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ABSTRACT

We propose a scale-invariant feature descriptor for representation of light-field images. The proposed descriptor can
significantly improve tasks such as object recognition and tracking on images taken with recently popularized light
field cameras.

We test our proposed representation using various light field images of different types, both synthetic and real.
Our experiments show very promising results in terms of retaining invariance under various scaling transformations.
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1. INTRODUCTION

A crucially important part of many computer vision tasks is robust extraction and description of a set of features.
These tasks include image matching, stitching, object recognition and face detection among others.5

A desirable feature descriptor should be invariant to certain transformations such as scaling and rotation.1 Sev-
eral feature detection and description methods have been proposed so far which include Harris corner detector,2

BRIEF3 and SIFT.1

However, achieving true invariance requires certain information of the scene which are mostly lost during the
image formation process in traditional image acquisition devices. An image is usually constructed by projecting a
three-dimensional real-world scene to a two dimensional plane.4 This process is obviously irreversible and therefore
information such as depth and occlusion are lost during the image formation. Without having such informations,
current algorithms rely mostly on color and texture information for description which leads to a some false matches.

Light field cameras6 have received wide attention in recent years due to the introduction of end-user products
such as the Lytro.7 Light-field analysis has been applied to various problems in computer vision from face recogni-
tion8 to depth estimation.9 Moreover, successful efforts have been made to bring the light-field technology to the
mobile world.10

To achieve the goal of perfect scale-invariant light field feature description, we first study the effect of scaling on
the internal structure of light fields. We consider horizontal and vertical slices of the light field signal called epipolar
planes. We show that each scene point corresponds to a line in an epipolar plane. Further we show that gradients
of the epipolar lines are proportional to the depths of their corresponding scene points. Therefore, scaling the scene
can be interpreted as shearing the epipolar plane. We exploit these properties in extracting a scale-invariant feature
descriptor from a light-field image.

2. THE PROPOSED APPROACH

2.1 The Plenoptic Function and Formation of Light-Fields

The usual notion of an image as one may expect is a two-parameter function of spatial dimensions x and y . Extend-
ing this notion, consider a video sequence which a sequence of 2-D images ordered by time. The whole signal is a
3-D shape in the x − y − t space. This is a generalization of the traditional color or grayscale image.

Going even further, we also relax the assumption of having a single-sensor camera and add another parameter for
wavelength of the incident light at the position (x0, y0) and time (t0). This leads to having a four dimensional function
that is concatenation of video sequences taken at different wavelengths. Each x − y slice of this volume (assuming
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other parameters are kept constant) refers to a 2D image captured at a specific time under a specific wavelength.
Similar argument applies to x − y − t (video signals) and other slices.

A Plenoptic function is a generalization of a two-dimensional image, in which we have as well as spatial coor-
dinates of the image plane, five more dimensions for the time(t ), wavelength (λ) and the position of the camera
(〈Vx , Vy , Vz 〉).11

The most general form of the Plenoptic function contains seven degrees of freedom (parameters). This is formed
by adding three degrees of freedom for the spatial camera position, one for time and one more for the wavelength,
to the tradition (x , y ) arguments of the image plane. Therefore we have:

P = P7(x , y , Vx , Vy , Vz , t ,λ). (1)

The plenoptic function is highly structured. It contains a significant amount of information about the captured scene,
camera setup, and other acquisition parameters.

However, a seven-dimensional signal is very difficult to acquire and process. In practice, for a specific application
a subset of dimensions which contain the most relevant information are captured and further processed. Therefore,
we usually reduce the number of parameters by introducing constraints on the capture process. For example, we can
consider only static scenes, thereby omitting the time index. Moreover we can omit the wavelength by considering
single-sensor lenses. We may also enforce restrictions on the camera movements to reduce the number of parameters
even more.

A commonly known 3D restriction of the plenoptic function is the x − y −Vx slice. This is known as the Epipolar
Plane Image12 or the light-field.13 Light-fields have attracted a lot of attention in recent years.14–17

We can capture EPIs using either a linear camera array or equivalently (and more practically) by assuming that
the scene is static and linearly moving a single camera. This latter setup is more practical since a plenoptic function
(more precisely a slice of it) can be captured easily and efficiently using a handheld device’s internal camera.

