and the standard deviation of the rotational of U%; see
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F1c. 1. Spatial structure of the Galerkin approrimation of Test 1.
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Fic. 2. KL expansion of the reference Galerkin approzimation of Test 1.

Figures 1(c) and 1(d). Plots in Figure 1 highlight the effect of nonlinearities. Indeed,
since in the present situation the forcing term is deterministic and the viscosity pa-
rameter does not depend on «, if the nonlinear convective terms were neglected the
solution of the resulting linear Stokes problem would be expressed as a product of a
deterministic function times a stochastic factor, U(§) = a(§)u*. As a consequence,
mean and standard deviation of U would be equal to E(a)u* and to o(a)u*, respec-
tively, and they would thus exhibit the same spatial structure. This is not the case
here. Indeed, we observe in Figures 1(c)—1(d) that expectation and standard devia-
tion fields of the rotational of the velocity clearly exhibit different spatial patterns.
In fact, the random viscosity has the strongest impact on the vorticity field along
the boundary of the domain, where the shear stress is maximal and the uncertainty
level reaches roughly 25%. Another stringent feature of the standard deviation of
the vorticity field is the presence of stretched structures along the boundary that are
created by the convective effects.

To better appreciate the complexity of the random flow field, as well as the
converged character of the Galerkin solution for IV, = 10, the Karhunen-Loéve (SVD)
decomposition of UG(§) is computed. Since the Galerkin solution is computed in a
subspace SM, whose dimension is N,+1 = 11, its KL expansion is finite and is written
as

No+1 No+1
G,KL
UE) =Y uflu(@) = > u KEmE), KT ==K 0 >0,
k=1 =1

where {ulGK L } is an orthonormal set and E [mn/] = ;v Figure 2 shows the rotational

of a few KL modes ulG’KL: the plots show the increasing complexity with the mode
index of the spatial structure of the rotational of the KL spatial modes. They also
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F1c. 3. Spatial structure of the rank-15 PGD approzimation of Test 1.

highlight the impact of the nonlinear convective term which induces a bending of
these structures, due to the advection effects, which however possess the symmetries
of the present problem.

Figure 2(b) shows the normalized spectrum, that is S; = /x{/ Zgj{l kG for

l=1,...,N, + 1. It exhibits a fast decay, the sixth normalized mode being 10~°
times the first one, with essentially a uniform asymptotic decay rate except for the
very last KL modes which are affected by the truncation of the stochastic basis.

PGD approximation. We next compute the PGD approximation of U, using
the Arnoldi algorithm with € = 0.01 and fixing the maximum rank of PGD to m = 15,
and the KL decomposition of such a PGD solution. We still use the same stochastic
subspace SM as before. Figure 3 shows the expected velocity field (E[U™)]), and
the expectation and standard deviation fields of the rotational of U™ . The plots
should be compared with those of the Galerkin solution shown in Figure 1, and the
agreement is excellent.

A more quantitative analysis of the quality of the PGD approximation is reported
in Figure 4. In particular, in Figure 4(a) we show the PC coefficients of the stochastic
modes \; of the PGD approximation of U. As expected, such coefficients become
smaller and smaller going from lower to higher frequencies, as well as from the first
to the last modes. Figure 4(b) shows the convergence of the normalized total error
between the PGD and the Galerkin solution, computed as

= s o -well] /e [Joell]

The same conclusion about the quality of the PGD approximation arises when
looking at the rotational of the KL spatial modes of the rank-15 PGD approximation,
which are shown in Figure 5, and have to be compared with Figure 2.

