Coordination of Software Components with BIP:
Application to OSGi

Simon Bliudze
Rigorous System Design
Laboratory EPFL
1015 Lausanne, Switzerland

simon.bliudze@epfl.ch

Anastasia Mavridou
Rigorous System Design
Laboratory EPFL
1015 Lausanne, Switzerland
anastasia.mavridou@epfl.ch

Radoslaw Szymanek
Crossing-Tech S.A.
1015 Lausanne, Switzerland
radoslaw.szymanek@crossing-

tech.com

Alina Zolotukhina
Rigorous System Design
Laboratory EPFL
1015 Lausanne, Switzerland
alina.zolotukhina@epfl.ch

ABSTRACT

Coordinating component behaviour and access to resources
is among the key difficulties of building large concurrent sys-
tems. To address this, developers must be able to manipu-
late high-level concepts, such as Finite State Machines and
separate functional and coordination aspects of the system
behaviour. OSGi associates to each bundle a state machine
representing the bundle’s lifecycle. However, once the bun-
dle has been started, it remains in the state Active— the
functional states are not represented. Therefore, this mech-
anism is not sufficient for coordination of active components.

In this paper, we present a methodology for functional
component coordination in OSGi by using BIP coordination
mechanisms. BIP allows us to clearly separate the system-
wide coordination policies from the component behaviour
and the interface that components expose for interaction.
By using BIP, we show how the allowed global states and
state transitions of the modular system can be taken into
account in a non-invasive manner and without any impact
on the technology stack within an OSGi container.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications—

Methodologies; D.2.2 [Software Engineering)]: Design Tools
and Techniques—Modules and interfaces, State diagrams

General Terms
Design, Reliability

Keywords

BIP, OSGi, Component coordination, Concurrency

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MiSE ’ 14, June 2 - June 3, 2014, Hyderabad, India

Copyright 14 ACM 978-1-4503-2849-4/14/06 ...$15.00.

1. INTRODUCTION

When building large concurrent systems, one of the key
difficulties lies in coordinating component behaviour and, in
particular, concurrent access to resources. Native mecha-
nisms such as, for instance, locks, semaphores and monitors
allow developers to address these issues. However, such so-
lutions are complex to design, debug and maintain. Indeed,
coordination primitives are mixed up with the functional
code, forcing developers to keep in mind both aspects simul-
taneously. Finally, in concurrent environments, it is difficult
to envision all possible execution scenarios, making it hard
to avoid common problems such as race conditions.

The coordination problem above calls for a solution that
would allow developers to think on a higher abstraction level,
separating functional and coordination aspects of the system
behaviour. For instance, one such solution is the AKKA li-
brary [15] implementing the Actor model. An actor is a
component that communicates with other components by
sending and receiving messages. Actors process messages
atomically. The state of an actor cannot be directly ac-
cessed by other actors, avoiding such common problems as
data races. However, component coordination and resource
management are still difficult. Fairly complex message ex-
change protocols have to be designed, which are spread out
across multiple actors. Any modification of the coordination
policy calls for corresponding modifications in the behaviour
of several actors, potentially leading to cascading effects and
rendering the entire process highly error-prone.

Our approach relies on the observation that the behaviour
of a component can be represented as a Finite State Machine
(FSM). An FSM has a finite set of states and a finite set of
transitions between these states. Transitions are associated
to functions, which can be called to force a component to
take an action or to react to external events coming from the
environment. Such states and transitions usually have intu-
itive meaning for the developer. Hence, representing com-
ponents as FSMs is a good level of abstraction for reasoning
about their behaviour. In our approach, the primitive coor-
dination mechanism is the synchronisation of transitions of
several components. This mechanism gives the developers a
powerful and flexible tool to manage component coordina-
tion. This allows a clear separation between the component

|nsla\ll

(Installed ~—_update

uninstall ~ .resolve \
S)

- -

AT - install b

‘\Unlnstalledaiurllrls {_Resolved /
o stat,”

(Starting) (Stopping »

\\« — A;

e
Figure 1: Bundle lifecycle in OSGi.

behaviour and system-wide coordination policies.