2.2 Regularity of the Plenoptic Function

Some conditions are explicitly and implicitly assumed when studying plenoptic function and its properties. Firstly,
we assume the pinhole camera model for each individual camera and Cartesian coordinates in the plenoptic func-
tion. Secondly, we neglect the wavelength parameter λ by considering grayscale images or different color channels.
Finally, surfaces in the scene are assumed to be opaque Lambertian surfaces to avoid reflection issues.

The simplest setup for plenoptic function is what we already know as a still (two-dimensional) image. It can be
captured using a single camera and is therefore a sample of the plenoptic function where all parameters except the
image coordinates (x and y ) are kept constant.

Consider taking a single picture using the pinhole camera model. Assuming that the focal length of the camera
is unity and the optical center is located at the origin, the projection of a scene point (X , Y , Z ) to the image plane is
calculated as:


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(2)

Now assuming the pinhole camera model and Lambertian surfaces,18 consider an image sequence taken by mov-
ing the camera Vx units along the horizontal axis for each image (i.e the light-field or EPI case). Adding a third di-
mension for the camera location (set to Vx ), the mapping from a scene point P = (X , Y , Z )T to its projection into each
image in the sequence can be described as:
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(a) Plenoptic Image (b) Epipolar Plane

(c) Scaled Plenoptic
Image

(d) Epipolar Plane in the Scaled Image

Figure 1: Effect of Scaling on the Epipolar Planes
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This is how a light-field is formed. We infer from (3) two important facts:

1. Each scene point corresponds to a line (a single-parameter curve) in one of the x − Vx slices of the epipolar
volume (the slice corresponding to y = Y

Z ).

2. The gradient (slope) of this line is proportional to the depth (Z value) of the scene point.

Please note that the above facts are valid only when all our initial assumptions have been met. For example, if the
motion is non-linear or speed varies, then the feature paths are no longer lines. An x −Vx slice of an epipolar volume
is called an "epipolar plane".

The two fact described above are the starting points for our analysis of the epipolar volume and its properties and
how we use it to extract information about the scene.

We will use these properties in deriving our scale-invariant representation for light-field images.

2.3 Scale-Invariance in the Light-Field Domain

The effect of scaling on the plenoptic function can be easily analyzed if we consider the epipolar lines and their
properties. We know that the slopes of the epipolar lines are proportional to the depths of their corresponding scene
points. Moreover, scaling can be interpreted as adding a constant value to the depth of all points. This is very similar
to (but not exactly) rotating the epipolar plane. Figure 1 shows the effect of scaling on the epipolar planes.

Since lines are dominant objects in the epipolar planes, the first step would be to detect them or represent the
EPI planes in a new space in which detection of lines is easier. The Radon transform is a well-known approach to
achieve this goal.19 Radon transform R of a function f (x , y ) is defined as:

R (ρ,θ ) =

∫ ∫

f (x , y )σ(x C o sθ + y Si nθ −ρ)d x d y (4)
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In Radon transform, the original image is transformed to a transform plane in which each point (θ0,ρ0) corre-
sponds to a line whose equation is x C o sθ0+ y Si nθ0 =ρ0 in the original plane. The amount of lightness of the point
then determines the length of its corresponding line.

However, implementing the complete Radon Transform is time consuming and also not necessary for our task
since the space of possible lines in the EPI plane is limited. The Hough Transform20 is another line detection approach
which is very similar in essence to the Radon’s. The main difference lies in the discrete nature of Hough Transform
which makes it ideal for our task. There are efficient ways to implement the Hough transform. Algorithm 1 shows
the Hough Transform .