Figure 5(b) shows the matching between the normalized spectra \/k;/\/Y 1w K
of the KL decompositions of the PGD and Galerkin approximations, again showing
good agreement between the solutions. Figure 6 shows some of the spatial modes of
the PGD approximation, and compares their rotationals with the rotationals of the
corresponding KL spatial modes of the rank-15 PGD approximation. We observe that
even if the PGD and KL modes exhibit similar structures, with finer details as the
mode index increases, they are not the same. Indeed, the Arnoldi algorithm generates
a sequence of orthogonal modes that are not the KL modes; however, the dominant
modes of the KL expansion are well approximated in the successive spaces generated
by the Arnoldi algorithm.
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Fic. 4. Quantitative analysis of the PGD approzimation of the solution of Test 1.
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F1G. 5. KL decomposition of the rank-15 PGD approzimation for Test 1.

Finally, we investigate the case where the viscosity parameter depends on more
than one random variable. To do this, we modify the definition of v from (20) to

v(0) = ve + exp( \/LJT\TU vaz”l £:(0)), with & independent and normalized, centered,
Gaussian random variables. This is clearly an overparameterization of the problem,
since indeed &7(6) = 1/yv/N, SV &(6) is in turn a normalized, centered, Gaussian
random variable; therefore v truly has a unique stochastic dimension, such that the
Navier—Stokes solution has the same intrinsic stochastic dimensionality VN, > 1.

It is found that the PGD approximation is quite insensitive to this overparameter-
ization, thus proving to be able to capture the key features of the stochastic solution.
This clearly appears in Figure 7, where we consider the rank-15 PGD approximations
for problems with N, = 1,2,3: here we compare the (rescaled) norms of the PGD
stochastic modes A;, [|Xill/v/Diey [[Ai]]? (Figure 7(a)), and the normalized spectrum

of the KL expansion, /%P /1 /5" kPGP (Figure 7(b)), for the three parameter-
izations tested. For the three values of IV, the decay of the A\;’s norm is essentially
similar, although the deterministic and stochastic problems are different and the \; are
randomly initialized. This is confirmed by the excellent agreement of the KL-spectra,
which only differ for the last modes containing insignificant energy.

4.2. Test 2: Random forcing term. In the second test we consider also the
forcing term as uncertain. To this end, we go back to (21) and take now ®, the vertical
component of the rotational of the force field, as a stationary Gaussian process with
unit mean and standard deviation o > 0, characterized by the two point correlation
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Fic. 7. Comparison of the rank-15 PGD approximations of Test 1 with N, = 1,2,3.

function

L

where &y = 1 is the mean of ®, L its correlation length, and ||« —«’|| is the Euclidean
norm in R?. The process admits the Karhunen-Loeve expansion

Ca(z, ') = E[(B(x) — Bo)(B(a') — @p)] = oF exp ("“m 1 m—/”) :

®(x,0) = o + Z i(x)&i(9),

where the &; are normalized uncorrelated Gaussian variables. Ordering the Karhunen—
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FiG. 9. Spatial structure of the rank-45 PGD approzimation for Test 2.

Loeve modes with decreasing norm ||®;[|12(q) and truncating the expansion after the
Nyth term results in the following approximation of the external force field:

Ny 0
(24) F(x,0) =~ FN1(x,0) := fo+ Y_&(0) fi(x), fi(x)=VA 0
i=1 L[P;(x)]

We set L =1, o5/|foll = 0.2, Ngr = 35, and Ny = 7. Figure 8 shows some of the
modes f, of the forcing term. It is well known that as L decreases, more and more
KL modes are needed to represent accurately the forcing term. However, in this work
we are not really concerned about the truncation error that stems from retaining only
Ny terms of the expansion, but only to show that the PGD method can handle such
forcing terms in a natural way.

We consider again the viscous parameter v as a log-normal random variable (IV, =
1), as in (20), and we set 7' = 1/100. This implies that the solution depends on
N = N, + Ny = 8 random variables. The discrete probability space SM is selected
setting IV, = 2, resulting in a set of M = 45 multivariate Hermite polynomials; within
this setting, we compute the PGD solution up to rank-45, as well as the full Galerkin
solution for validation purposes. In terms of computational cost, the rank-45 PGD
solution requires the resolution of roughly 45 deterministic problems which amount
to the core of the computational time.