For coordination scenarios that require a global state in-
formation, dedicated monitor components can be added in
straightforward manner. This allows to centralise all the in-
formation related to the coordination in one single location,
instead of distributing it across the components. Further-
more, it considerably simplifies the system maintenance and
improves reusability of components. Indeed, components do
not carry coordination logic based on the characteristics of
any specific execution environment.

An observable trend in software engineering is that de-
sign becomes more and more declarative. Developers pro-
vide specifications of what must be achieved, rather than
how this must be achieved. These specifications are then
interpreted by the corresponding engines, which generate —
often on the fly — the corresponding software entities. Thus,
it is not always possible to instrument or even access the ac-
tual source code. Furthermore, it is usually not desirable
to modify such code, since this can lead to a considerable
increase of the maintenance costs. Our approach is based on
a non-invasive mechanism relying, for the interaction with
the controlled components, on existing API.

We present a methodology for functional component co-
ordination by using BIP coordination mechanism and its
implementation based on OSGi that:

e allows clear separation between component behaviour
and system-wide coordination policies;

e improves component usability and simplifies system
maintenance;

e does not require access to the source code.

The paper is structured as follows. Section 2 provides
background information about OSGi and BIP. Section 3
presents the models of the Camel routes use case. Section 4
shows how the proposed methodology is applied in practice.
Section 5 describes the implemented software architecture.
Section 6 discusses related work and Section 7 concludes the

paper.
2. BACKGROUND
2.1 The OSGi standard

OSGi defines an architecture for developing and deploying
modular applications [18], which are assembled from multi-
ple components, called bundles. Bundles are comprised of
Java classes and resources. OSGi controls the lifecycle of
a bundle, its installation, starting, stopping, updating and
deinstallation, on the fly without the need to restart the
system. Furthermore, OSGi manages the resolution of bun-
dle dependencies, versioning and classpath control. Bundles

provide classes and services that can be used by other bun-
dles. A service is defined by the Java interface it implements.

A state machine representing the bundle’s lifecycle (Figure
1) is associated to each bundle. A bundle can be in one of the
states Installed, Resolved, Active, etc. However, once the
bundle is started, it remains in the state Active— the func-
tional states are not represented. Hence, this mechanism is
not applicable for coordination of active components.

2.2 The BIP framework

BIP [6] is a component framework encompassing rigor-
ous system design. In BIP, systems are constructed by su-
perposing three layers of modelling: Behaviour, Interaction,
and Priority. Behaviour consists of a set of components
modelled by FSMs that have transitions labelled with ports.
Ports form the interface of a component and are used to
define interactions with other components.

The second layer models interaction between components.
Interaction models define allowed synchronization between
components and can be represented in many equivalent ways.
Among these are the Algebra of Connectors [10] and boolean
formulee on variables representing port participation in in-
teractions [11]. Connectors are most appropriate for graph-
ical design and interaction representation, whereas boolean
formulee are most appropriate for manipulation and efficient
encoding. When several interactions are possible, priorities
can be used as a filter. Interaction and Priority layers are
collectively called glue. In this paper, we only consider in-
teraction models and leave priorities for future work.

The BIP framework comprises a language and an associ-
ated tool-set supporting the Rigorous Design Flow [6]. The
BIP language allows building complex systems by specify-
ing the coordination between a set of atomic components.
The execution of a BIP system is driven by the BIP Engine
applying the following protocol in a cyclic manner:

1. Upon reaching a state, each component notifies the
BIP Engine about the possible outgoing transitions;

2. The BIP Engine picks one interaction satisfying the
glue specification and notifies the involved components;

3. The notified components execute the functions associ-
ated to the corresponding transitions.

Our work is based on implementing functional component
coordination by using the BIP coordination mechanisms.
However, the BIP language and tools mentioned above are
not used in this approach.

