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Abstract— This paper presents a method for odor plume
tracking by a swarm of robots in realistic conditions. In real
world environments, the chemical concentration within an odor
plume is patchy, intermittent and time-variant. This study
shows that swarm robots can cooperatively track the odor
plume towards its source by establishing a cohesive spatial
sensor network to deal with the turbulences and patchy nature
of odor plumes. The robots move together and maintain a
distance margin between themselves in order to keep the
cohesion of the constructed sensor network while the odor
concentration and air-flow speed are considered in the equations
of navigation of the robots in the network to more efficiently
track the plume. The method is evaluated in simulation against
various number of robots, the emission rate of the odor source,
the number of obstacles in the environment and the size of
the testing environment. The emergent behavior of the swarm
proves the functionality, robustness and scalability of the system
in different conditions.

I. INTRODUCTION

Searching for olfactory targets with mobile robots has
received much attention in the recent years. This problem
finds applications in environmental monitoring, chemical
leak detection, pollution monitoring, inspection of landfills,
and search and rescue operations. Some of these tasks are
done in scenarios extremely dangerous for humans, being
desirable to use robots instead.

The effort to design and develop efficient robotic olfactory
search strategies faces the problem of understanding how
the odor molecules disperse through the environment under
naturally turbulent flow. Odor patches released by an odor
source are mainly transported by the airflow, forming an
odor plume. As the plume travels away from the source,
it becomes more diluted due to molecular diffusion and
turbulence that mixes the odor molecules with the clean air
[1]. Molecular diffusion is a slow process whose effect on the
plume shape and the internal concentration can be neglected.
The dispersion of odor molecules is dominated by flow tur-
bulence in ventilated indoor or in outdoor environments. The
odor molecules move downwind due to mean flow velocity U
while their net motion is almost random, due to small scale
turbulence curls. As the flow carries patches of odor, the
average concentration within a patch decreases away from
the source, and the average time between successive patches
increases. The instantaneous odor concentration strongly
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fluctuates intermittently with peaks up to three orders of
magnitude above the average concentration value [2]. Fig. 1
presents the nature of an odor plume from various exposures.
Under these circumstances, a fast chemical sensor located
far enough downwind of the odor source can only detect the
odor peaks and will measure no odor concentration most of
the time. The probability of encountering an odor patch at
any given point is determined by the relative location of the
sensor to the odor source, the statistics of the flow and the
shape of the environment and obstacles [3], [4].

The problem of odor source localization in robotics is
composed of three phases [5]: (i) odor plume finding, i.e.,
searching the environment randomly or systematically in or-
der to find odor plumes, (ii) plume tracking, that is, following
the plume toward the source; (iii) source declaration, that
is, accurately localizing the source in close vicinity. We
have already studied the first subproblem proposing a swarm
robotics approach and found that the best strategy to find
an odor plume is to line-up the robots while moving cross-
wind [6]. This current paper extend that work by focusing on
the second subproblem, assuming the plume was previously
found and the robots should track it towards the source.

To state the problem, consider a swarm of N individual
robots that are able to communicate with each other over a
short distance A, and are equipped with olfactory sensors
for sensing the odor concentration C' and airflow speed U.
Robots are limited in terms of memory capacity and there
is no central station for the system so the robots should act
separately and independently from the others. The problem
is how the swarm can track an odor plume towards its source
in an area. The approach should exploit swarming principles
to track odor plumes in natural environments where the odor
distribution may change over time. We assume that the plume
is previously found so at least one robot is located inside the
active area of the odor plume.

Concentration gradient climbing (chemotaxis [7], [8]) and
up-wind directed search (anemotaxis [9], [10], [11]) are the
most common approaches to track odor plumes by mobile
robots. Several other methods have been proposed for plume
tracking using swarm robotic concepts, namely, biasing
expansion swarm approach (BESA) [12], biased random
walk (BRW) [13], particle swarm optimization (PSO) [14],
[15], glowworm swarm optimization (GSO) [16], gradient
climbing techniques, swarm spiral surge [17], and physics-
based swarming approach [18]. Researchers have developed
methods that employ combinations and variations of plume
acquisition and plume upwind following [19] using reactive
control algorithms (comparisons of these kinds of methods



Fig. 1.

