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ABSTRACT

This paper proposes a smoothing technique for nonsmooth convex
minimization using self-concordant barriers. To illustrate the main
ideas, we compare our technique and the proximity smoothing ap-
proach [1] via the classical gradient method on both the theoretical
and numerical aspects. While the barrier smoothing approach main-
tains the sublinear-convergence rate, it affords a new analytic step
size, which significantly enhances the practical convergence of the
gradient method as compared to proximity smoothing.

Index Terms— Self-concordant barrier, smoothing, gradient
method, nonsmooth convex optimization.

1. INTRODUCTION
In this paper, we consider a stylized convex minimization problem:

min
x∈Rn

{
f(x) := max

y∈Y
{〈Ax,y〉 −G(y)}+ 〈c,x〉

}
, (1)

where A ∈ Rm×n, Y is a closed convex set in Rm, c ∈ Rn and G
is a convex function. In general, problem (1) is nonsmooth, which is
of interest in this paper, except when G is strictly convex.

In principle, the problem (1) can be solved by the smoothing via
proximity functions technique, which has attracted a great deal of
attention during the last two decades due to its efficiency in signal
processing and machine learning applications [2, 3, 4, 5, 6]. This
pioneering work of Nesterov [1] leverages smoothing via proximity
functions within a fast gradient scheme, which features a theoreti-
cally optimal convergence rate. This technique is commonly referred
to under the name of “Nesterov’s smoothing technique.”

In Nesterov’s smoothing technique, we assume that Y is
bounded and pY is a proximity function of Y , which is nonneg-
ative and strongly convex on Y with the parameter 1. As a result,
we use the following smoothed function in optimization instead:

fτ (x) := max
y∈Y
{〈Ax,y〉 −G(y)− τpY(y)}+ 〈c,x〉 , (2)

where τ > 0 is a smoothness parameter. Nesterov shows in [1]
that fτ is differentiable and its gradient is given by ∇fτ (x) =
ATy∗τ (x)+c, which is Lipschitz continuous with the Lipschitz con-

stant Lfτ :=
‖A‖22
τ

, where y∗τ (x) is the unique solution of (2).
Nesterov’s smoothing also affords an approximation guarantee:

fτ (x) ≤ f(x) ≤ fτ (x) + τDY , where DY := max
y∈Y

pY(y). (3)

When we solve the smoothed problem (2) with a properly chosen
smoothing parameter τ , we can obtain accuracy guarantees on the
original problem (1) via (3). To be more concrete, let us apply the
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classical gradient method to minimize fτ using the optimal step size
αk := L−1

fτ
. Starting from x0 ∈ dom(fτ ), we generate a sequence{

xk
}
k≥0
⊂ dom(fτ ) as xk+1 := xk − αk∇fτ (xk). It is shown

in [7] that the convergence rate of this method is given by

fτ (xk)− fτ (x∗τ ) ≤
2 ‖A‖22
τ(k + 4)

d2
0, k ≥ 0, (4)

where d0 :=
∥∥x0 − x∗τ

∥∥
2

and x∗τ := arg minx fτ (x).
However, it is important to note that computing∇fτ (x) requires

solving the convex subproblem in (2) with the constraint y ∈ Y in
general. Moreover, the estimate (3) depends on DY , which is the
prox-diameter of Y . Depending on the choice of pY , this quantity
may be large, which prevents the application of the gradient method.

In this paper, we further assume that Y is endowed with a self-
concordant barrier bY defined as follows:

Definition 1.1 (see, e.g., [8, 7]). A convex function f : Rn → R
is said to be self-concordant with parameter M ≥ 0, if |ϕ′′′(t)| ≤
Mϕ′′(t)3/2, where ϕ(t) := f(x + tv) for all t ∈ R, x ∈ dom(f)
and v ∈ Rn such that x + tv ∈ dom(f). If M = 2, then f
is said to be standard self-concordant. A standard self-concordant
function f is a ν-self-concordant barrier for a given convex set Ω
with parameter ν > 0, when ϕ also satisfies |ϕ′(t)| ≤

√
νϕ′′(t)1/2

and f(x)→ +∞ as x→ ∂Ω, the boundary of Ω.

