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ABSTRACT
The modern computing landscape contains an increasing
number of app ecosystems, where users store personal data
on platforms such as Facebook or smartphones. APIs enable
third-party applications (apps) to utilize that data. A key
concern associated with app ecosystems is the confidentiality
of user data.

In this paper, we develop a new model of disclosure in app
ecosystems. In contrast with previous solutions, our model
is data-derived and semantically meaningful. Information
disclosure is modeled in terms of a set of distinguished se-
curity views. Each query is labeled with the precise set of
security views that is needed to answer it, and these labels
drive policy decisions.

We explain how our disclosure model can be used in prac-
tice and provide algorithms for labeling conjunctive queries
for the case of single-atom security views. We show that our
approach is useful by demonstrating the scalability of our
algorithms and by applying it to the real-world disclosure
control system used by Facebook.

Categories and Subject Descriptors
H.0 [Information Systems]: General
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1. INTRODUCTION
The rise of Web 2.0 has caused a tremendous interest in

sharing information online and a correspondingly large con-
cern about privacy. Personal data is increasingly published,
archived, re-shared and re-sold to third parties in complex
software ecosystems [4]. These systems are architecturally
diverse, ranging from centralized settings like a mobile de-
vice running apps, to hybrid device/cloud solutions such as
Box’s OneCloud platform [1], to Facebook apps that make
use of personal-data APIs but run on their own servers.
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However, at the core of each system there is a database con-
taining private data whose disclosure and propagation must
be controlled. High-profile incidents of unintended disclo-
sure make the news on a regular basis and have serious con-
sequences for end users and other parties such as the owners
of the platform and app developers [5].

We argue that each app ecosystem needs a principled,
system-wide solution for privacy. There are two fundamen-
tal components to any such solution. The first is a formal
model of information disclosure that allows the formulation
of precise security policies. The second is an end-to-end
mechanism for tracking the flow of information through the
system and ensuring that the security policies are enforced.
Although tracking information flow is challenging, there is
substantial work on program analysis and language-based
information flow [28] that can be usefully applied to app
ecosystems and has already been implemented on mobile de-
vices in PiOS [13] and TaintDroid [14]. This paper addresses
the first issue and presents a novel model of information dis-
closure for app ecosystems.

Of course, there has been a substantial amount of research
on database access control, and there are even systems such
as IFDB [29] that control both disclosure and information
flow. Also, in practice, app ecosystems do have a simple
way of controlling disclosure: they allow users to set data
permissions. Each permission conceptually regulates access
to a specific view of the data.

However, existing approaches to disclosure control have
some major disadvantages. There is evidence that both
users and developers misunderstand and misuse app per-
missions [17]. As new data is added to the database and
old data is put to new and unexpected uses, the permissions
structure can get out of date and inconsistencies occur. For
example, the Facebook permission named user_likes con-
fusingly gives apps access to both a user’s “Liked”pages and
the languages the user speaks.

The source of these problems is that existing models of
disclosure are not data-derived. In a data-derived disclo-
sure model, the disclosure associated with any view over
the database is a mathematical function of the data needed
to compute the view. This is very different from ad-hoc
hand-generated disclosure descriptions such as the Facebook
user_likes permission; a data-derived approach would avoid
the semantic drift mentioned above. A further advantage of
a data-derived approach is that the information disclosed by
a view can be computed automatically from the view defi-
nition, which reduces the burden on humans and makes the
process less error-prone.
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Meetings Contacts

Time Person
9 Jim
10 Cathy
12 Bob

Person Email Position
Jim jim@e.com Manager

Cathy cathy@e.com Intern
Bob bob@e.com Consultant

(a)

V1(x, y) :− Meetings(x, y)

V2(x) :− Meetings(x, y)

V3(x, y, z) :− Contacts(x, y, z)

(b)

Q1(x) :− Meetings(x, ’Cathy’)

Q2(x) :− Meetings(x, y) ∧ Contacts(y, w, ’Intern’)

(c)

Figure 1: (a) Dataset (b) Security views (c) Queries

However, being data-derived is not enough; for example,
a definition of disclosure in terms of the number of bits that
are being disclosed (in the spirit of Differential Privacy [12])
is unlikely to be meaningful to a user. Thus we need a
notion of disclosure that is not just data-derived, but also
semantically meaningful, which means that disclosure maps
to a concept that the user can intuitively understand.

The third requirement for a disclosure model is that it
should be expressive. While the security policies for games
and social apps are often simple, the corporate world is
also becoming increasingly dependent on app ecosystems
through BYOD (Bring Your Own Device) solutions [1]. Mo-
bile apps are also used in the military [3]; both of these use
cases demand significantly more complex security policies.

1.1 Our solution
Our solution for defining a data-derived, semantically mean-

ingful and expressive notion of disclosure is based on the
idea of associating levels of disclosure with views over the
database. Some views disclose more information than oth-
ers; this induces a hierarchy. For example, consider a user
Alice whose calendar and contacts data is shown in Fig-
ure 1 (a). The view V1 contains information from the full
Meetings table, while V2 displays only the time slots of ap-
pointments. Clearly V2 reveals less information than V1.

1

Although apps may ask arbitrary queries on the data, Al-
ice can formulate a policy based on a small set of security
views such as those in Figure 1 (b). For example, she may
specify that she is happy to disclose V2 but not V1; therefore,
any query that can be answered using only information in
V2 is permitted but queries requiring more information are
forbidden. To enforce this policy, every query Q is automat-
ically associated (“labeled”) with the set of security views
that is required to answer Q but reveals as little information
as possible beyond that. For example, the label of Q1 in Fig-
ure 1 (c) is {V1} and the label of Q2 is {V1, V3}. Policies are
defined in terms of labels; Alice can specify that any query
whose label is just {V2} can be answered, but queries with

1Many app ecosystems, including the iOS and Android mo-
bile platforms, contain such data, and this type of data
is typically considered sensitive by users [13, 16]. In fact,
LinkedIn recently came under fire for writing an iOS app
that sent sensitive information extracted from users’ calen-
dars back to LinkedIn’s servers [25].