Odor plume structure in various exposures. A. instantaneous structure (adapted from [2]), B. The spatial average of the odor plume, and C. The

time (and spatial) average of the odor plume. The black signal in A shows the instantaneous measurements of a fast gas sensor while moving cross-wind,
the red signal in B shows the output of a slow sensor (that acts like a low-pass filter) that moves cross-wind, the green signal in C shows the average of

the measurements during a long time period.

are in [7]). We have previously proposed another swarming
approach for olfactory swarm navigation [20] that was based
on gradient climbing but it fails in environments under
turbulent airflow where the concentration of odor does not
change gradually. A common drawback of most of these
methods is that they do not consider the conditions of the
real world odor plumes where the flow is turbulent and the
odor distribution is patchy and time-variant.

Turbulent behavior of airflow, lack of smooth odor concen-
tration gradient, patchiness of odor depression, meandering
and time variant characteristics of odor plumes imply that
neither concentration gradient climbing methods nor up-wind
directed search alone can efficiently localize odor sources
in an environment under turbulent flow. Given this time
variant and patchy behavior, we believe that in the real
world conditions, a mobile sensor network can be advan-
tageous in comparison to a single robot that can measure
only the odor concentration of its own place. Robots in a
swarm can speared out in the environment and construct a
dynamic spatial sensor network. The swarm robots can move
together and maintain a distance margin between themselves
in order to keep the cohesion of the established moving
sensor network. Despite most of other works in this area
that propose centralized approaches and address the problem
in simplified conditions, this paper presents a distributed
method in which robots track an odor plume in an unknown
environment where the odor distribution is time-variant and
patchy, the flow is turbulent, and there are obstacles in
the environment. The main contribution in this method is
that the motion of swarm robots is not only based on
the robot-to-robot virtual forces; the olfactory sensory data
(the stochastic concentration gradient and airflow direction)
affects the formation of the swarm. The performance of the
method is evaluated against various number of swarming
robots, the emission rate of the odor source, the number
of obstacles in the environment and the size of the testing
environment. The emergent behavior of the swarm proves
the functionality, robustness and scalability of the system in
different conditions.

II. PROPOSED METHOD

A. Tracking the plume locally

Based on the nature of odor distribution, the following
fact should be considered [21]: when a robot observes an
odor patch, it is obvious that the best strategy is to make a
step in the direction from which the patch has arrived. Since

the wind carries the odor patches, if a patch is observed at
position P(zg,yo), one should visit the places close to this
position and toward the upwind direction. Each odor patch
observation reduces the uncertainty about the odor source
position. Therefore, a goal vector can be defined by a linear
combination of the concentration gradient and the upwind

vector [13]: & (1) = k19 Ci(t) — kalii(t) 1)

Where ki and ko are two positive constant coefficients,
\y/e? (t) is the direction of the gradient of odor concentration
measured at the position of robot ¢ at the current time ¢,
and U;(t) is the airflow direction measured by robot . The
first term in the above equation applies a force towards the
higher odor concentrations to the robot, whereas the second
term applies a force towards up-wind direction.

Since the odor dispersal is patchy and intermittent, the
main challenge is how to measure the odor concentration
gradient ﬁ@(t). Due to intermittency and patchiness of
odor dispersal, a problem is that the instantaneous concen-
tration fluctuations is bigger then the average concentration
differences between the two close sensors (see Fig. 1.A).
A solution found to this problem is to use the mean con-
centration values gathered during the motion of the robot to
estimate the local concentration gradient [13]. Applying a
low-pass filter on the instantaneous sensor measurements of
different places provides a smooth data that its local gradients
is towards the current plume center line and also towards
the source (see Fig. 1.B). This will address the problem of
dealing with fluctuation and the patchiness of odor dispersal.
If another low-pass filter is applied to this data during the
time, a pseudo-Gaussian plume is obtained that its gradient
is smooth and it is towards the source (see Fig. 1.C). This
addresses the problem of dealing with plume meandering in
large and real world environments. Therefore, to obtain a
smooth gradient we need to apply two low-pass filters on
the sensory measurements:

o temporal filter,

« spatial filter.

To obtain these two filters, this paper take the advantages of
swarming approaches. The basic idea is that the distributed
swarm robots can cooperatively act as a spatial filter and
each agent can also have its own temporal filter. Each robot
measures its own mean odor concentration (temporal-filter)
and communicates with its neighbors and computes the
maximal difference quotient of the mean odor concentration
to calculate the gradient (spatial-filter). The estimate of the



Fig. 2. The concept of swarm gradient estimation. The arrows represent
(only) the gradient estimated by each robot using equation (4). The picture
in the left shows the the communication range of one sample robot and the
vertical gauges present the odor concentration that the robots sense at the
moment.