Several sets Y are endowed with a self-concordant barrier. For in-
stance, the orthogonal cone Rn+, the Lorentz cone, the symmetric
positive semidefinite cone Sn+, and polyhedrons [8, 7].

To this end, we propose an alternative smoothing technique to
Nesterov’s smoothing using self-concordant barriers. Let bY be a
self-concordant barrier of Y , we define

fσ(x) := max
y∈int(Y)

{〈Ax,y〉−G(y)−σbY(y)}+〈c,x〉 , (5)

where σ > 0 is a smoothness parameter, and int(Y) denotes the
interior of Y . We define dom(fσ) as the domain of fσ , and y∗σ(x)
as the unique solution of (5).

We show that fσ is differentiable and its gradient inherits a
“Lipschitz-like” property in Section 2. One of the most important
features of this method is that computing∇fσ(x) requires solving a
system of nonlinear equations of the form:

Ax−∇G(y∗σ(x))− σ∇bY(y∗Y(x)) = 0, (6)

provided that G is differentiable. Solving this system usually de-
mands a lower computational cost than the general convex program-
ming problem in (2). In addition, if G is also self-concordant, then
solving (6) can be done efficiently [7].

Our contributions: We propose a smoothing technique using self-
concordant barriers for structural nonsmooth convex optimization.
We illustrate this technique via a classical gradient method with a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148003212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


new analytic step-size update. We show that this method has the
same convergence rateO (1/(σk)) as in proximity smoothing meth-
ods. However, our method allows us to adaptively update the step-
size by exploiting the local information of the smoothed objective
function and leads to a better performance in practice than using the
worst-case step-size. Moreover, the cost-per-iteration is in general
lower than in proximity smoothing methods.

Paper organization: The rest of this paper is organized as follows.
In the next section, we propose our optimization framework for solv-
ing (1). Section 3 compares our method and the proximity smooth
approach both in theory and in numerical experiments.

2. OPTIMIZATION FRAMEWORK
In this section, we present key properties of fσ and illustrate how we
can leverage them within the classical gradient method.

2.1. Smoothing via self-concordant barriers
Let bY be a given self-concordant barrier of Y with the parameter
ν > 0. We define

y∗c := arg min
y∈int(Y)

bY(y), (7)

the analytic center of the set Y . It is well-known that if Y is bounded
then y∗c exists and is unique. Without loss of generality, we assume
that bY(y∗c ) = 0; otherwise, we can shift bY by b̃Y(y) := bY(y)−
bY(y∗c ). For given x ∈ dom(fσ), we also define the following
quantity:

cA(x) := ‖AT∇2bY(y∗σ(x))−1A‖1/22 , (8)

and fc(x) := 〈Ax,y∗c 〉 −G(y∗c ) + 〈c,x〉. We recall the following
key properties of fσ(·), whose proof can be obtained as in [9].

Lemma 2.1. Let f be a function given by (1) and fσ be defined by
(5). Then, for any σ > 0, fσ is convex and

fσ(x) ≤ f(x) ≤ fσ(x) + σν

{
1 +

[
ln

(
f(x)− fc(x)

σν

)]
+

}
, (9)

where [a]+ := max {0, a}. Moreover, fσ is differentiable in
dom(fσ) and its gradient is given by ∇fσ(x) = ATy∗σ(x) + c,
which satisfies, for any x and x̂ in dom(fσ),

〈∇fσ(x)−∇fσ(x̂),x−x̂〉 ≥
σ ‖∇fσ(x)−∇fσ(x̂)‖22

cA
(
cA+‖∇fσ(x)−∇fσ(x̂)‖2

) , (10)

where cA := cA(x). Consequently, if cA ‖x− x̂‖2 < σ then

fσ(x̂) ≤ fσ(x) + 〈∇fσ(x), x̂− x〉+ σω∗
(
σ−1cA ‖x̂− x‖2

)
, (11)

where ω∗(τ) = −τ − ln(1− τ) ≤ τ2

2(1−τ)
for τ ∈ [0, 1).