Figure 2: Disclosure control system model

labels that are “above” (more informative than) V2 should
be rejected. Both Q1 and Q2 would be rejected under such
a policy.

Figure 2 illustrates the full workflow. The user, perhaps
with assistance by the platform developer and/or third party
privacy watchdog groups, creates a base set of security views.
Upon this set of views, the user defines a security policy that
specifies what level of disclosure is permitted; again, other
parties could help by pre-defining sensible policies which
users could adjust as desired. The disclosure restriction is
enforced by a reference monitor – a component that auto-
matically computes the labels for all incoming queries, and
accepts or rejects queries to ensure that the security policy
is never violated. Figure 2 is a conceptual diagram rather
than an architectural specification. In practice, the refer-
ence monitor could be an independent system component or
a part of the DBMS or embedded within the untrusted app.

1.2 Our contributions
We make the following contributions:
• We develop a novel model of disclosure for app ecosys-

tems that satisfies the desiderata we identified: (1) Our
model is data-derived because the labeler associates each
query directly with the information required to answer it,
(2) it is semantically meaningful because each query is la-
beled with a set of views that concisely characterizes the
information that it discloses (Sections 2 and 3), and (3) it is
expressive enough to support sophisticated security policies
that are challenging to capture with conventional view-based
security mechanisms. (Section 3.4)
• We develop practical algorithms for disclosure labeling

and policy enforcement (Sections 4, 5 and 6).
• We apply our framework to practical disclosure con-

trol scenarios. As a case study, we review Facebook’s hand-
crafted permissions labeling of FQL and Graph API queries
and discover multiple inconsistencies and problems with the
documentation. We also show that our algorithms scale well
on realistic workloads (Section 7).

2. PROBLEM DEFINITION
In this section we begin formalizing disclosure labeling,

which is central to our work. We explain how it provides
a foundation for disclosure control and we compare this ap-
proach with existing solutions.

2.1 Disclosure labeling
The goal of disclosure labeling is to determine what in-

formation about the underlying database is disclosed by an-
swering an arbitrary set of queries Q. Labeling makes use of
a set S of security views which reveal known and semanti-
cally meaningful types of information about the database. A
disclosure labeler is a function which relates the information
revealed by Q to the information revealed by the security
views in S. Specifically, it identifies a subset of S which

870



is sufficient to answer all the queries in Q, but otherwise
discloses as little additional information as possible.

Disclosure labelers provide a formal foundation for the
disclosure control in app ecosystems which is our ultimate
goal. In addition, they highlight previously unexplored con-
nections between view-based security and order theory.

Defining disclosure labelers and providing labeling algo-
rithms are both challenging. A precise definition of disclo-
sure labeling requires us to formalize the concept of disclos-
ing “as little information as possible” about the database.
Existing theoretical work [20] addresses this to an extent,
but has limited practical applicability.

In the remainder of this Section, we situate disclosure la-
beling within a broader problem space; we present our solu-
tion to the above challenges starting in Section 3.

2.2 Related problems and approaches
Disclosure labeling is related to equivalent query rewrit-

ing, which takes as input a query and a set of views and
tries to find an equivalent rewriting of the query in terms
of the views. This is a well-studied problem [9, 10, 18, 26].
There are also algorithms to find rewritings that minimize
some real-valued cost metric, such as the number of views
used [7]. The main difference in our case is that disclosure
labeling additionally requires the set of views S ′ to disclose
a minimal amount of information about the dataset.

As explained at a high level in the introduction and for-
mally in Section 3.4, disclosure labelers can be used to en-
force policies relating to disclosure control. There are exist-
ing related view-based security solutions. The SQL GRANT

and REVOKE keywords are used for coarse-grained access con-
trol, and extensions to these exist [27]. There are also simi-
larities with existing permissions systems such as Facebook’s.
Facebook exposes its data through the Graph API and FQL
[2]. For each API and each query, the documentation speci-
fies which permissions an app must hold (i.e., which security
views it must be able to access) to receive an answer. This
association between queries and permissions is a simple la-
beling generated by Facebook’s engineers; to our knowledge
the labeling is created by manual inspection of the queries.

Our approach to disclosure control using disclosure labels
generalizes the solutions above and has significant additional
benefits. First, our framework allows a system to keep track
of cumulative information disclosure across multiple queries.
We can determine whether each new query would push the
total amount of information disclosed beyond the user’s de-
sired threshold. Second, our abstractions allow the natural
formulation of complex security policies. For example, sup-
pose Alice, whose data is shown in Figure 1 is willing to
disclose either her meetings or her list of contacts, but not
both. We can enforce this policy by only allowing sequences
of queries whose labels are strictly below {V2, V3}. Third,
our formal approach allows us to reason precisely about the
information disclosed by the security views to identify over-
lap, redundancies, and inconsistencies in the policy. If the
original policy and/or labeling is hand-crafted, the ability
to identify such problems is especially important.

Disclosure labeling has further applications. We can use
labeling to discover precisely how much information is dis-
closed by a given query which is useful in declassification
[28]. Labeling also makes it possible to detect overprivi-
leged applications that request access to more permissions
than they need due to developer error.

2.3 Notation and terminology
We close this section by introducing a few additional pieces

of terminology and notation. Although Sections 3 and 4 do
not assume any particular query language, we will later re-
strict our attention to conjunctive queries over the schema
of a fixed database D. A conjunctive query has the form

H :− B

where H is a relational atom and B a conjunction of rela-
tional atoms over database relations. H and B are the head
and body of the query, respectively. Each atom may contain
constants and variables. Any variables that appear in H
must also appear in B. Letters x, y, z etc. indicate variables
and letters a, b, c etc. indicate constants. A distinguished
variable is one that appears in the head of the query, and an
existential variable is one that appears only in the body. We
say that two queries are equivalent if they return the same
answer on every dataset.

