
DEV

NLEA N

Presented at:

DevLeaNN 2011: A Workshop on Development and Learning in Artificial Neural Networks
Held at the ISC-PIF in Paris, France, on October 27, 28, 2011. 
Edited by: T. Kowaliw, N. Bredeche, and R. Doursat
http://devleann.iscpif.fr
Permission to reprint for non-commercial use granted. Otherwise, all copyright retained by originating author.

"Network Self-organization explains the distribution of synaptic efficacies 
in neocortex"

Pengsheng Zheng (Frankfurt Institute for Advanced Studies), Christos Dimitrakakis 
(EPFL), and Jochen Triesch (Frankfurt Institute for Advanced Studies)

Abstract—The information processing abilities of cortical circuits are thought to arise from their 
detailed connectivity structure, but this structure is notoriously hard to characterize. The distribution 
of synaptic strengths of local excitatory connections in the cortex is long-tailed, exhibiting a small 
number of synaptic connections of very large efficacy. These few very strong connections are 
comparatively stable and may allow the brain to form long-lasting memories. At present it is 
unclear, however, how these patterns of synaptic strength and stability arise. We show that these 
characteristics emerge through self-organization in a simple recurrent network model combining 
spike-timing-dependent plasticity with homeostatic forms of plasticity. Despite its simplicity the 
model achieves an excellent fit to data. Our results suggest that cortical circuits are shaped by a form 
of self-organization induced by the combined action of multiple forms of neuronal plasticity.
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Abstract—The distribution of synaptic efficacies in neocortex
has an approximately lognormal shape. Many weak synaptic
connections coexist with few very strong connections such that
only 20% of synapses contribute 50% of total synaptic strength.
Furthermore, recent evidence shows that weak connections fluc-
tuate strongly while the few strong connections are relatively
stable, suggesting them as a physiological basis for long-lasting
memories. It remains unclear, however, through what mecha-
nisms these properties of cortical networks arise.

Here we show that lognormal-like synaptic weight distribu-
tions and the characteristic pattern of synapse stability can
be parsimoniously explained as a consequence of network self-
organization. We simulated a simple self-organizing recurrent
neural network model (SORN) composed of binary threshold
units. The network receives no external input or noise but
self-organizes its connectivity structure solely through different
forms of plasticity. Across a wide range of parameters, the
network produces lognormal-like synaptic weight distributions
and faithfully reproduces experimental data on synapse stability
as a function of synaptic efficacy. Overall, our results suggest
that the fundamental structural and dynamic properties of
cortical networks arise from the self-organizing forces induced
by different forms of plasticity.

I.

Recent evidence shows that the distribution of synaptic

efficacies is highly skewed [1] and has an approximately

lognormal distribution [2]. Only around 20% of synapses are

responsible for 50% of total synaptic weight. This structure

has been found to be highly dynamic, however, with synaptic

contacts constantly being created and destroyed and sizes

of dendritic spines fluctuating over time scales of hours

and days [3]. This raises the question how stable long-term

memories can be maintained in the presence of such strong

synaptic fluctuations. Recent evidence has suggested a possible

solution to the problem. The dynamics of dendritic spine size

changes, which are closely related to synaptic efficacies, are

such that small synapses tend to fluctuate relatively more than

strong synapses [3].

To investigate whether and how these properties can arise

from self-organization induced by neuronal plasticity mecha-

nisms, we extended a simple network model developed previ-

ously [4] by adding a structural plasticity. The self-organizing

recurrent network (SORN) consists of binary threshold units

(80% excitatory and 20% inhibitory). The network is com-

posed of NE excitatory and N I = 0.2×NE inhibitory thresh-

old units connected through weighted synaptic connections,

where Wij is the connection strength from unit j to unit

i. We distinguish connections from excitatory to excitatory

units (WEE), excitatory to inhibitory connections (W IE) and

inhibitory to excitatory connections (WEI ). For simplicity,

connections between inhibitory units and self-connections of

excitatory units are forbidden, and the WEI and W IE remain

fixed at their random initial values. They have all-to-all topol-

ogy and are drawn from the interval [0, 1] and subsequently

normalized such that the incoming connections to an inhibitory

neuron sum up to one:
∑

j W IE
ij = 1.