The estimate (9) shows that for any point x such that f(x) −
fc(x) ≤ σνeρ, |fσ(x)− f(x)| ≤ (1 + ρ)σν → 0+ as σ ↓ 0+ for
any ρ > 0. The second estimate in Lemma 2.1 plays a similar role
as the Lipschitz gradient of fσ , but locally.

Next, we show that cA(x) is bounded.

Lemma 2.2. The function cA(·) defined by (8) is bounded on
dom(fσ), e.g. cA(x) ≤ c̄A := (ν+2

√
ν)
∥∥AT∇2bY(y∗c )−1A

∥∥1/2

2
.

Proof. Apply [7, Corollary 4.2.1].

Remark 2.1. We note that, in several examples, the constant c̄A
defined in Lemma 2.2 can be worse than the actual upper bound
of cA(·). For example, if we consider f(x) := ‖Ax− b‖1 =
max‖y‖∞≤1 〈Ax− b,y〉, then we can choose the barrier func-
tion bY(y) := −

∑m
i=1 ln(1 − y2

i ). In this case, it is easy to see
that y∗c = 0T . Consequently, ∇2bY(y∗c ) � 2I, which leads to
cA(x) ≤ 1√

2
‖A‖2.

Finally, we consider the smoothed problem of (1) and its opti-
mality condition:

f∗σ ≡ fσ(x∗σ) := min
x∈Rn

fσ(x)⇔ ∇fσ(x∗σ) = 0. (12)

Here, we denote by x∗σ the unique solution of (12). By Lemma 2.1,
we can see that, within an accuracy level σ > 0, x∗σ approximates
the solution x∗ of (1).

2.2. The gradient method with analytic step-size
Let us apply the gradient method to solve (12). By exploiting the
properties of fσ in Lemma 2.1, we can derive a new analytic step-
size for this gradient scheme.

Let x0 ∈ dom(fσ), the gradient scheme for solving (12) is de-
fined as

xk+1 = xk − αk∇fσ(xk), k ≥ 0. (13)

where the step size αk ∈ (0, 1] will be defined later. Let dk :=
−∇fσ(xk) be the antigradient direction and rk := ‖dk‖2. As
shown in Lemma 2.1 that the gradient ∇fσ(xk) is given by
∇fσ(xk) = ATy∗σ(xk) + c, where y∗σ(xk) is obtained from
the optimality condition (6). The following lemma shows how to
derive the step size αk in (13).

Lemma 2.3. Let
{
xk
}
k≥0

be the sequence generated by (13). If

αk is chosen as αk := σ/(ckA(ckA + rk)), then
{
xk
}
⊂ dom(fσ)

and
fσ(xk+1) ≤ fσ(xk)− σω

(
rk/c

k
A

)
, (14)

where ω(τ) := τ − ln(1 + τ) > 0 for τ > 0 and ckA := cA(xk).
Moreover, the step size αk is optimal.

Proof. We obtain by (11) that fσ(xk+1) ≤ fσ(xk)−ϕ(αk), where
ϕ(α) := r2

kα−σω∗
(
σ−1ckArkα

)
. By maximizing ϕ over [0, 1], we

obtain the optimal step size αk := σ/(ckA(ckA+rk)), which satisfies
αk < σ/(ckArk). The last condition shows that xk+1 ∈ dom(fσ).
Moreover, we have ϕ(αk) = σω(rk/c

k
A).

Based on the step-size αk in Lemma 2.3, we can describe a
gradient method for solving (1) as follows.