Section 3 formalizes disclosure in terms of preorders and
lattices. Given a set C, a binary relation is a subset of C×C.
A relation ∼ is reflexive if c ∼ c for all c ∈ C; it is symmetric
if c ∼ c′ if and only if c′ ∼ c; it is antisymmetric if c ∼ c′

and c′ ∼ c together imply c = c′; and it is transitive if c ∼ c′

and c′ ∼ c′′ together imply c ∼ c′′. A preorder is a binary
relation that is reflexive and transitive. An equivalence re-
lation is a preorder that is also symmetric. A partial order
is a preorder that is also antisymmetric. If � is a partial or-
der, then C forms a lattice under � if every pair of elements
from C has both a least upper bound (LUB) and greatest
lower bound (GLB). A bounded lattice contains a least ele-
ment ⊥ and a greatest element �; all lattices we consider
are bounded.

3. DISCLOSURE LABELING
This section introduces a formal framework for measuring

and controlling disclosure that draws on fundamental con-
nections between view-based security and order theory. Dis-
closure orders (Section 3.1) and disclosure lattices (Section
3.2) allow us to reason about the amounts of information
disclosed by different set of views. We formally define dis-
closure labelers in Section 3.3. It turns out not every set of
security views is suitable for creating a disclosure labeler; we
give conditions that guarantee the existence and uniqueness
of disclosure labelers. In Section 3.4, we explain the con-
ceptual end-to-end setup for the use of disclosure labeling in
disclosure control, including a formal definition of a security
policy. Our notation is summarized in Table 1.

3.1 Disclosure orders
We now define disclosure orders, which formalize the no-

tion that some sets of views disclose more information than
others. Assume all views are drawn from a finite universe
U . A disclosure order � ranks the relative information re-
vealed by different sets of views. Roughly speaking, we say
that W1 � W2 precisely when all the information revealed
by W1 is also revealed by W2.

A natural candidate for such an order is based on view
determinacy [23]. Under this order, W1 � W2 precisely
when the answers to all the views in W1 are uniquely deter-
mined by the answers to the views in W2. Unfortunately,
checking this criterion is highly intractable for many classes
of queries. Equivalent view rewriting provides a conserva-
tive approximation to the determinacy ordering in which
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Notation Description

U universe of all possible queries
S set of security views, S ⊆ U
W,W1,W2 sets of views; W,W1,W2 ⊆ U
V, V1, V2 views; V, V1, V2 ∈ U
Q,Q1, Q2 queries (to be labeled); Q,Q1, Q2 ∈ U
� disclosure order
(⇓ W) set of all views below W under �
I elements of the disclosure lattice over U in-

duced by �
℘(U) power set of U , i.e. collection of all subsets

of U
F set of disclosure labels, where each label is

a set of views; F ⊆ ℘(U)
� a disclosure labeler
�(I) all elements of the lattice of disclosure la-

bels for �
P a security policy; can be represented as a

subset of �(I)

Table 1: Notation summary

W1 � W2 precisely when, for each view W ∈ W1, there
exists an equivalent rewriting of W in terms of the views in
W2. In contrast to determinacy, equivalent view rewriting
is known to be tractable for many classes of queries [21].

The choice of disclosure order will depend on multiple
factors: required throughput, sensitivity to false negatives,
and the complexity of the query language under consider-
ation. Rather than restrict ourselves to one of the orders
defined above, we develop a more general framework that is
applicable to any preorder which satisfies two basic proper-
ties. The first states that adding new elements to a set of
views can only increase the amount of information that it
reveals about the database. The second allows us to derive
meaningful upper bounds on information disclosure even for
adversaries who combine information from multiple sources.

Definition 3.1. A disclosure order is a preorder on
℘(U) that satisfies the following two properties:

(a) If W1 ⊆ W2 then W1 � W2.

(b) If φ ⊆ ℘(U) andW �W0 for allW ∈ φ then
⋃

φ � W0.

Both orders mentioned above are disclosure orders, but
others exist too. One example is the usual set order, where
W1 � W2 precisely when W1 ⊆ W2.
Disclosure orders need not be partial orders, as they are

in general not antisymmetric. For example, consider the
following two views on Meetings, abbreviated as M.

V1(x, y) :− M(x, y) V ′
1 (y, x) :− M(x, y)

V1 and V ′
1 each disclose all of M, so {V1} � {V ′

1} and {V ′
1} �

{V1} under determinacy and equivalent view rewriting, but
the two sets are clearly not equal.

Despite being unequal, {V1} and {V ′
1} reveal equivalent

information about M, since each set can be computed from
the other. More generally, the relation defined by W1 ≡ W2

if W1 � W2 and W2 � W1 is an equivalence relation.

3.2 Disclosure lattices
Before we move to labeling, there are two more founda-

tional questions to address. First, given two sets of views

W1 and W2, what information is disclosed to someone who
knows both of them beyond what could have been inferred
from just one of the two sets? This is the classical problem
of information combination. Second, what common infor-
mation, or overlap, is there in the information revealed by
the two sets of views?

One might be tempted to use the union and intersection
of W1 and W2 to answer the above questions. However,
intersection does not work as a measure of overlap. To see
this, consider the views V2 and V4 in Figure 3. The two sets
{V2} and {V4} have an empty intersection, but they do have
some overlap. Notably, given the answer to either V2 or V4,
it is possible to deduce whether Meetings is nonempty, i.e.
to answer the query V5.