Input: The two dimension matrix I representing an image
Discretize the range of θ values in the vector Θ.
Discretize the ρ parameter into nρ distinct values.
Construct the L e ng t h (Θ)×nρ output matrix H .
Set all elements of H initially to 0.
foreach feature point (x , y ) in I do

foreach θ ∈Θ do
ρ = x cosθ + y sinθ
H (θ ,ρ) =H (θ ,ρ) +1

end
end
return the output image H

Algorithm 1: The Hough Transform Algorithm

The reason that the Hough Transform uses i.e θ −ρ parameter space rather than the well-known slope-intercept
(m −h) form is that both slope and intercept are unbounded even for a finite x − y range that is a digital image.

One key property of the Radon (and Hough) Transform is that rotation in the original plane is converted to a
simple translation in the θ −ρ plane.21 It is especially useful if we want to derive a rotation-invariant representation
from the θ −ρ image.22 We can easily do this by setting the minimum θ value to 0. This cancels the effect of any
uniform change of θ .

However, what happens during scaling in the epipolar planes is a constant change of m , not θ .4 We have to cancel
the effect of adding a constant∆ to all mi slopes of epipolar lines. This is not easy to do with the Hough’s θ −ρ space
since θ =−a r c c o t (m ) and the relation between a r c c o t (m ) and a r c c o t (m +∆) is not linear or well-posed.

Therefore, we seek a novel parameterization for representation of lines that, as well as having bounded parameter
set, gives us the possibility to isolate uniform changes of slope.

The following exponential parametric form which we hereafter call λ−µ parameterization, has all the desired
properties we are seeking:

λy +λ lnλx =µ. (5)

In (5), λ is the compressed slope and is calculated from the slope as λ = e −m . Therefore, for all positive slope
values, λ is unique and bounded between 0 and 1. Moreover, µ is also bounded for a bounded range of x and y .

Theλ−µparametrization is not as general as the Hough Transform. First, it can transform only lines with positive
slope. Moreover, it is unable to detect fully vertical lines. However, these drawbacks are not important since these
situations will not happen in an epipolar plane. The slopes of all lines in an epipolar plane are either positive or
negative. Moreover, a vertical line corresponds to a point in infinity which is physically impossible. Therefore, the
λ−µ parametrization is sufficient to represent all lines present in an epipolar plane.

The key property of the novel λ−µ parametrization that makes it useful and beneficial for our task is that it can
easily isolate and cancel the effect of uniform changes of slope. Suppose λm is the λ parameter corresponding to a
line with slope m . We observe that
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Input: The two dimension matrix I representing an image.
Discretize the range of λ values in the vector Λ.
Discretize the µ parameter into nµ distinct values.
Construct the L e ng t h (Λ)×nµ output matrix H .
Set all elements of H initially to 0. foreach each feature point (x , y ) in I do

foreach each λ ∈Λ do
µ=λy +λ lnλx
H (λ,µ) =H (λ,µ) +1

end
end
return the output image H

Algorithm 2: The Algorithm for Computing λ−µ Plane (The Exponential Radon Transform)

λm+∆ =λm e −∆. (6)

Therefore, the effect of adding a constant∆ to all mi values can be canceled out by dividing all their corresponding
λi s by the largest one.

2.4 Extracting a Scale-Invariant Feature Vector

We showed that the effect of scaling can be modeled by transforming the λ−µ image as (λ,µ)→ (αλ,µ). One simple
and computationally efficient way to achieve a scale-invariant representation is by integrating the λ−µ plane over
lines of equal intercept since only slope is changed at the time of scaling.23 We define g as

g (s ) =

∫

E (λ,µ)δ(µ− sλ)dλdµ (7)

Where E is the proposed exponential transform.

The use of such method can be justified intuitively. Changing the distance of the camera to the scene, only
changes the gradients (slopes) of epipolar lines. Therefore, by integrating over lines of equal intercept, we sum over
all possible shearings (slope changes).

The integration approach has the significant benefit that relaxes the need to explicitly extract parameters of the
lines from the transform plane. This task requires putting thresholds on the intensities of points in the transform
image. Tuning these parameters is itself a time-consuming and complicated task.