Figure 9 shows the mean and standard deviation of the rotational of the PGD
approximation for m = 45. We again observe the impact of the convective nonlineari-
ties and the resulting high variability level, particularly pronounced along the domain
boundary. The two first moments are in excellent agreement with the Galerkin solu-
tion (not shown).
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Fic. 11. Test 2: convergence of error e(m) (see (23)), and of the relative norm of Am with
respect to the rank (m) of the PGD approzimation for v/ = 1/10, 1/50, 1/100, considering N = 8
(left) and N = 15 (right) random variables.

Figure 10 shows some of the first PGD spatial modes. Contrary to the case of
uncertain viscosity only, we now observe that the PGD modes u; have significant
symmetry breaking, except for w;. This is again explained by the Arnoldi algorithm
which aims at constructing an orthogonal basis of dominant subspaces: the vectors
spanning the subspaces don’t necessarily reflect the symmetries of the solution in
theses subspaces. However, the comparison of the KL spectra and modes of the
PGD and Galerkin solutions (not shown) are in excellent agreement, proving that the
successive Arnoldi subspaces effectively capture the dominant stochastic features of
the solution.

Next, Figure 11 shows the decay of the total error norm with respect to the
Galerkin solution according to (23). The error €(m) is reported for 7' = 1/10, 1/50,
and 1/100, the coefficient of variation being kept constant. As expected, when 7/
decreases, the PGD rank increases to achieve a given error since the nonlinearity
of the problem increases, with more and more complex stochastic features in the
solution as a result. We also observe that the dimension of the successive Arnoldi
subspaces tends to increase when 77 decreases, as shown by the separation between
successive dots on the curves. However, for the lowest median viscosity value the rank-
45 PGD solution has a relative error less than 107>, and is obtained at a fraction of
the Galerkin computational cost. In addition, we also monitor the convergence of
the relative norm of the last \; added during the Arnoldi procedure, which can be
considered as a very naive error estimator. Indeed, the deterministic modes u; are
normalized, and therefore whenever \; is small the correction A\;u; becomes negligible.
Such an error estimator, although very rough, turns out to be quite effective; we will
reconsider it in the next sections.
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Finally, we repeat the convergence analysis for the PGD-Galerkin error on a
second test case, in which we consider Ny = 14 terms in the KL expansion of f,
thus obtaining a problem with N = 15 random variables. We consider a polynomial
stochastic space of order N, = 3, whose dimension is M = 816. For such a problem
a full Galerkin approach may be very computationally demanding both in terms of
CPU time (a few hours) and memory occupation; therefore, we only monitor the
convergence of the error indicator proposed above. The results are very encouraging,
since we obtain errors of at least 10~ using only 60 modes. We remark that this
roughly corresponds to the computational cost of the resolution of about 60 Navier—
Stokes problems and a few sets of coupled quadratic equations for the PC coefficients
of /\z

4.3. Computational aspects. To give some quantitative information on the
efficiency of the PGD method, we show in Table 1 the computational costs needed
by the PGD algorithm for some of the numerical tests shown in the previous part of
the section. In particular, we report the computational times (in seconds), error (23)
when available, and the size of the nonlinear systems of equations to be solved, that
can be derived as follows:

e PGD stochastic problem: m systems of M quadratic equations;
e PGD deterministic problem: m systems of #p = 3(Ngz — 2)? nonlinear
equations, 2(Ngz, —2)? of which are for the deterministic problem and (Ngr, —
2)? additional ones for the incompressibility Lagrange multiplier (pressure);
e PGD update problem: less than m systems of nonlinear equations of increas-
ing dimension, depending on how many modes have been computed already.
In particular, the first update problem consists of M equations and the last
one consists of M x m equations. In practice, the test cases shown before
were required to solve 4-5 update problems.
Regarding computational times, the first important remark is that the full Galerkin
solver is severely more demanding in terms of memory, in particular for the reso-
lution of the linear system in the Newton solver. Although our implementation of
the Galerkin solver is not fully optimized, we provide here some estimates of relative
computational times between Galerkin and PGD solvers. For instance, having fixed
a target error between the Galerkin and the PGD solution of € ~ 1073 (cf. (23)), the
determination of the Galerkin solution for test 1 (N, = 1) with a tolerance of 1071°
on the Navier—Stokes residual was about 500 times more expensive than the PGD run
(i.e., 14400 seconds for Galerkin versus 28 seconds for PGD; cf. first row of Table 1),
while computing the Galerkin solution or test 2 with v = 1/100, N, + Ny = 8, and
N, = 3 (cf. fifth row of Table 1) was about 30 times more expensive than the PGD
run (i.e., 1344 seconds for Galerkin versus 50 seconds for PGD).

We remark again, however, that these are just qualitative estimates since compu-
tational times significantly depend on implementation and machines, and especially
on the available memory for the resolution of the successive Newton iterates, making
difficult a quantitative Galerkin to PGD comparison. In any case, it is clear that for
a fixed rank m of the solution and a dimension M of the stochastic basis, the compu-
tational complexity of solving m uncoupled deterministic Navier—Stokes-like problems
is much less than solving M > m coupled such problems. To be more precise, recall
that the nonlinearity of the PGD deterministic, stochastic, and update problems, as
well as that of the Galerkin problem, is essentially of quadratic type, and assume
that we can solve these problems with an algorithm whose cost scales as the number
of unknowns to some power ¢ > 1. Then, we can derive the following CPU times
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TABLE 1

Computational times (in seconds) for some of the numerical tests discussed in the previous
sections. In parenthesis is the number of nonlinear equations to be solved in each case. As for the
PGD procedure, in addition to the computational times, we also report the normalized error (23)
for two different PGD ranks, i.e., the highest one considered for each test and a lower one, chosen
to have a rather coarse PGD solution (e =~ 1073). Whenever the Galerkin solution is not available
(i.e., Tows 2,3,6), we report the value of the relative norm of the last stochastic mode added, Am,
that can be considered as a simple yet effective estimate of e(m); see Figure 11. Moreover, besides
the total computational time, we show the computational times needed for each of the three steps
(stochastic, deterministic, and update problems). Note that the number of equations reported for the
update problem is the number of equations of the final update problem only.

Test v N N, M |PGD]Js|] | m e(m) S [s] D [s] U s
1 1/200 1 10 11 28 2 3.2e-3 | 0.002 28 0.009
(11)  (7203) (22)
584 13 2.7e-6 0.05 583 0.7
(11)  (7203) (165)
1 1/200 2 10 66 63 3 1.8e-3 0.07 60 2.5
(66)  (7203)  (198)
622 15  3.8e-7 0.1 471 151
(66)  (7203)  (990)
1 1/200 3 10 286 241 3 1.8e-3 4 60 177
(286)  (7203)  (858)
1822 15  1.9e-7 5 565 1252
(286)  (7203)  (4290)
2 1/100 8 2 45 30 11 9.2e-4 0.01 23 7
(45)  (3267)  (495)
191 45 1.2e-6 0.2 133 58
(45)  (3267)  (2025)
2 1/100 8 3 165 50 11 1.1e-3 0.3 24 26
(165)  (3267)  (1815)
871 45 2.3e-6 0.7 144 726
(165)  (3267)  (7425)
2 1/100 15 3 816 304 11 8.5e-4 13 30 261
(816)  (3267)  (8976)
15301 60 1.9e-6 22 589 14690
(816)  (3267)  (48960)

estimates:
CPUpgp(m, M) = CPUp(m, M) + CPUg(m, M) + CPUy (m, M)
= O(m#s,) + O(mMC) + O((mM)°),

CPUgaL(M) = (9((#DM)<).