To define combination and overlap, we introduce a new
operator (⇓ W) that returns all the views in U whose answers
can be inferred by observing a set of views W. This more
accurately represents all the information disclosed by W.

Definition 3.2. Let W ⊆ U . Then

(⇓ W) = {V ∈ U : {V } � W}
If W1 � W2 then every view whose answer can be com-
puted from W1 can also be computed from W2. Further-
more, W1 � W2 if and only if (⇓ W1) ⊆ (⇓ W2).

The ⇓ operator now allows us to formalize information
combination and overlap. Given W1 and W2, the informa-
tion that can be derived from both W1 and W2 taken to-
gether is ⇓ (W1 ∪ W2), and the information overlap of W1

and W2 is (⇓ W1) ∩ (⇓ W2). We can use these functions
to construct a lattice structure that precisely captures the
information disclosed by each subset of U .

Theorem 3.3. Let U be a set of views, and let � be a
disclosure order for U . Define I = {(⇓ W) : W ⊆ U}.
Then I is a lattice under the subset ordering with details as
follows:

(a) LUB: (⇓ W1)  (⇓ W2) = ⇓ (W1 ∪W2).

(b) GLB: (⇓ W1) � (⇓ W2) = (⇓ W1) ∩ (⇓ W2).

(c) Top element � = (⇓ U) = U , bottom element ⊥ = (⇓ ∅).
We call this lattice the disclosure lattice over U . It is a strict
generalization of the Lattice of Information [20].

As an example, consider the Meetings relation from Fig-
ure 1 and suppose our universe U consists of the four views
in Figure 3. Letting � be the equivalent view rewriting or-
dering, the disclosure lattice for this U is shown in Figure
3. The GLB of ⇓ {V2} and ⇓ {V4} is ⇓ {V5}. Their LUB is
not ⇓ {V1} but another properly lower element, accurately
reflecting the fact that it is impossible to reconstitute the
Meetings relation from the projections on its two attributes.

3.3 Disclosure labelers
In this section, we define disclosure labelers and explain

under what conditions they exist. We begin with a set of
security views S, each of which reveals a known type of
information about the dataset. A labeler � is a function
that expresses the information revealed by an unknown set
of queries Q in terms of the information revealed by a subset
S ′ ⊆ S.

It would seem that � should map subsets of U to subsets
of S. For technical reasons, we permit the labeler’s output
to range over elements of an arbitrary set F , even if F is not
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⊥ = ∅

⇓ {V5}

⇓ {V2} ⇓ {V4}

⇓ {V2, V4}

� = ⇓ {V1}

V1(x, y) :− Meetings(x, y)

V2(x) :− Meetings(x, y)

V4(y) :− Meetings(x, y)

V5() :− Meetings(x, y)

Figure 3: Disclosure lattice (left) and corresponding
views (right).

a power set. Furthermore, the output of � does not need to
be an element of F so long as it is equivalent to an element
of F .
We place three additional restrictions on � in order to

ensure that the labels it finds are semantically meaningful.
First, if W ∈ F then �(W) should reveal the same informa-
tion as W. This ensures that the labeler behaves correctly
for “easy” inputs. It also means that the elements in F are
the fixpoints of �, which motivates our choice of notation F .
Second, the labeler should never underestimate the amount
of information disclosed by a set of queries. And third, �
should be monotonic – if one set of views reveals less than
another then the label of the first set of views should be
below the label of the second.

Definition 3.4. Let F be a subset of ℘(U), the power
set of U , and assume � is a disclosure order. A disclosure
labeler is a map � : ℘(U)→ ℘(U) such that

(a) If W1 ⊆ U then �(W1) ≡ W2 for some W2 ∈ F .
(b) If W ∈ F then �(W) ≡ W.

(c) If W ⊆ U then W � �(W).

(d) If W1,W2 ⊆ U and W1 � W2 then �(W1) � �(W2).

We call F the set of disclosure labels for �.
The axioms defined above mirror those in the definition

of an order-theoretic closure operator [11]. In fact, if I is
the disclosure lattice of U then the operator that maps every
X ∈ I to (⇓ �(X)) is a closure operator on I.

Consider now the practical scenario where we start with
a set of security views S and would like to define a labeler
where F = ℘(S). Unfortunately, we cannot always do this,
as the following example shows.

Example 3.5. Consider V2 and V4 from Figure 3, and
suppose we want to label queries with ℘({V2, V4}). This
gives the following F = {∅, {V2}, {V4}, {V2, V4},�}.2 Sup-
pose that, as in previous examples, U consists of the four
views in Figure 3. It turns out that there is no labeler for U
using F as the set of disclosure labels. To see this, suppose

2The disclosure labeler axioms imply that F contains �.

a labeler does exist and consider what �(V5) might be. Since
{V5} � {V2}, we know that �({V5}) � �({V2}) ≡ {V2}. Sim-
ilarly, since {V5} � {V4}, we know that �({V5}) � �({V4}) ≡
{V4}. Since �({V5}) ∈ F , we are forced to conclude that
�({V5}) = ∅. However, {V5} �� ∅, violating condition (c) of
Definition 3.4.

The conditions in Definition 3.4 are much stronger than
they first appear. It is not always possible to define a dis-
closure labeler for a given F ; however, when a disclosure
labeler does exist, it is unique up to equivalence. To formal-
ize and prove this, it is necessary to understand how labelers
interact with the disclosure lattice defined in Section 3.2.

If we apply a disclosure labeler � to each element of I (the
disclosure lattice of U), we obtain a new lattice �(I).

Theorem 3.6 (Labeling on the disclosure lattice).

Define �(I) = {⇓ �(W) :W ∈ I}. Then �(I) is a lattice un-
der the subset ordering, with GLB and LUB as follows.

(a) GLB: (⇓ W1) �� (⇓ W2) = (⇓ W1) � (⇓ W2).