3. CAMEL ROUTES USE CASE

Using BIP allows taking into consideration the structure
of the controlled software and the coordination constraints
imposed by the safety properties. BIP coordination exten-
sion for OSGi has been implemented and tested in Con-
nectivity Factory ™!, the flagship product of Crossing-Tech
S.A. The main use-case consists in managing memory us-
age by a set of Camel routes®’. A Camel route connects a
number of data sources to transfer data among them. Data
can be fairly large, may require additional processing and
thus, routes share and compete for memory. Without addi-
tional coordination, simultaneous execution of several Camel

"Mttp://www.crossing-tech.com/
*http://camel .apache.org/routes.html

begin o0 m
(b) Switchable Route

|hmshed I

add Lm
add add
m m

(¢) Monitor

Figure 2: Examples of component models.

routes can lead to OutOfMemory exceptions, even when each
route has been tested and sized appropriately on its own.
For the sake of simplicity, we assume that all active routes
consume the same amount of memory. Thus, it is sufficient
to ensure that the number of active routes does not exceed
a given threshold.

We have designed BIP models for Camel routes, using
the suspend and resume functions provided by the Camel
Engine API. By introducing an additional Monitor compo-
nent, we limit the number of routes running simultaneously
to ensure that the available memory is sufficient for the safe
functioning of the system.

The model of a Camel route is shown in Figure 2(a). It
has four states: suspended, ready, working and finishing.
The route has transitions begin and end between the states
ready and working, corresponding to processing a file. The
route can be turned off through the off transition. Figure
2(b) presents a different model of the route. It is obtained
by merging the ready and working states together (the on
state), and by splitting the finishing state into two: wait
and done. We use notification policies provided by Camel
to observe spontaneous modifications of the route states.
This differentiates the types of transitions used in the model,
which is further explained in the next section.

In Figure 2(c) the model of the Monitor is presented. It
has three states that correspond to the number of simultane-
ously active Switchable routes, which is limited to two. This
is achieved by enforcing, for each route, the synchronisation
between its port on (respectively finished) and the port
add (respectively rm) of the Monitor through the use of BIP
connectors. It is worth noticing that Monitor components
carry only coordination logic but do not contain any func-
tional code. To reuse the Monitor component for a larger
number of routes, the model has to be extended with more
states. Next section presents how the component models
and their coordination constraints can be specified.

4. DESIGN METHODOLOGY

4.1 Component model

A component is represented by an FSM extended with
ports. The FSM is specified by its states and guarded tran-

sitions. Each transition has a function and an associated
port. One port can be associated to several transitions. The
firing of a single transition happens as follows:

1. The transition is checked for enabledness: a transition
is enabled when it has no guard or when its guard eval-
uates to true. Only enabled transitions can be fired;

2. The function associated with the transition is called;
3. The current state of the FSM is updated.

We define three types of transitions: internal, spontaneous
and enforceable. Internal transitions represent computations
independent of the environment and are used to make the
component models more concise; when enabled, they are
executed immediately. Spontaneous transitions represent
changes in the environment that affect the component be-
haviour but are not controlled. Enforceable transitions rep-
resent the controllable behaviour of the component. To en-
sure execution determinism, at most one internal transition
can be enabled at any execution step. The type of a transi-
tion is inferred from the type of the port associated to it.

Transitions of different types are illustrated in Figure 2(b).
Firing the enforceable transition off takes the route into
state wait, from which two transitions are possible, both
leading to the state done. The internal transition can be
taken if the route has finished processing the files (the asso-
ciated guard g is satisfied). Otherwise, the component waits
for the notification of the spontaneous event end.

In our implementation, the execution of transitions is con-
trolled and managed by a BIP Executor object, while the
synchronisation between components is orchestrated by a
dedicated BIP Engine. BIP Executor maintains a queue of
notifications corresponding to spontaneous transitions and
cyclically executes the following two steps: first, all transi-
tions from the current state are checked for enabledness; and
second, one transition is picked for execution. Transition
choice depends on its type (in order of decreasing priority):

1. If an internal transition is enabled, it is fired.

2. If a spontaneous transition is enabled and a corre-
sponding notification is available in the queue, this
spontaneous transition is fired. If there are no noti-
fications in the queue corresponding to enabled spon-
taneous transitions and no enforceable transitions are
enabled, the component waits for the first notification
of one of the enabled spontaneous transitions.

3. If enforceable transitions are enabled, the Executor in-
forms the Engine about the current state and the en-
abled ports (i.e. which transitions can be performed).
The Executor then waits for a response from the En-
gine indicating the port to execute. Upon receiving
this response, it performs the corresponding transition.