3. EXPERIMENTS AND RESULTS

For our experiments, we used a dataset built by capturing light-field images of multiple buildings in the campus of
the École Polytechnique Fédérale de Lausanne (EPFL). The overall dataset is composed of 240 light-field images of
10 buildings in the EPFL campus.

We extracted a single feature vector from each light field by applying the integration (equation 7) to each EPI plane
and then applying PCA24 to extract a subset of the whole concatenated feature vector.

We compared our algorithm with DenseSIFT,25 which is a recent version of the SIFT descriptor claiming to be
faster than it. We also implemented ans tested the Histogram of Oriented Gradients (HOG) approach26 which has
proven successful for outdoor classification tasks.

For the classification task, we used a simple nearest-neighbor approach so that we can see the effects of the ex-
tracted features and not the utilized recognition approach. We used a slight modification of the `1-norm to compute
the distance between the feature vectors.
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Figure 2: Distribution of NN/SNN ratios in the DenseSIFT and the Proposed Approach.

Table 1 depicts the results of the proposed approach compared to the HOG and DenseSIFT. We can observe the
significant improvement in the proposed approach which is mostly because of the complex geometry inherent in the
buildings.

Our Approach DenseSIFT HOG
Feature Length 288 12800 3100

Accuracy (% of Correct Classifications) 88 50 61
Average Query Time Per Frame (s) 0.06 0.04 1.8

Table 1: Results of the Proposed Approached Compared to the State-of-the-Art

Table 2 depicts the confusion matrix for the proposed approach. The classes in which the recognition accuracy
has been mixed are mostly those that have very similar or overlapping geometry and color.

A useful feature in determining the reliability of recognitions in matching algorithms is the ratio between the
distance to the nearest neighbor and the second nearest neighbor (NN/SNN ratio1). This ratio is a positive values
less than 1. High values of NN/SNN ratio of a test sample are not preferred since they show that the nearest neighbor
is not highly distinct from the second nearest and therefore may have been selected by chance. These usually show
samples which do not belong to any of the classes.

Figure 2 depicts the distribution of NN/SNN ratios in the DenseSIFT and the proposed approach. We observe
that the ratios in the DenseSIFT approach are very high and therefore not reliable whereas in the proposed approach
the ratios are distributed much more evenly.

Detected / Correct Class AGEPOLY BC ATRIUM BC BP INM INN PSA SV INSIDE SV PPH
AGEPOLY 0.75 0 0.08 0 0 0 0 0 0 0.2

BC ATRIUM 0 0.70 0 0 0 0 0 0 0 0
BC 0.08 0 0.92 0 0 0 0 0 0 0
BP 0 0 0 0.92 0 0 0 0 0 0.2

INM 0.08 0.15 0 0.08 1 0 0 0 0 0
INN 0 0 0 0 0 0.75 0 0 0.5 0
PSA 0 0 0 0 0 0 1 0 0 0

SV INSIDE 0 0.15 0 0 0 0 0 1 0 0
SV 0 0 0 0 0 0 0 0 0.5 0

PPH 0.08 0 0 0 0 0.25 0 0 0 0.6

Table 2: Confusion Matrix for the proposed algorithm. Class names are the names of teh buildings in teh EPFL cam-
pus.
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SUMMARY

Achieving perfect scale-invariance is usually not possible using classical color image features. This is mostly because
of the fact that a traditional image is a two-dimensional projection of the real world.

In contrast, light field imaging makes available rays from multiple view points and thus encodes depth and oc-
clusion information which are very crucial for true scale-invariance. By studying and exploiting the information
content of the light field signal and its very regular structure we came up with a provably efficient solution for ex-
tracting scale-invariance feature vector representation for more efficient light field matching and retrieval among
various views. Our approach is based on a novel integral transform which maps the pixel intensities to a new space
in which the effect of scaling can be easily canceled out by a simple integration.

The experiments we conducted on various real-world light field images verify that the performance of the pro-
posed approach is promising in terms of both accuracy and time-complexity. As a probable future improvement,
incorporating invariance to various other transforms such as rotation and translation will make the algorithm far
more applicable.
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