(b) LUB: (⇓ W1) � (⇓ W2) = ⇓ �((⇓ W1)  (⇓ W2)).

We call this lattice the lattice of disclosure labels. Roughly
speaking, each element in this lattice corresponds to the
information revealed by an element of F . More formally,
it is possible to show that �(I) = {⇓ W : W ∈ F}. For
arbitrary W1,W2 ∈ F this lattice is guaranteed to contain
the GLB (⇓ W1) � (⇓ W2). It will also contain a suitable
⇓ W3, forW3 ∈ F , which can serve as a LUB. However, this
new LUB may be higher in the original disclosure lattice
than (⇓ W1)  (⇓ W2).

Theorem 3.6 provides the insight to characterize when a
set F can be used to formulate a disclosure labeler.

Theorem 3.7 (Labeler Existence). Let F ⊆ ℘(U),
and assume � is a disclosure order. There exists a disclosure
labeler � with domain U and image F precisely when K =
{⇓ W :W ∈ F} has the following properties:

(a) For each X1, X2 ∈ K, we have X1 �X2 ∈ K, and

(b) K contains U .

Intuitively, F can be used to formulate a disclosure labeler
if the corresponding set it induces in the disclosure lattice
is both closed under GLB and contains �. If a labeler does
exist, it is unique up to equivalence. This allows us to for-
mulate the following definition:

Definition 3.8 (Inducing labelers). Let F ⊆ ℘(U).
We say F induces a disclosure labeler on U if it satisfies the
condition in Theorem 3.7. We call the labeler � from Theo-
rem 3.7 the labeler induced by F .

If F induces a disclosure labeler, the following algorithm
is a näıve but correct implementation of that labeler. It
assumes that no two distinct elements of F are equivalent.
The algorithm sorts the elements of F in order of increasing
disclosure (Lines 2–3) and finds the first element in the new
order that reveals at least as much information as W (Lines
4–8).

1: procedure NäıveLabel(F ,W)
2: Let F [1], . . . ,F [n] be the elements of F .
3: Sort F so that if F [i] � F [j] then i ≤ j.
4: for i← 1, 2, . . . , n do
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5: if W � F [i] then
6: return F [i]
7: end if
8: end for
9: return �
10: end procedure

This completes our presentation of disclosure labelers. Note
that the output of a labeler satisfies our desiderata from Sec-
tion 1: It is a data-derived measure of disclosure because it
is a mathematical function of the data needed to answer the
queries. The output is also semantically meaningful as it
expresses disclosure by relating it to security views that the
user understands, and the model is expressive due to the
ability to choose a large and complex F .
3.4 From labelers to security policies
We have defined disclosure labelers which allow us to re-

state the information revealed by an unknown set of queries
in terms of the information revealed by a much smaller,
known, set of security views. Labelers are useful because
they allow the formulation of semantically meaningful secu-
rity policies; we explain this now in more detail.

As we saw, the information associated with the disclosure
labels for a given labeler can be represented as a lattice �(I).
Conceptually, a security policy is a cut in this lattice: a set
of queries whose label is below the cut can be answered,
but a set of queries whose label falls above the cut cannot.
We can formally represent the security policy by the set of
elements in the lattice that are below the desired cut.

Definition 3.9 (Security policy). A security policy
P for labeler � is a subset of the elements in the lattice of
disclosure labels for �.

For example, let U contain the four views in Figure 3,
and let � be a trivial disclosure labeler that maps every sub-
set of U to itself. P = {⊥, ⇓ {V5}, ⇓ {V2}, ⇓ {V4}}
represents a policy in which either the first or the second
attribute of Meetings may be disclosed, but not both. This
is an example of a Chinese Wall policy [8] and shows that
our framework is powerful enough to express fairly complex
policies cleanly.

An important restriction is that policies must be internally
consistent in the sense that if W � W ′ and ⇓ W ′ ∈ P then
⇓ W ∈ P. In our running example, a principal who can
view the entirety of the Meetings relation should also be
permitted to view the projections on each attribute.

In practice, we assume queries arrive in the system one at
a time. A reference monitor is an algorithm that inspects
each query and accepts or rejects it to ensure the policy is
never violated. A simple algorithm for enforcing a security
policy P while answering a set of queries Q is given below.

1: Lcum ← ∅
2: for Q ∈ Q do
3: Lnew ← �(Q ∪ Lcum)
4: if (⇓ Lnew) ∈ P then
5: answer Q
6: Lcum ← Lnew

7: else
8: refuse Q
9: end if
10: end for

The algorithm processes incoming queries in Q one at a
time (Line 2). It first computes the total information dis-

V3(x, y, z) :− C(x, y, z) V9(x) :− C(x, y, z)

V6(x, y) :− C(x, y, z) V10(y) :− C(x, y, z)

V7(x, z) :− C(x, y, z) V11(z) :− C(x, y, z)

V8(y, z) :− C(x, y, z) V12() :− C(x, y, z)

Figure 4: All relational projections of Contacts

closed if the query would be answered (Line 3). If such
disclosure is permitted by the policy (Line 4), the query
is answered and the cumulative disclosure Lcum is updated
(Lines 5 and 6). This completes our presentation of disclo-
sure labelers. We now show how they can be made practi-
cal.

4. GENERATING LABELERS
The näıve disclosure labeling algorithm proposed in Sec-

tion 3.3 runs in time that is linear in the size of the set F .
Unfortunately, F can easily become very large, since it gen-
erally contains all possible subsets of a set of security views
S. In fact, as the next example demonstrates, even S itself
can grow quite large.

Example 4.1. Consider a generalization of the example
used in Figure 3. Suppose we have an n-attribute relation R
and wish to label each query over R with the set of relational
projections on R that is required to answer it. There are 2n

possible projections on R - Figure 4 shows all of them for
the three-attribute relation Contacts from Figure 1, where
the relation name is abbreviated as C. The set F would need
to account for all possible subsets of these projections, for a
total size that is doubly-exponential in n.