Algorithm 1 (Barrier-gradient method)

Inputs: Fix σ > 0 and a tolerance ε > 0. Take x0 ∈ dom(fσ).
for k = 0 to kmax do

1. Compute y∗σ(xk) by solving (6). Then, compute
∇fσ(xk) := ATy∗σ(xk) + c.
2. Compute rk := ‖∇fσ(xk)‖2 and ckA := cA(xk) as in (8).
3. If rk ≤ ε, then terminate.
4. Otherwise, update xk+1 := xk−αk∇fσ(xk), where αk :=
σ/(ckA(ckA + rk)).

end for

We note that, at each iteration of Algorithm 1 we have to com-
pute ckA, which requires ∇2bY(y∗σ(xk))−1 and matrix multiplica-
tions. This quantity can be computed in O(n2) operations by the



power method. Instead of using ckA, we can use its upper bound c̄A
as given in Lemma 2.2. In this case, the step size αk can be replaced
by ᾱk := σ/(c̄A(c̄A+rk) without any additional computation. This
becomes the worst-case step-size.

Now, we prove the convergence and the convergence rate of Al-
gorithm 1.

Theorem 2.1. Let
{
xk
}
k≥0

be the sequence generated by Algo-
rithm 1. Then, the number of iterations needed to reach the point
x0 ∈ dom(fσ) such that fσ(x0) − f∗σ ≤ c̄A

∥∥x0 − x∗σ
∥∥ does not

exceed
⌊
fσ(x0)−f∗σ
σω(1)

⌋
+ 1. If x0 is chosen such that fσ(x0)− f∗σ ≤

c̄A
∥∥x0 − x∗σ

∥∥ then

fσ(xk)− f∗σ ≤
4c̄2A

∥∥x0 − x∗σ
∥∥2

σk
, ∀k ≥ 1. (15)

Proof. Let ek = ‖xk − x∗σ‖. By (13) and∇fσ(x∗σ) = 0, we have

e2
k+1 = ‖xk + αkd

k − x∗σ‖2

= e2
k − 2αk

〈
∇fσ(xk)−∇fσ(x∗σ), xk − x∗σ

〉
+ α2

kr
2
k

(10)
≤ e2

k − 2αk
σr2
k

ckA(ckA + rk)
+ α2

kr
2
k

Lemma 2.3

≤ e2
k − α2

kr
2
k.

Therefore, the sequence {ek}k≥0 is nonincreasing, i.e., ek ≤ e0 =

‖x0 − x∗σ‖2 for all k ≥ 0. Let ∆k := fσ(xk) − f∗σ . By the
convexity of fσ and the Cauchy-Schwarz inequality, we can show
that ∆k ≤

〈
∇fσ(xk),xk − x∗σ

〉
≤ e0rk. On the other hand, from

Lemma 2.3 and ckA ≤ c̄A we have

∆k+1 ≤ ∆k − σω(rk/c̄A) ≤ ∆k − σω (∆k/(e0c̄A)) . (16)

Since ω(τ) ≥ τ2/4 if τ ∈ [0, 1]. We consider two cases:
Case 1: If ∆k ≥ e0c̄A, then (16) implies ∆k ≤ ∆0 − kσω(1).

Therefore, k ≤ fσ(x0)−fσ(xk)
σω(1)

≤ fσ(x0)−f∗σ
σω(1)

≈ fσ(x0)−f∗σ
0.30685σ

.

Case 2: If ∆k ≤ e0c̄A, then we have ∆k+1 ≤ ∆k − σ ∆2
k

4(e0c̄A)2
,

which leads to ∆−1
k+1 ≥ ∆−1

k + σ
4(e0c̄A)2

∆k
∆k+1

≥ ∆−1
k + σ

4(e0c̄A)2
≥

∆−1
0 + (k + 1) σ

4(e0c̄A)2
. Therefore, we can show that ∆k ≤

4c̄2Ae
2
0∆0

4c̄2
A
e20+k∆0

, which implies (15).

If we choose σ := c̄A√
k

, then Theorem 2.1 shows that the conver-

gence rate of Algorithm 1 is O
(
c̄Ad

2
0√
k

)
, where d0 := ‖x0 − x∗σ‖2.

3. BARRIER VS. PROXIMITY SMOOTHING
In this section, we compare two smoothing techniques (via proxim-
ity functions [1] and via self-concordant barriers) on the gradient
method for solving (1).