Fig. 3. Sensor coverage area of seven sensors in three different spatial
configurations. When the sensors get close to each other the covered area
expands toward the opposite direction of the air flow [6].

gradient at each robot is the vector in the corresponding
direction with norm equal to the maximal difference quotient.
The difference quotient of mean odor concentration (Q;; (%))
at the position of robot ¢ relative to robot j is given by:
_ G =CGilt)

1P (1) — B
Where P;(t) and P;(t) denote the position of robot i and
j respectively, and C;(t) and C;(t) represent the mean
(temporal-averaged) odor concentration calculated by the
robots. The mean odor concentration gradient between robot
1 and j is given by:
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Where the first term is the difference quotient of mean odor
concentrations of robot ¢ and j, and the second term is the
unit direction vector between the two robots.

Considering N robots in the neighborhood, the concentra-
tion gradient in the position of robot ¢ is given by:

G;adij (t) = Qij(t)(

N
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Taking a lot of measuring points (robots) into account gives
higher accuracy in the estimation of gradient. This formula
is used in equation (1) for the navigation of the robots.
Fig. 2 show the concept of these equations in a patchy and
intermittent plume.

B. Maintaining formation of the swarm sensor network

We have previously shown that when multiple robots
get close to each other, their coverage area gets expanded
toward the opposite direction of the air-flow [6]. Fig. 3
compares the coverage area of three different configurations
of seven sensors in an environment. The right figure that

is a mesh configuration shows the longest sensor coverage
towards upwind direction. Maintaining a mesh-like topology
the swarm will detect the odor patches coming from very
further possible locations. Therefore, not only the robots
should navigate towards higher concentrations and upwind
direction, they should also establish a spatial mesh topology
and maintain its cohesion.

The mesh formation is obtained by implementing virtual
attraction/repulsion forces between the robots. The robots
which sense more odor patches (higher odor concentration),
attract other robots with stronger forces to cover the region.
As an emergent result, the swarm moves toward the consen-
sus direction of all the swarm members.

It is required that the robots aggregate together to keep
a specific distance margin between each other and try to
virtually push and pull each other. If a robot goes toward
a specific direction, the robots in behind, to maintain the
sensor network’s cohesion, go toward the same direction and
the robots in front also go to that direction in order to keep
their distance. Therefore, the swarm always moves toward
the direction that more robots tend to go while keeping the
formation of established sensor network. For instance if ten
robots try to go to the left and five robots to the right, the
whole swarm (maybe with lower speed) will move to the
left because the resultant virtual forces that is applied to
each robot from the other robots is in that direction. To
implement this behavior, the virtual forces applied to robot
1 from another robot j is defined as:
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where p; and po are two positive coefficients, Pj;(t) =
P;(t) — P;(t), and Ry and R, define a distance margin be-
tween each two neighboring robots (0 < R; < Rs < Ay). If
two neighboring robots are farther than the defined threshold
R, the equation acts like an attraction force, however, if the
neighboring robots are closer than R; the formula acts like
a repulsion force. This equation maintains the swarm in a
cohesive form. g;(t) is defined as:

q;(t) = B; W

maxr CO

(6)
where C,, is the maximum odor concentrations that the
swarm robots have reported so far, and C denotes the
minimum value that the olfactory sensors report in clean-
air conditions. [3; is a constant that is predefined by the
system designer as the effectiveness of the robot j on the
other robots.

In most previous studies in swarm formation, force for-
mula is the inverse function of the distance between the
agents and other parameters such as ¢; are ignored. However,
we used ¢; as a parameter of effectiveness of the robots
on each other and defined a formula for that based on the
problems’ modality (i.e. olfactory) to increase the efficiency
of the method. Each robot has a parameter ¢ so that the force



that the robots apply to each other will be dependent on that.
Robots with higher ¢ apply bigger forces to the neighboring
robots. In contrast, a robot that does not sense high odor,
does not apply significant forces to its neighbors.

By the above equations, the total cohesion force Fc(t)
for robot ¢ is determined as:

N
Fewy =Y F) )
J=1;j#4
C. Obstacle avoidance

The low level of autonomous navigation of a robot relies
on the ability of the robot to simultaneously achieve its
target goal and avoid the obstacles in the environment.
Similar to our previous work [9], to avoid the environmental
obstacles, a reactive potential field control method [22] is
used. Considering M range sensors, we define the forces
applied to robot ¢ by its surrounding environment as:

Frm=Y ﬁl_)‘n(‘/ecijj ®)

Jj=1

Since d;(j) is simply the distance between robot i and an
obstacle that is reported by the range sensor j, the force
is an inverse function of the distance of the robot to the
surrounding obstacles. \Tci} is a predefined vector whose
magnitude is set to one and its direction is from sensor j
toward the center of robot i. ¢; is a positive coefficient and
n is an even integer parameter. For more details of obstacle
avoidance see [9].