These estimates show that PGD is expected to be computationally more efficient
than Galerkin if m < #p and m < M ¢. Observe that the first condition is neces-
sarily satisfied since a maximum of 2# /3 orthogonal modes (i.e., the dimension of
the deterministic space for the velocity) can be constructed in the Arnoldi process.
Since the velocity is sought in the tensor space Hj 4, (Q2) © 8™, the rank of its dis-
crete approximation is bounded by min{M, 2#p/3} and therefore there always exists
an accurate low-rank approximation satisfying these two conditions. In practical sit-
uations, we generally observe that the algorithm can capture an accurate low-rank
approximation with a rank m < min{M, 2#p/3}, thus making the proposed PGD
algorithm much more efficient than Galerkin.

From the second case, we observe that the relative efficiency of the PGD technique
improves as the polynomial order N, increases. As for the PGD methodology itself,
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the stochastic problem is the far less expensive one, while the update problem will
eventually become the most expensive step, and partial updates (as suggested in
section 2.6) should be considered.

5. Residual computation and pressure reconstruction. At this point, it is
crucial to devise an error estimator to stop the PGD procedure as soon as the reduced
solution is close enough to the exact solution in H} ;. (Q) @ SM.

The most natural approach would be a stopping criterion involving the evaluation
of the norm of the residual of the stochastic Navier—Stokes equation (16) associated
with the m-term reduced solution U™ in the discretized space H(l))div(Q) ®SM. The
Arnoldi algorithm would then be stopped as soon as such residual becomes lower than
a given tolerance in a suitable norm.

In practice, computing the residual of the Navier—Stokes equations in their di-
vergence-free formulation (16) is not a convenient operation. Therefore, we go back
to the weak deterministic Navier—Stokes equations (14) and introduce the following
equation.

Stochastic velocity-pressure Navier—Stokes equations.

Find U € H{(Q) @ SM, P € LE(Q) @ SM such that
(25) CU,U,V)+G,(U,V)+DP,V)=B(V) YV eH\Q) oY,
DQ,U) =0 vQ € L3(Q) & S,

where D(Q, V) is defined as the expected value of the bilinear form d(-, -) appearing
n (14), D(Q,V) =E[d(Q,V)]. Computing the residual for the velocity-pressure for-
mulation is an affordable task, but at this point the PGD algorithm has not provided
us with an approximation of the stochastic pressure yet. Hence, we now introduce
a procedure to recover the pressure P™) associated with the m-term PGD solution
U™, Computing such an approximation will introduce some computational over-
head, but one could be interested in an approximation of the pressure anyway. We
stress that the notation P does not refer to an m-term approximation of P, but
to a generic approximation of P given the m-term reduced approximation of U.

5.1. Pressure computation. For ease of presentation, let us define
NW,V):=C(W,W.,V)+G,(W,V)-B(V), YV,W cH}Q) oS,

and let (V, W) denote the scalar product in H}(Q) ® SM™. Inserting the m-term
PGD velocity U™ and the corresponding pressure P into the stochastic velocity-
pressure Navier—Stokes equations (25) we have

(262) N@U™ V) +DP™, V)= <R<m>, V> YV € HY(Q) @ M,
(26D) D(Q,U™) =0 vQ € L3(Q) © SM,

where R(™) denotes the residual of the momentum equation (26a), R"™ e H}(Q) ®
SM . Note that the continuity equation (26b) has no residual; indeed, all the determin-
istic modes in U™ are divergence-free, being solutions of the deterministic problem
(17). Equation (26) states that the residual R™ is a function of the pressure P™.
Hence, we propose here to define pm
norm. To be more computationally oriented, we next derive the problem for P™ iy
the discrete case.