It is clearly impractical to work with such a large F . For-
tunately, we do not need to represent all of F explicitly.
We can instead work with a smaller subset of F and in
some sense materialize any remaining elements as they are
needed. This section focuses on the problem of finding a
suitable subset of F which is as small as possible.

We assume the existence of two black-box algorithms that
depend on � and on U . The first takes as input subsets
W1 and W2 of U , and determines whether W1 � W2 in the
disclosure order. The second, written GLB(W1,W2), finds a
set of viewsW3 such that (⇓ W1)� (⇓ W2) = (⇓ W3). GLB
generalizes to handle an arbitrarily large number of input
arguments in the obvious way. Section 5 contains a concrete
instantiation of these algorithms for the case of equivalent
view rewriting on conjunctive queries.

4.1 Downward generating sets
Suppose we have a set F that induces a labeler. This

means it is closed under the GLB operation. Therefore,
some elements of F are “redundant” in the sense that they
can be computed by taking GLBs of other elements. Such
redundant elements can be removed to yield a smaller Fd

that can replace F for practical purposes.

Definition 4.2 (Downward generating set). Given
a set F , we call Fd ⊆ F a downward generating set for F
if for every W ∈ F there exist W1,W2, . . . ,Wn ∈ Fd such
that W ≡ GLB(W1,W2, . . . ,Wn).

It turns out every F that induces a labeler has a unique
minimal downward generating set.
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Theorem 4.3. If F induces a labeler then there exists a
downward-generating set Fd for F which is minimal under
the usual set ordering. The elements of Fd are uniquely
determined up to equivalence.

Given F , a minimal downward generating set can be com-
puted by iteratively removing elements of F that are equiv-
alent to the GLB of a subset of the elements still left.

Example 4.4. Continuing with Example 4.1, let� be the
equivalent view rewriting ordering. A downward generating
set for the original F is ℘({V3, V6, V7, V8}). The reason for
this will become clearer in Section 5 when we explain how
GLB is computed for the equivalent view rewriting order.
It turns out that

GLB({V6}, {V7}) ≡ {V9}
GLB({V6}, {V8}) ≡ {V10}
GLB({V7}, {V8}) ≡ {V11}

GLB({V6}, {V7}, {V8}) ≡ {V12}
This should provide intuition as to why we removed the

last four views in Figure 4. Note that the size of Fd is still
exponential in the number of attributes of Contacts.

Given a downward generating set Fd, the following pro-
cedure GLBLabel shows how to use it for query labeling.
The algorithm iterates over all elements of Fd (Line 3) and
computes a running GLB of those elements that disclose at
least as much information as W (Lines 4-6).

1: procedure GLBLabel(Fd,W)
2: L← �
3: for W ′ ∈ Fd do
4: if W �W ′ then
5: L← GLB(L,W ′)
6: end if
7: end for
8: return L
9: end procedure

Last but not least, downward generating sets obviate the
problem of checking whether a given collection of sets of
security views induces a labeler. It turns out that we can
extend any set G to one that induces a labeler by closing it
under the GLB operation.

Theorem 4.5. If G is a collection of sets of views that
contains the top element (⇓ U) then there is a set F ⊇ G
such that (i) F induces a disclosure labeler and (ii) G is
a downward generating set for F . The elements of F are
unique up to equivalence.

This is in some sense the converse of Theorem 4.3 and in
practice removes the need for checking whether G induces a
labeler. If it does not, we know we can extend it to one that
does. In fact, we are free to work directly with G since it is
a downward generating set for that labeler.

4.2 Generating sets
Although the reduction in size from F to Fd is substan-

tial, Example 4.4 demonstrates that the size of Fd can still
be exponential in the number of attributes in the database
schema. The question arises whether we can find a smaller
subset of Fd and use that for labeling instead. The answer
is yes; however, we must place some restrictions on F and
U . We begin by defining and explaining these restrictions.

Definition 4.6 (Precise labeler). Suppose F con-
tains ∅, and additionally if (⇓ W1) ∈ F and (⇓ W2) ∈ F
then ⇓ (W1 ∪W2) ∈ F . We say F induces a precise labeler.

This definition states that F – or rather, its extension to
the disclosure lattice on U – is closed under the lattice LUB
operator. The intuition for the term precise is the following.
Return to Figure 3 and suppose F = {∅, {V5}, {V2}, {V4},�},
U is the set of all conjunctive queries over Meetings and �
is the equivalent view rewriting order. F induces a labeler �
over U , but it is not precise. Specifically, �({V2, V4}) = � =
{V1}, which is properly higher in the disclosure order than
{V2, V4}, so the labeler exhibits some imprecision on this set
of views.

The second concept we need relates to the universe U un-
der the ordering �.

Definition 4.7 (Decomposability). We say a set U
is decomposable under � if for every W1,W2 ⊆ U and every
{V } � W1 ∪W2 we have either {V } � W1 or {V } � W2.

The following Theorem is related to a result in [20].

Theorem 4.8. If U is decomposable under �, then the
corresponding disclosure lattice I is distributive.

Assume now that U is decomposable under � and F in-
duces a precise labeler. We can define the concept of a (full)
generating set for F .

Definition 4.9 (Generating set). We say that Fgen

is a generating set for F if every element of F is equivalent
to the union of GLBs of elements of Fgen.

Analogues of Theorems 4.3 and 4.5 hold for generating sets.
Given a set F that induces a precise labeler, a minimal
generating set for F always exists, and is guaranteed to be
unique up to equivalence. Conversely, we can extend any
set G to an F that induces a precise labeler and for which
G is a generating set. Fgen is generally much smaller than
either F or Fd, although of course it only exists under the
two restrictions we outlined above.