Total force:

The total force applied to robot ¢ during plume tracking
is given by:

Fy(t) = Gi(t) + F{°(8) + F{™ (1) ©)

As an emergent result, the robots tend towards upwind
direction and higher odor gradients (due to C_ji(t), equation
1), while maintaining their sensor network formation (due
to F°(t), equation 5) and avoid obstacles (due to Fo(t),
equation 8). If some robots tend to go to one direction and
others to another direction the whole swarm will actually
move toward resultant summation of virtual forces of all
the robots. It should be noted that not all the robots in a
swarm are always located in an area of active odor plume.
At a given moment, some of them may sense high odor
concentrations and air flow while others do not sense any
odor clues. Equation 9 implies if a robot does not sense air-
flow and high odor concentrations, it follows the swarm to
maintain the sensor network’s cohesion.

III. EXPERIMENTAL RESULTS

1) Testing environment: The model of the testing envi-
ronments were given to ANSYS Fluent CFD! software to
simulate ethanol gas sources and provide concentration data.
One of the environments designed for these experiments is

Thttp://www.ansys.com

Fig. 5. ANSYS Fluent three dimension simulations; contours of mass
fraction of ethanol propagated in the testing environment of Fig. 4 during
the time. The odor source is placed at the left side and the wind is set to
be left to right.

depicted in Fig. 4. The dimension of designed arenas for
simulations was varied from 4 x 6 m? to 30 x 40 m?. Laminar
airflow was ventilated from the inlet side (left) with constant
speed of 0.5 m/s. In the environments with obstacles, the flow
velocity varies in different parts of the arena. Fig. 5 shows
several snapshots of 3-D odor plume propagation during the
time in one of the tested scenarios. As it is shown in the
simulation snapshots, the odor propagation is time variant
and under turbulent flow and the odor concentration does
not change gradually. We extracted the odor concentrations
and airflow velocities of 10 centimeters height from the 3-D
odor plumes and fed it to the robots in the simulations. The
olfactory data generated by ANSYS Fluent were exported to
GNU Octave? to be used in simulations.

2) Robots: Robots were simulated in GNU Octave as
independent entities with no shared variables. The envi-
ronmental data including odor concentrations, wind speeds
and obstacles locations are shared with the robots such that
the robots can measure the odor concentration and air-flow
speed of their places. Each robot can send and receive small
messages to its neighbors. Robots are able to measure their
distances to the obstacle and to the other neighboring robot.
In each test the initial positions of the robots are the results
of the “odor plume finding” method explained in [6], so the
robots are initially located downwind the odor source and at
least one of them is inside the odor plume.

3) Evaluation: Fig. 6 demonstrates a series of snapshots
during a simulation that shows the functionality of the
method. The first frame of this figure shows that 10 robots are
released randomly in one part of the environment. To better
explain the functionality of the method, we have colored
the robots based on their status in these simulations. If the
mean odor concentration that a robot senses is less than a
certain threshold, the color of that robot is black, but, if the
robot senses more odor concentrations the robot turns to red.
In the first frame, only one robot (the red one) is inside
the plume and senses high odor concentration. Therefore

Zhttp://www.gnu.org/software/octave



i

i
-
i
N
-

i i

i
:
H\H%

i)

HH

i
-
i
i
-

i :
Fig. 6. Swarm of 10 robots searching the 4 x 6 m? environment of Fig. 4
for an odor source. The emission rate of odor source is 0.01 g/s. The red
color means that the robot senses high odor concentration.

Fig. 7. Virtual forces during tracking the plume. (A) One robot sensing
high odor concentration. (B) Only the upper robot senses high odor con-
centrations. (C) Only the two upper robots sense high odor concentrations.
(D) Two robots sense equal high odor concentration.

the other neighboring robots estimate the odor concentration
gradient towards this robot. The next frames show that the
robots aggregate to the plume and track it towards higher
concentrations while upholding sensor network’s cohesion.
The robots dynamically (and automatically) change their
colors in this behavior and the emergent result is that the
swarm is able to pass through the obstacles by changing its
shape and travel towards the odor source.