as the minimizer of || R"™ | in some prescribed
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Let us denote by V,, C H}(Q) the finite-dimensional velocity space, and with
I, C L3(Q) the finite-dimensional pressure space. Upon the introduction of the
bases for V}, and II, defined in [9] and that will be used in the results sections, we can
identify any element W, € V;,@SM with the coordinates in the respective basis W) €
RAm(Vi) @ SM and Slmllarly any element @, € I, ® SM with Q e RdimIn) @ SM.
in other words, Wh(é) and Qh(é) are vectors whose components are functions of &,
belonging to the subspace SM C L?(Z,P). Equation (26a) can therefore be recast as
a semidiscrete equation in R4m(Vr) @ SM

(27) Ny (€) + TP ) = RYV(¢),

with NV (€), Ru(€) € RIm) @ sM P (¢) € RIMI) @ SM | and D e

RAim(In)xdim(Vi) the deterministic discrete divergence operator. Next we define the
residual norm as

IR ©)2 = |R

m)

( )||Rdim(vh> SM =E HRh ( )||Rdim(vh>
®

Thus, using (27), we obtain that the pressure minimizing ||1/%§1m)($)|| is the solution
of

(28) TP, (€)= -DN, " (€).

Note that D DT is a deterministic operator, and (28) is well-posed if V}, and 11, verify

the inf-sup condition. Moreover, computing the PC expansion of ﬁ;m)(é), that is,

A(m ZPhk\IJk

with 1351",? e RI=(n) and W, (¢) € SM Hermite polynomials, results in a set of M
uncoupled problems

(m) —(m)
DD'P,, = -DN,, .

—=(m)

Note that N; » has to be computed using the projection N; r =E [Nh (&)U (8)],

since the stochastic vector N 2 (&) derives from a nonlinear combination of the PGD
solution, hence its PC expansion is not immediately available.

Even if we can take advantage of this by factorizing the operator DDT only once to
improve the computational efficiency (e.g., with a LU, ILU, or Cholesky factorization),
the overall cost may be demanding if the discrete stochastic space SM is large; indeed,
it would require the resolution of M independent systems. One could then apply a
PGD procedure to obtain an approximation of the stochastic pressure

m’ A(m
(29) ZPhk’Yk

with 135:;;) e RE™In) and (€) € SM generic functions, using any of the algorithms

illustrated in section 2.5 to solve (28). Note that the PGD approximation of P may in
general use m’ # m modes. Further savings can be achieved by using as deterministic
modes for the pressure the Lagrange multipliers obtained during the resolution of the
deterministic steps of the PGD decomposition of U™ note that in this case m = m’.
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——error —e—error —e—error
—e—|M-residual —e—LM-residual —e—LM-residual
—e—PGD-residual —e—PGD-residual —e—PGD-residual
1079 —e—) norm 1079 —e—) norm 1079 \\ —e—) norm
~—__
— NS T
107 — 107 \ L\? ~ 107 L ::
N — N
10° 3 10° \g‘:: 10° .
—,
107 107 107
0 5 10 15 20 25 30 0 10 20 30 40 50 0 10 20 30 40 50
PGD rank PGD rank PGD rank
(a) 7 =1/10 (b) 7 =1/50 (c) 7 = 1/100

Fia. 12. Conwvergence of the quantities proposed as stopping criterion for the PGD method
with respect to the number of modes m. (i) “error” denotes the normalized PGD-Galerkin error
o — US|/\UC|; (i) “LM-residual” denotes the rescaled norm of residual

||1A%;lm)(§)||/||1§;lo)(§)||, the residual being computed using the Lagrange multipliers as deter-
manistic modes for the pressure; (iii) “PGD-residual” denotes the rescaled norm of residual

||1A%;Lm)(§)||/||1§;0)(§)||, the residual being computed using the pressure reconstructed with a PGD
approach; (iv) “A norm” denotes the rescaled norm of A, that is ||X;||/v/2; 1Al

5.2. Numerical results. In the previous section we have proposed two ways
of computing an approximation of the pressure field: a “fully reduced approach” in
which we use a PGD method to compute both the deterministic and the stochastic
modes of the decomposition (29), and a “partly reduced approach” in which the

deterministic modes 13,:;; of (29) are taken to be the Lagrange multipliers resulting
from the solution of the deterministic problems during the Arnoldi iterations. In both

cases, the obtained pressure approximation will be then used to compute the residual
(m)

IA%h (&) through (27), and the norm ||1/%§Lm) (&)]] will be used as a stopping criterion
for the Arnoldi method.