When a spontaneous and an enforceable transition are
enabled simultaneously, but a notification corresponding to
the former has not been received yet, the BIP Executor an-
nounces the latter to the BIP Engine. Even if a notification
arrives, it will not be processed until the next cycle.

4.2 Design steps

In our approach the developer does not need to access
or modify existing source code. Designers provide specifi-
cations as separate files and are responsible for enforcing

@bipComponentType (initial = "off",

name = "SwitchableRoute")

@bipPorts({ @bipPort(name = "end", type = "spontaneous"),
@bipPort(name = "on", type = "enforceable"),
@bipPort(name = "off", type = "enforceable"),
@bipPort(name = "finished",

type = "enforceable")})

public class SwitchableRoute {

@bipTransition(name = "end", source = "wait",
target = "done", guard = "!g")
public void spontaneousEnd() {/* method body */}

@bipTransition(name = "finished", source = "done",
target = "off", guard = "")
public void finishedTransition() {/* method body */}

@bipGuard(name = "g")
public boolean isFinished() {/* method body */}
L)

Figure 3: Annotations for the Switchable Route.

their validity. However, our tools log an exception when a
non-valid specification is detected at runtime.

The design process involves two steps: first, defining the
behaviour for each component; and second, specifying their
interaction constraints.

4.2.1 Specification of component behaviour

An FSM extended with ports, as presented in Section 4.1,
is provided as an instance of a Java class implementing the
dedicated Behaviour interface, which is used by the Execu-
tor and the Engine and provides access to the information
about states, ports, transitions and guards of the FSM.

Developers need to provide the following: the name of the
component; the list of all states and the initial state; the list
of ports; the list of transitions with corresponding guards;
and a reference to the object implementing the methods as-
sociated to guards and transitions of the component.

There are two different ways to provide this information.
One way is to build such objects from specification anno-
tations. Annotations are syntactic metadata associated to
parameters, fields, methods or class declarations. Annota-
tions in a BIP Specification are processed by the BIP Ex-
ecutor, which we have developed as part of our library, to
construct a corresponding Behaviour object representing the
FSM. For specifying larger components, where annotations
become impractical, we have defined a Behaviour API, which
allows developers to construct a Behaviour object in a pro-
grammatical manner.

Figures 3 and 4 partly present the annotated Java classes
for the components of Figures 2(b) and 2(c) respectively.
We have defined the following annotations:

@bipComponentType — associated to a BIP component
specification class. It has two fields: name of the component
type, and initial state.

@bipPort — associated to a BIP component specification
class. It has two fields: port name, and port type which can
be “spontaneous” or “enforceable”, specifying the type of the
transitions. The internal transitions are defined by omitting
their name. We use an additional @bipPorts annotation to
specify several instances of the @bipPort annotation.

@bipGuard — associated to a method that computes a

@bipTransitions ({

@bipTransition(name = "add", source = "0",
target = "1", guard = ""),

@bipTransition(name = "add", source = "1",
target = "2", guard = "")})

public void addRoute() {routeCounter++;}

Figure 4: Annotations for the Monitor.

<glue>
<accepts=>
<accept>
<effect id="on" specType="SwitchableRoute"/>
<Causes>
<port id="add" specType="Monitor"/=
</causes>
</accept>
</accepts>
<requires>
<require>
<effect id="on" specType="SwitchableRoute"/>
<Causes>
<port id="add" specType="Monitor"/=
</causes>
</require>
</requires=
</glue>

Figure 5: Interaction constraints.

transition guard. The method must return a boolean value.
This annotation has one field: guard name.

@bipTransition — associated to a transition handler me-
thod with four fields: port name labelling the transition,
source state, target state and guard, a boolean expression
on the names of the guards (true if omitted). The guard ex-
pressions can be specified using parenthesis and basic logical
operators. Only ports defined by the @bipPort annotation
can be used as transition names.

4.2.2 Specification of interaction constraints

To define the interaction model, the developer specifies the
interaction constraints of each component. An interaction
constraint can be provided for each port of a system. Two
types of constraints are used to define allowed interactions:

Causal constraints (Require): used to specify ports
of other components that are necessary for any interaction
involving the port to which the constraint is associated.