3.1. Theoretical comparison

Let H be a lower bound of ∇2bY(y), i.e. ∇2bY(y) � H �
H := (ν + 2

√
ν)−1∇2bY(y∗c ) for y ∈ dom(bY). As mentioned

in Remark 2.1, H is not necessarily identical to H. Then the

convergence rate of Algorithm 1 is O
(

4‖ATH−1A‖
2

σk
d2

0

)
, pro-

vided that fσ(x0) − f∗σ ≤
∥∥ATH−1A

∥∥
2
d0. While, we have

shown that the convergence rate of the gradient method applying to
Nesterov’s smoother is O

(
2‖A‖22d

2
0

τk

)
. The overall computational

cost is shown in Table 1. We see that the convergence rates in

Table 1: Compare two different smoothing techniques

Barrier smoothing Proximity smoothing

Convergence O
(

4‖ATH−1A‖
2
d20

σk

)
O
(

2‖A‖22d
2
0

τk

)
Complexity-per-
iteration

Solving a system of
nonlinear equations

Solving a general con-
vex program

both methods is of the same order with different constants 2 ‖A‖22
and 4

∥∥ATH−1A
∥∥

2
, respectively. However, evaluating the gra-

dient ∇fσ of fσ requires to solve a system of nonlinear equation,
while evaluating ∇fτ in general needs to solve a general convex
program. Since solving a nonlinear system can be done efficiently
by Newton-methods [7] combining with a warm-start strategy, the
cost-per-iteration in the barrier smoothing method is lower than in
the proximity smoothing one in general.

3.2. Numerical comparison

Now, we compare Algorithm 1 and the standard gradient method
with proximity smoother and the optimal constant step-size (prox-
imity smoothing method) in the following two numerical examples.
a) Quadratically constrained quadratic programming (QCQP): The
following problem obtained from the minimax formulation of a
QCQP problem:

f∗ := min
x∈Rn

{
f(x) :=max

〈By,y〉≤1

{
〈Ax−b,y〉−

1

2
〈Qy,y〉

}
+〈c,x〉

}
, (17)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, Q is an m×m symmetric
positive semidefinite matrix and B is an m×m symmetric positive
definite matrix. It is easy to see that bY(y) = − log(1−yTBy2

2) is
the barrier function of the set Y :=

{
y ∈ Rm | yTBy ≤ 1

}
with

ν = 2. After few simple calculations, we can estimate cA(x) ≤
c̄A = (1 +

√
2)
∥∥ATB−1A

∥∥1/2

2
.

For the proximity smoothing method, if we choose p1
Y(y) :=

1
2
‖y‖2, then DY := 0.5λmax(B−1), which can be very large, and

Lfτ := ‖A‖2 /τ . However, if we choose p2
Y(y) := 1

2
yTBy then

DY := 0.5 and Lfτ :=
∥∥ATB−1A

∥∥2
/τ .

We test both methods on some synthetic data, where all the ma-
trices and vectors are generated randomly using the Gaussian dis-
tribution N (0, 1). Matrix A is normalized such that ‖A‖2 = 1,
Q is rank-deficient with rank(Q) = b0.1mc. Matrix B is posi-
tive definite and vector c is generated as c = −ATy0, where y0 is
the normalized eigenvector of B corresponding to the largest eigen-
value. The problem size is n = b0.3mc and σ = τ = 10−2.

We run Algorithm 1 and the proximity smoothing method for the
case p1

Y on 3 problem instances. The results are reported in Table 2.
As we can see from this table, Algorithm 1 reaches the final solution

Table 2: The results of 3 problems after maximum 500 iterations

Method Barrier smoothing Proximity smoothing
m f∗ it f(xk)

∥∥y∗k−y∗∥∥2
it f(xk)

∥∥y∗k−y∗∥∥2
100 42.98367 168 42.98367 0.00142 500 44.18773 1.38502
250 53.09777 234 53.09777 0.00114 500 59.31035 2.71808
500 87.16702 384 87.16702 0.00080 500 104.27851 3.42870

with high accuracy, while the proximity smoothing method runs up
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to the maximum number of iterations and still produces a less accu-
rate solution. This happens since Algorithm 1 uses the adaptive step
size that captures better the local structure of (17), while the proxim-
ity smoothing method runs in the worst-case performance and does
not scale well with the change of data.