Example 4.10. Continuing with Example 4.4, suppose
U is decomposable under the equivalent view ordering �;
this is true for instance if we take U to be the set of all
single-atom queries over Contacts. In this case, the set
Fgen = {{V3}, {V6}, {V7}, {V8}} is a generating set for a
F that induces a precise labeler over U . The size of Fgen is
now only linear in the number of attributes of Contacts.

Given a generating set Fgen, we can use it for query la-
beling. The following algorithm processes W one view at a
time (Line 3) and computes a running union of the labels
for the views (Line 4).

1: procedure LabelGen(Fgen,W)
2: result← ∅
3: for each V ∈ W do
4: result← result ∪GLBLabel(Fgen, {V })
5: end for
6: return result
7: end procedure

The takeaway is that if U is decomposable and we desire
a precise labeler, it is easy to label queries using a set of
security views S. We can simply use the set {{Si} | Si ∈ S},
consisting of singleton sets containing each view in S, as our
Fgen and run algorithm LabelGen to perform a labeling.
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5. LABELING CONJUNCTIVE QUERIES
We now use the theory and results from Sections 3 and 4

and show how to label a particular class of queries. We focus
on labeling conjunctive queries with set semantics under the
equivalent view rewriting order, using a set of single-atom
security views. Although not all of the security views that
would be useful for real-world systems can be modeled with-
out joins, a large fraction can. Extending these algorithms
to multi-atom security views is ongoing work.

We write Uatom to denote the set of single-atom conjunc-
tive views defined over a given database schema, and Ucv
to denote the set of all conjunctive views. Let � be the
equivalent view rewriting order, and assume we have a set
of single-atom security views S. We explain how to label
arbitrary conjunctive queries with subsets of S.

We find it useful to work with a modified representation
of conjunctive queries where we associate each query with a
list of its body atoms and discard the head. To keep track of
which of the variables are distinguished and which are exis-
tential, we tag them accordingly. For example, the query Q2

from Figure 1 is represented as [M(xd, ye), C(ye, we, ’Intern’)],
where the subscripts e and d denote existential and dis-
tinguished variables respectively and M and C abbreviate
Meetings and Contacts respectively.
We present the process of labeling in two stages. First,

we explain how sets of single-atom queries may be labeled,
and then extend the process to sets of multi-atom queries.

5.1 Single-atom case
Uatom is decomposable. Consequently, the discussion and

labeling algorithm from Section 4.2 apply directly. The set
{{Si} | Si ∈ S}, composed of singleton sets containing each
of the security views, serves as a generating set for the la-
beler. For a complete end-to-end labeling algorithm, we only
need to define implementations of the two subroutines intro-
duced at the beginning of Section 4. The first determines,
given W1,W2 ⊆ Uatom, whether W1 � W2. The second
computes the GLB function – that is, given W1,W2 it finds
a W3 such that (⇓ W1) � (⇓ W2) = (⇓ W3).
Determining whether W1 � W2 can be done using stan-

dard techniques from the literature on equivalent view rewrit-
ing [10]. It remains to show how to compute the GLB.

The key to computing GLB is a procedure GLBSingle-

ton for computing the GLB of two singleton sets of views
{V1} and {V2}; this can be extended to multi-element sets
of views in a manner to be explained shortly.

GLBSingleton is based on the idea of unification. It be-
gins by computing a generalized most general unifier (mgu)
[6] of the the bodies of V1 and V2. This is computed by a
subroutine called GenMGU, which differs from a standard
mgu computation in three ways. First, if the algorithm at-
tempts to unify a constant with an existential variable, the
unification fails. Second, if the algorithm attempts to unify
an existential variable with an existential or distinguished
variable, the result is an existential variable. Third, if the
algorithm attempts to unify two distinguished variables, the
result is another distinguished variable. We explain these
differences using some examples.

First, we show why the unification of a constant with an
existential variable must fail.

Example 5.1. Consider the following boolean views:

V13() :− M(9, ’Jim’) V14() :− M(x, y)

The first view tests whether Meetings contains a partic-
ular tuple and the second checks whether it contains any
tuples at all. The standard mgu of the body atoms is equal
to the first atom, but the actual GLB of the views should
be ⊥. There is no single-atom query that can be rewritten
in terms of V13 and also in terms of V14.

Next, we illustrate the reasons for our handling of exis-
tential and distinguished variables.

Example 5.2. Consider views V6 and V7 from Figure 4:

V6(x, y) :− C(x, y, z) V7(x, z) :− C(x, y, z)

In our new representation they become [C(xd, yd, ze)] and
[C(xd, ye, zd)] respectively. Their GenMGU is [C(xd, ye, ze)],
i.e. V9 from Figure 4. This makes intuitive sense as V9, the
projection on the first attribute of Contacts, accurately rep-
resents the overlap between V6 and V7, i.e. the information
that can be computed from either V6 or V7 in isolation.

Once GenMGU is available, an extra check is needed to
rule out some corner cases as shown in the next example.

Example 5.3. Consider the following boolean views:

V14() :− M(x, y) V15() :− M(z, z)

The GenMGU of the body atoms is [M(we, we)], but the
GLB should be ⊥ by the same reasoning as in example 5.1.

The check to eliminate such cases is conceptually straight-
forward. It involves finding situations where computing
GenMGU forces a new equality constraint on two values
in the same original atom, and where at least one of these
values was an existential variable. If we find such a situation
or if GenMGU fails, GLBSingleton returns ⊥; otherwise
it returns the output of GenMGU.

GLBSingleton can be extended to non-singleton sets for
a complete implementation of GLB(W1,W2). We simply
compute the pairwise GLBSingleton of singleton sets con-
taining each pair of views V1 ∈ W1, V2 ∈ W2 and union
all the results together. This completes the description of
GLB, giving us the last tool we need to label queries using
the techniques from Section 4.2.