Acceptance constraints (Accept): used to define op-
tional ports of other components that are accepted in the
interactions involving the port to which the constraint is
associated.

For example, the constraint SwitchableRoute.on Require
Monitor.add forces the port on of any component of type
SwitchableRoute to synchronise with a port add of some
component of type Monitor. Furthermore, the constraint
SwitchableRoute.on Accept Monitor.add specifies that no
other ports are allowed to participate in the same interac-
tion. In the current implementation interaction constraints
are given in an XML file (cf. Figure 5).

S. IMPLEMENTATION

The software architecture of the proposed framework is
shown in Figure 6. The architecture consists of two major
parts: the part that involves the components to control (on

Glue description from
an XML file

(0SGi bundle) BIP Engine bundle A
BIP Modul
h odue N BIP Coordinator
Component BIP inform
to control
Behaviour Cg{::‘ Glue
T
| S—
* Encoder Encoder
H BIP +
Notifier Model execute
Executor
= < Symbolic BIP Engine
——
\)
'OSGi bundle T
BIP Module
7 Behaviour Encoder
BIP Monitor BIP Model ——
Behaviour Executor |
L J J

Components register
during initialisation

Figure 6: Software architecture.

the left) and the BIP Engine part (on the right). The grey
outer boxes in the diagram represent OSGi bundles.

For each component a BIP Behaviour is generated at run-
time, which contains information about the FSM and ports
of the controlled entities. As shown in Figure 6, each in-
stance of BIP Behaviour is coupled with a dedicated in-
stance of BIP Executor to form a BIP Module. The Notifier
is an additional component that informs the BIP Executor
of spontaneous events relevant to the controlled entities.

The BIP Executor builds the Behaviour object from the
component specification or receives it as an argument at
initialisation (as specified in Section 4.2.1). BIP Executor
implements the protocol presented in Section 4.1. In order
to ensure consistency of guard valuations, guard functions
are computed only once at each execution cycle, regardless of
how many times they are used. At each execution cycle, the
Executor interprets the Behaviour and fires the transitions,
invoking the methods using Java Reflection mechanism [14].

The operational semantics of BIP is implemented by a
dedicated Engine (presented in the right part of Figure 6),
which is used for the coordination of software modules ac-
cording to the three-step protocol presented in Section 2.2.
The implementation of the Engine is modular and consists
of five main parts: three Encoders, the BIP Coordinator and
the Symbolic BIP Engine. It uses Binary Decision Diagrams
(BDDs)? [3], that are efficient data structures to store and
manipulate boolean formulae.

The ports and states of the system components are as-
sociated to boolean variables. These boolean variables are
used at initialization by the Behaviour and Glue Encoders
to translate the behaviour and glue constraints (glue de-
scription and register arrows in Figure 6) into boolean
formulee. During runtime, each component provides infor-
mation about its current state and enabled ports (inform
arrow). This information is also translated into boolean for-
mulee by the Current State Encoder.

At each execution cycle, the Symbolic BIP Engine com-
putes the conjunction of these constraints to obtain the
global boolean formula that represents the possible interac-
tions of the system. It then chooses one interaction, notifies
the BIP Coordinator that orders the components to make
the necessary transitions (execute arrow). The BIP Coor-
dinator manages the flow of information between the com-

3We have used the JavaBDD decision diagram package avail-
able at http://javabdd.sourceforge.net/.

sokkoksk kR KRRk KRRk kkokkk TNFOTI kKoK skokokkokokokkkok ok Kok Kk ok K
Component: switchableRoute395 is at state: done
Component: switchableRoute393 is at state: off
Component: switchableRoute394 is at state: done
Component: monitor396 is at state: 2

Hokkokkok kR Rk Engine sokkkskokkoriokkokokokokokokokk ok
ChosenInteraction:

Component: switchableRoute395 with port: finished
Component: monitor396 with port: rm
sokskokskokskokskokokskokskoksokkoskokk TNFOTm skokskoskokskokskokskokkokkskokskok ok sk ok
Component: switchableRoute395 is at state: off
Component: switchableRoute393 is at state: off
Component: switchableRoute394 is at state: done
Component: monitor396 is at state: 1

Figure 7: BIP Engine: one execution cycle printout.

ponents and the Symbolic Engine through a dedicated BIP
Engine interface. The BIP Engine is packaged as an OSGi
bundle, using the mechanisms provided by OSGi to publish
the service that can be used by other software modules.