In this experiment, the coefficient parameters of the
method were set as following: Ay = 1m, i.e. the range
of communication between the robots is considered to be
3 meters, 3; = 1 for all the simulated robots since they are
all equivalent, R; = 0.1m and Ry = 0.5m for keeping the
cohesion of the sensor network in plume tracking behavior
and keep the neighboring robots in range of 10 to 50
centimeters apart, k; = 50 and ks = 0.5 to rationally
correlate the odor gradient, the wind and the forces applied
to the robots, and p1 = pe =1, and ¢; = 1.

Fig. 7 shows the virtual forces that the swarm robots
generate in various conditions. Each arrow in a place shows
the magnitude and the direction of virtual forces that would
be applied to another robot if it was located in that place.
By adding (or removing) robots to these scenarios the
configuration of forces will change, however these figures
only show the virtual forces in the current setup of the figures
before adding another robot. These forces are obtained by

Fig. 8. Swarm robots searching for an odor source in a 30 x 40 m?
environment.

implementing the equations (5) and (6). As shown in these
figures, each robot implies repulsive forces in its close
surrounding area and attractive forces far from it. The robots
which sense higher odor concentrations imply stronger forces
in their neighborhood (e.g. Fig. 7.(B)). As a result, if there
was any other robot near these robots, the virtual forces
would attract it toward these robots (until a certain margin).
This margin can be adjusted by modifying the parameters
R, and R, in the equation (5). It must be mentioned that
the movements of the robots in this behavior is not only
based on these cohesive virtual forces, due to (1) each robot
tends to go toward higher odor concentrations and up-wind
direction while being affected by the swarm virtual forces.
The direction and amplitude of navigation forces depend on
the amount odor concentration and the air-flow direction in
any specific location.

The method was evaluated against: (i) the number of
swarming robots, to test the scalability of the method in
different conditions, (ii) the emission rate of the odor source,
to evaluate the sensitivity of method in different amount of
odor in the environment, (iii) the number of obstacles, to
measure the performance of the method against airflow tur-
bulences caused by obstacles, and (iv) the size of the testing
environment, to study the effect of meandering phenomenon
that happens in large environments.

Three environments similar to the one shown in Fig. 4
with 0, 5 and 10 obstacles have been tested with 5, 15, 20
and 30 robots, while the emission rate of the odor source in
the left side of the testbed was set to 0.01, 0.02 and 0.05 g/s.
Each experiment was repeated for ten times. The end of each
experiment was considered to be when at least one robot gets
closer than 20 ¢m from the odor source. In each experiment
the other parameters were kept constant and the search time
is measured. Fig. 9 shows the average search times in the
mentioned conditions. The charts show that a bigger swarm
finds the odor source faster than a small swarm specially
when there are more obstacles and the emission rate of the
odor source is low. The swarm was able to deal with the
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Fig. 9.  Search time in different environment with different number of

robots while the emission rate of odor source was I: 0.01g/s, II: 0.02g/s,
and III: 0.05g/s
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Fig. 10. The results of simulation in GNU Octave using 10, 20, 30 and
60 robots in a large (30 x 40 m?) environment.

obstacles, turbulences and local maximums.

To evaluate the proposed method in large environments
where the odor plumes highly meander, simulations were
carried out in 30 x 40 x 5m? environment. The emission rate
of the odor source was set to 0.05¢g/s. Fig. 8 demonstrates the
movements of 10 swarming robots in the large environment.
In this experiment, the coefficient parameters of the method
were set to the same values of previous simulations except
following parameters: Ay = 6m, Ry = 2.2m and Ry, =
3.3m. As shown in Fig. 8, when the plume meanders, the
shape of the swarm automatically changes and the robots
track the plume toward its source. Fig. 10 presents the results
of the tests of the method with 10, 20, 40 and 60 robots in
the mentioned conditions. This chart shows that a big swarm
shows better results to track a meandering plume and finding
the odor source.

IV. CONCLUSIONS

This paper presented an approach for tracking odor plumes
by a swarm of robots in near real world conditions where the
environments is under flow turbulent and the odor distribu-
tion is time-variant and patchy. The method was designed
based on the swarm robotics principles of simplicity of
individuals, distributed control and minimum communica-
tions. The swarm robots establish a dynamic sensor network
by maintaining a cohesive formation between themselves
to overcome the problems of local maximums, patchiness
and turbulences in the odor plumes. The odor concentration
and air-flow speed were considered in the swarm formation
virtual forces’ equations to more efficiently preform the
tasks. The method has been simulated in GNU Octave and
the results prove functionality, robustness and scalability of

the proposed approach in different conditions. The swarm
shows acceptable performance for reduced swarm sizes and
provides increasing performance with increasing swarm sizes
specially when there are more obstacles in the environment
and the emission rate of the odor source is low.
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