The convergence behavior and the bound threshold of two
smoothing methods on one problem of size n = 100 are plot-
ted in Figure 1 for three cases: ‖A‖2 = 10, ‖A‖2 = 1 and
‖A‖2 = 0.1. Here, we show the actual objective value f(xk), the
lower bound estimate fσ(xk) (resp., fτ (xk) and the upper bound
estimate fσ(xk)+σD1

k (reps., fτ (xk)+τD2
k) for three cases, where

D1
k := ν + ν

[
ln((f(xk)− fc(xk))/(σν))

]
+

(resp., D2
k := DY ).

The lower and upper bound in the proximity smoothing method with
respect to p2

Y is well approximated f(xk). However, its performance
is also worse than Algorithm 1 in this particular example. It is clear
that when ‖A‖ is small, the step-size of the proximity smoothing
method becomes large and it can accelerate the convergence.

b) Basis pursuit (BP) problem in signal processing. We consider the
following constrained BP problem:

max
y∈Rm

{
−‖y‖1 |Ay − b = 0, y ∈ Y := [l,u]

}
, (18)

where A ∈ Rn×m, and 0 ∈ Y . The minmax formulation of this
problem can be written as

min
x∈Rn

{
f(x) := max

y∈Y

{〈
ATx,y

〉
− ‖y‖1

}
− 〈b,x〉

}
, (19)

The barrier function of Y is bY(y) := −
∑m
i=1[log(yi − li) +

log(ui − yi)] with ν = 2m. For Nesterov’s smoothing method,
we use pY(y) = 1

2
‖y‖22. With this choice, the gradients ∇fσ and

∇fτ in both smoothing methods can be computed in a closed form.
Hence, the cost for evaluating these gradient vectors is the same.

We test this algorithm with some synthetic data generated by a
random Gaussian process. We choose Y := [− 1

2
, 1

2
]m and b :=

Axs, where xs is a k-sparse Gaussian random vector, and A is a
Gaussian matrix inN (0, 1) normalized by 1/

√
m.

The convergence of Algorithm 1 and the gradient method by us-
ing Nesterov’s smoother is plotted in Figure 2 for the case m =
1000, k = 0.05n, n = 3k and τ = σ = 10−2. For Algorithm 1
we plot two cases: using adaptive value ckA to update the step-size
αk and using c̄A for updating αk. The first and the second plot show
the relative error of the objective values f(xk) and the primal ap-
proximation solution yk of (18). As we can see, the adaptive step
size with ckA works much better than the constant step size in the
proximity smoothing method. However, this method requires an ad-
ditional computation for ckA with O(m2) computational effort. The
last figure shows that the number of iterations in Nesterov’s smooth-
ing method lies in 2 to 3 times the number of iterations in the bar-
rier smoothing method with the worst case step-size using c̄A. This
means that the iteration counter k in the right plot of Figure 2 cor-
responds to k = l in the proximity smoothing method, and k = 2l
and k = 3l for the lower and upper curves in the barrier smoothing
method, where l is the real iteration counter. We note that the diam-
eters D1

k and D2
k in both methods (see Example 1) depend on the

number of variables m.

4. CONCLUSIONS
We propose a new smoothing approach for constrained minimax
problems of the form (1) using barrier functions. The new smooth-
ing approach has three key advantages: 1) we can efficiently ob-
tain the gradient of the smoothed function via a system of nonlinear
equations, 2) we can exploit the local structure of the problem rather
than using the global information via an adaptive step-size selection
procedure, and 3) we can preserve a dimension independent opti-
mization diameter. As a result, while the analytical complexity of
the gradient algorithm based on barrier smoothing is similar to the
one using the Nesterov’s Lipschitz smoothing approach, the overall
arithmetical complexity is reduced. Our future work is to extend this
theory to the accelerating method which maintains the same conver-
gence rate O(1/k) as in proximity smoothing method [1], where k
is the iteration counter.
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