An example of the Engine execution cycle is shown in Fig-
ure 7 for the Camel route use case (cf. Section 3) with three
Switchable routes and one Monitor with component IDs
393-396 respectively. Two out of three Switchable routes
inform the BIP Engine that they are at state done and there-
fore the Monitor correctly informs the BIP Engine that it
is at state two, which corresponds to the number of active
routes. In the next step, the BIP Engine selects the interac-
tion finished - rm, which forces the Monitor to decrement
the counter due to the completion of the ID 395 route.

6. RELATED WORK

Different approaches have been proposed to deal with the
coordination of concurrent systems. First of all, locks and
semaphores [16] have been extensively used in software engi-
neering approaches to address concurrency problems. How-
ever, these solutions do not allow a clear separation between
the functional code and the coordination mechanisms, mak-
ing it hard to design and maintain correct programs, espe-
cially when they are used in large concurrent systems.

A Coordinator service developed by the OSGi commu-
nity [19] allows simple coordination between multiple soft-
ware components. A Coordinator object has only two states:
Active and Terminated. This approach provides a higher
abstraction level primitive for multi-party synchronisation
barriers. Thus, some simple coordination can be ensured for
several entities having no information about each other.

A different approach is taken by the AKKA library [15],
that implements the Actor model [2]. Actors are concur-
rent components that communicate asynchronously through
ports and avoid the use of low-level primitives, such as locks
and semaphores. However, component coordination through
complex message exchange protocols among multiple actors
can be challenging and error prone.

Apart from BIP, the most prominent component-based
frameworks found in the literature are Ptolemy [13] and
Reo [4]. In particular, Reo is a channel-based exogenous
coordination model wherein complex coordinators, called
connectors, are compositionally built out of simpler ones to
orchestrate component instances in a component-based sys-
tem. The Ptolemy framework [13] adopts an actor-oriented
view of a system. Ptolemy actors can be hierarchically in-

terconnected and support heterogeneous, concurrent model-
ing and design. For both of these frameworks, we are not
aware of work on using coordination models to control the
behaviour of pre-existing independently developed software
components and, in particular, OSGi bundles.

A number of approaches have been proposed to the speci-
fication of OSGi component behaviour. In particular, Blech
et al. [7] propose a framework to describe behavioural spec-
ification of OSGi bundles that can be used for runtime ver-
ification. The proposed semantics bears similarity to the
semantics of the BIP framework [6]. Runtime checks are
performed using constraint specifications to ensure safety in
case of deviation from the original specification. The behav-
ioral models of the components are loaded from XML files
and integrated into a bundle [8]. The runtime monitors used
are connected to the components by using AspectJ [8]. The
aspects are specified in separate files and have pointcuts that
define the locations where additional code must be added to
the existing one. This approach requires detailed knowledge
of the source code, whereas our approach relies only on the
knowledge of the APIs provided by the components.

Another approach for OSGi-based behaviour specification
has been studied by Mekontso Tchinda et al. [17]. The au-
thors propose specifying OSGi services based on a combined
use of interface automata [12] and process algebra [5]. Their
specification of services is centered on finding the best can-
didates for service substitution. Qin et al. [20] propose a
framework that specifies the behaviour of OSGi components
through the use of WF-nets [1]. In their approach, behaviour
description files are used to specify not only the service be-
haviour but also coordination protocols.

7. CONCLUSIONS

In this paper, we presented our approach to adding BIP
coordination to OSGi. We described the architecture of the
implemented framework. This architecture relies on several
architectural elements, in particular a dedicated BIP Engine
and a BIP Module. The latter comprises an annotated Java
class, called BIP Specification, interpreted by an associated
BIP Executor object. Our implementation of the BIP En-
gine is itself modular. It relies on a symbolic kernel manip-
ulating boolean formulae and three encoders that translate
component and glue specifications into such formulse. We
also presented a use case illustrating our approach.