The network’s activity state, at a discrete time t, is given

by the binary vectors x(t) ∈ {0, 1}NE

and y(t) ∈ {0, 1}NI

corresponding to the activity of the excitatory and inhibitory

units, respectively. The evolution of the network state is

described by:

xi(t+1) = Θ





NE

∑

j=1

WEE
ij (t)xj(t) −

NI

∑

k=1

WEI
ik (t)yk(t) + TE

i (t)





(1)

yi(t + 1) = Θ





NE

∑

j=1

W IE
ij xj(t) − T I

i



 . (2)

The TE and T I are threshold values for the excitatory and

inhibitory units. They are initially drawn from a uniform dis-

tribution in the interval [0, TE
max] and [0, T I

max], respectively.

The heaviside step function Θ(.) constrains the activation of

the network at time t to a binary representation: a neuron

fires if the total drive it receives is greater then its threshold,

otherwise it stays silent.

The network relies on several forms of plasticity: spike-

timing dependent plasticity (STDP) of EE connections, synap-

tic scaling and structural plasticity of EE connections, and

intrinsic plasticity regulating the thresholds of excitatory units.

The set of WEE synapses learns via a causal STDP rule

that strengthens the synaptic weight WEE
ij by a fixed amount

ηSTDP = 0.001 whenever unit i is active in the time step

following activation of unit j. When unit i is active in the

time step preceding activation of unit j, WEE
ij is weakened

by the same amount:

∆WEE
ij (t) = ηSTDP (xi(t)xj(t − 1) − xi(t − 1)xj(t)) .

(3)
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Fig. 1. Distribution of synaptic weights matches lognormal distribution of
EPSPs in cortex. A: distribution of EPSP sizes from [2] and lognormal fit. B:
distribution of weight strength in SORN and lognormal fit.

Synaptic normalization proportionally adjusts the values of

incoming connections to an excitatory unit at each time step

so that they sum up to one:

WEE
ij (t) ← WEE

ij (t)/
∑

j

WEE
ij (t) . (4)

An intrinsic plasticity rule maintains an identical average

firing rate HIP in every unit. To this end, a unit that has just

been active increases its threshold while an inactive unit lowers

its threshold by a small amount:

TE
i (t + 1) = TE

i (t) + ηIP (xi(t) − HIP) , (5)

where ηIP = 0.001 is a small learning rate. We set the target

rate to HIP = 0.1 such that an excitatory unit spikes on

average every 10th time step.

Compared to the original SORN model, we introduce the

structural plasticity which adds new synaptic connections

between excitatory cells to the network. With probability

pc = 0.1 a new connection is added between a random

pair of excitatory cells that are unconnected. The strength

of this weight is set to 0.001. Here, the structural plasticity

is introduced to simulate the new synapse generation process

found in cortex [3].

We simulated SORN networks of different parameters and

observed the resulting activity patterns and distributions of

synaptic weights. Figure 1 shows the weight distribution

of a 400 excitatory neuron network after 10000 time steps

and compares it to data from [2]. Figure 2A illustrates the

distribution of relative spine volume changes in cortex across

one day from [3], and Figure 2B shows the distribution

of synaptic weight changes in SORN. The similarities are

striking. Numerical simulations show that, across a wide range

of parameters, the network produces lognormal-like synaptic

weight distributions and faithfully reproduces experimental

data on synapse stability as a function of synaptic efficacy.
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Fig. 2. Distribution of synaptic weight changes matches distribution of spine
volume changes in cortex. A: distribution of relative spine volume changes
across one day from [3]. B: distribution of synaptic weight changes in SORN.

Overall, our results suggest that the fundamental structural

and dynamic properties of cortical networks arise from the

self-organizing forces induced by different forms of plasticity.

If our explanation of the origin of the statistics and dynamics

of synaptic connections in the cortex is correct, then this has

broad implications for our understanding of cortical circuits.

Current computational models of local cortical circuits usually

assume random network structure, sometimes with distance-

dependent or layer-dependent connection probabilities[5]. We

believe that the study of random networks where only con-

nection statistics are matched to those in the brain, may be

quite misleading when the goal is to understand processing in

cortical circuits.
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