We now aim at assessing the performances of these two stopping criteria, along
with the one proposed in section 4, i.e., the monitoring of ||\;||. Such criteria may
be reasonable whenever one is not at all interested in pressure reconstruction, or

willing to reconstruct 13:7,? only once, after a satisfying approximation I//[\/Elw;) has
been computed.

The convergence of the proposed quantities for Test 2 (case N = 8) is shown in
Figure 12. The residual computed by recycling the Lagrange multipliers is slightly
worse than the one computed after having reconstructed the pressure with a PGD
approach. We observe that residual norms clearly overestimate the error in the so-
lution by 1-2 orders of magnitude, hence representing a quite restrictive criterion for
the convergence of the method. On the other hand, the norms of the \; appear closer
to the true error, but slightly underestimating it, hence representing an “optimistic”
criterion.

6. Conclusions. In this work we have investigated the resolution with a PGD
method of the steady-state Navier—Stokes equations with uncertain forcing term and
Reynolds number. Based on the interpretation of PGD as a model reduction method
associated with a generalized spectral decomposition, iterative algorithms have been
proposed for the progressive construction of reduced bases of approximation. Different
algorithms have been presented, which are inspired by solution methods for solving
eigenproblems. In particular, we have employed an Arnoldi method in our numerical
simulations. The proposed strategy relies on the fact that the Navier—Stokes problem
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can indeed be recast as a problem for the velocity field only (in the space of divergence-
free functions), and the pressure can be reconstructed in a second step. Future works
should therefore investigate the application of PGD methods to situations in which
such “problem reduction” is not possible.

A key feature of such PGD methods is that the computation of the deterministic
and stochastic modes of the solution is decoupled: this allows remarkable savings with
respect to the standard Galerkin technique, both in terms of computational complexity
and coding effort required. We have indeed shown that because of such decoupling it is
possible to reuse any existing solver with minimal adaptations for the computation of
the deterministic modes. In the case of the Navier—Stokes equations, these adaptations
simply entail the modification of the convective velocity, the viscosity parameter, and
the forcing term. The stochastic and update problems can also be solved with available
software, since they amount to systems of quadratic equations.

The convergence of the PGD approximation of the velocity to the full Galerkin
solution has been investigated in different numerical settings. In all the considered
cases, the PGD is able to provide reasonable approximations of the full Galerkin so-
lution with a limited number of modes, (normalized total error between the PGD
and the Galerkin solution smaller than at least 10~* with approximately 20 modes
in the test we have considered; see Figure 11), thus with a smaller computational
cost compared to the solution of the full Galerkin problem. However, it cannot be
concluded from the presented numerical experiments that a low-rank PGD solution
can be constructed in general. Indeed, as shown in Figure 11, for a fixed forcing term
the number of modes needed to achieve a prescribed (relative) error is expected to
increase as the viscosity decreases. This trend reflects the broadening of stochastic
solution spectral content when the nonlinear character of the problem increases. Be-
sides increasing the complexity and rank of the solution, higher nonlinear problems
are therefore expected to overwhelm at some point the proposed PGD algorithms, due
in particular to the increasing (local) nonsymmetric character of the Navier—Stokes
operator. Low viscosity flows may thus be addressed in future works with alternative
residual minimization schemes; see, e.g., [4].

Furthermore, care has to be taken in the reconstruction of a reduced pressure:
the mathematical formulation of this problem is nontrivial, and we have addressed
this topic only for the discrete problem, proposing different approaches with different
computational costs and achievable accuracy. This is certainly an aspect worth a
deeper investigation in future works, as well as the extension of the proposed technique
to nonsteady problems.
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