The full version of the paper is available as a technical
report [9]. We consider that our work, recognizing the fact
that bundles may have multiple components with multiple
functional states, will help to improve the OSGi standard.
However, our work can be used in coordinating any software
components and need not be restricted to OSGi context.

Ongoing and future work consists in implementing data
transfer mechanism between components, priority models
and taking into account dynamically evolving system archi-
tectures where components can arrive and disappear.

8. ACKNOWLEDGMENTS

This work was partially supported by the Swiss Commis-
sion for Technology and Innovation (CTI 14432.1 PFES-ES).

9. REFERENCES

[1] W. Aalst. Verification of workflow nets. In P. Azéma
and G. Balbo, editors, Application and Theory of

2]
3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]
(15]
(16]

(17]

(18]

(19]

Petri Nets 1997, volume 1248 of Lecture Notes in
Computer Science, pages 407-426. Springer, 1997.

G. Agha. Actors: a model of concurrent computation
in distributed systems. MIT Press, MA, USA, 1986.
S. Akers. Binary decision diagrams. I[EEE
Transactions on Computers, C-27(6):509-516, 1978.
F. Arbab. Reo: a channel-based coordination model
for component composition. Mathematical Structures
in Computer Science, 14(3):329-366, 2004.

J. C. M. Baeten. A brief history of process algebra.
Theor. Comput. Sci., 335(2-3):131-146, May 2005.

A. Basu, S. Bensalem, M. Bozga, et al. Rigorous
Component-Based System Design Using the BIP
Framework. IEEE Software, 28(3):41-48, 2011.

J. O. Blech, Y. Falcone, H. Ruef}; and B. Schétz.
Behavioral specification based runtime monitors for
OSGi services. In ISoLA, pages 405-419, Berlin,
Heidelberg, 2012. Springer-Verlag.

J. O. Blech, H. Ruef}, and B. Schéitz. On behavioral
types for OSGi: From theory to implementation.
CoRR, abs/1306.6115, 2013.

S. Bliudze, A. Mavridou, R. Szymanek, and

A. Zolotukhina. Integration of BIP into Connectivity
Factory: Implementation. Technical report, 2013.
https://infoscience.epfl.ch/record /196996.

S. Bliudze and J. Sifakis. The algebra of
connectors—structuring interaction in BIP. IEEE
Transactions on Computers, 57(10):1315-1330, 2008.
S. Bliudze and J. Sifakis. Synthesizing Glue Operators
from Glue Constraints for the Construction of
Component-Based Systems. In S. Apel and

E. Jackson, editors, Software Composition, LNCS,
pages 51-67, Berlin / Heidelberg, 2011. Springer.

L. de Alfaro and T. A. Henzinger. Interface automata.
In Proceedings of the 8th European software
engineering conference held jointly with 9th ACM
SIGSOFT international symposium on Foundations of
software engineering, ESEC/FSE-9, pages 109-120,
New York, NY, USA, 2001. ACM.

J. Eker, J. Janneck, E. Lee, et al. Taming
heterogeneity: The Ptolemy approach. Proceedings of
the IEEE, 91(1):127-144, 2003.

I. R. Forman, N. Forman, D. J. V. Ibm, I. R. Forman,
and N. Forman. Java reflection in action, 2004.

M. Gupta. Akka Essentials. Community experience
distilled. Packt Publishing, 2012.

D. Lea. Concurrent Programming in Java: Design
Principles and Patterns. Addison-Wesley, 1999.

H. A. Mekontso Tchinda, N. Stouls, and J. Ponge.
Spécification et substitution de services OSGi.
Rapport de recherche RR-7733, INRIA, Sept. 2011.
OSGi Alliance. OSGi service Platform Core
Specification, Apr. 2007. Release 4, Version 4.15.
OSGi Alliance. Coordinator service,
http://www.osgi.org/javadoc/r5/enterprise/org/
osgi/service/coordinator/Coordinator.html.
(Accessed on 18/02/2014.).

Y. Qin, H. Hao, L. Jim, G. Jidong, and L. Jian. An
approach to ensure service behavior consistency in
OSGi. In APSEC, 2005.