5.2 Multi-atom case
The set Ucv of arbitrary conjunctive queries is not in gen-

eral decomposable; therefore, we are unable to use the same
techniques as above. However, because we have restricted
the set S to contain single-atom views only, we can perform
labeling efficiently by solving the problem in two steps. To
label a set of queries Q ⊆ Ucv, we first convert each Q ∈ Q
into a set of single-atom queries using theDissect algorithm
described below. In the second step, we compute the disclo-
sure label of the resulting set of single-atom views using the
algorithm discussed in the previous subsection.

The Dissect algorithm begins by computing a folding [9]
of Q, which intuitively removes “redundant” atoms from Q.
Next, it splits up the folding of Q into its constituent atoms,
except that any existential variable that appears in at least
two atoms is promoted to a distinguished variable.

Example 5.4. Consider query Q2 from Figure 1, i.e.
[M(xd, ye), C(ye, we, ’Intern’)]. The result of running Dis-

sect on this query is a set that contains two single-atom
queries: [M(xd, yd), C(yd, we, ’Intern’)].
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Intuitively, the reason we need to promote existential vari-
ables to distinguished ones is that we are labeling with single-
atom views. Recall that the set of single-atom views in a
query’s disclosure label must contain enough information to
uniquely determine the query’s answer. Any set of single
atom security views that allows a join to be computed must
reveal the values of the join attributes.

We can show that Dissect is a disclosure labeler with do-
main ℘(Ucv) and image ℘(Uatom). As the composition of two
labelers is also a labeler, we can create a disclosure labeler
for multi-atom conjunctive queries by combining Dissect

with our single-atom labeling procedure.

6. IMPLEMENTATION
At this point, we have introduced our new notion of a dis-

closure labeler that is data-derived, semantically meaningful
and expressive, and we have presented practical algorithms
for labeling conjunctive queries. In this section, we describe
two key optimizations that allow us to efficiently manage
complex security policies for regulating the cumulative dis-
closure of information over time. First, we store disclosure
labels in a heavily compressed format that makes compar-
isons between different disclosure labels very fast. And sec-
ond, we represent security policies in a way that allows us
to make policy decisions without ever needing to refer back
to a list of previously executed queries.

6.1 Representing disclosure labels
We begin by revisiting the GLBLabel disclosure labeling

algorithm from Section 4.1. In its simplest form GLBLabel

takes as input a set of security views Fgen and a singleton
set {V } whose disclosure label we wish to find, and returns
the GLB of the following collection of singleton sets:

{{Vi} : Vi ∈ Fgen and {V } � {Vi}}
In practice, however, computing the GLB is completely

unnecessary. Instead, we compute

�+({V }) = {Vi ∈ Fgen : {V } � {Vi}}
Roughly speaking, this is the set of all security views that

uniquely determine the answer to V . If we know �+({V }),
we can compute �({V }). Furthermore, we can now efficiently
compare the disclosure labels of two different points �({V }
and �({V ′}) in the lattice of disclosure labels:

�({V }) � �({V ′}) if and only if �+({V }) ⊇ �+({V ′})
We provide an example in order to solidify this idea:

Example 6.1. Continuing Example 4.10, let

Fgen = {{V3}, {V6}, {V7}, {V8}}
The disclosure label for {V9} is GLB({V3}, {V6}, {V7}),

and consequently, �+({V9}) = {V3, V6, V7}. Similarly, the
disclosure label for {V12} is GLB({V3}, {V6}, {V7}, {V8}), so
that �+({V12}) = {V3, V6, V7, V8}. Examining these two sets,
it is clear that �+({V12}) ⊇ �+({V9}), and we therefore con-
clude that �(V12) � �(V9).

In practice, these subsets of Fgen can be represented as bit
vectors; we use bit mask operations to determine whether
one subset contains another. Since {V1} � {V2} only if V1

and V2 are views over the same base relation, we can further
optimize this representation. In our current implementation,

the low 32 bits of a 64-bit integer track which base relation
a view corresponds to, and the remaining 32 bits represent
the elements of Fgen that are associated with that relation.
In this way, a single 64-bit integer can store a disclosure
label for a disclosure lattice with up to 232 distinct relations,
each of which is associated with 32 distinct elements from
Fgen. There is nothing special about the number 32, and
the representation can easily be generalized to any number
of bits.

We extend this representation to multi-atom disclosure
labels by using arrays of single-atom disclosure labels. For
instance, in Example 6.1, the disclosure label of {V6, V7}
can be stored as a two-element array whose first element is
�+({V6}) and whose second element is �+({V7}).

Complexity Analysis: Let n denote the number of atoms
in the input query, and m denote the number of security
views. The Dissect algorithm from Section 5.2 relies on
query folding as a subroutine. Query folding is known to be
NP-hard, and our current implementation uses a brute-force
search that runs in time that is exponential in n. Dissection
yields a set of at most n single-atom views, and in the worst
case, the labeler must determine whether each of the n views
returned by Dissect can be rewritten in terms of each of the
m security views, for a total of O(n ·m) comparisons. Each
comparison can be performed in time linear in the total size
of its two input atoms. Once they have been computed, the
disclosure labels of an r-atom query and an s-atom query
can be compared in time O(r · s).
6.2 Representing security policies

Formally, a security policy is defined in Section 3.4 as a
subset of the elements in a labeler’s disclosure lattice. How-
ever, as we have already noted, disclosure lattices can be-
come enormous even for small databases; storing security
policies explicitly is therefore impractical. In this section,
we discuss a different representation of security policies that
drastically reduces space consumption. As an added bonus,
we are able to track and restrict cumulative disclosure with
very little space or computational overhead. We restrict our
discussion to a system with a single principal; a generaliza-
tion to multiple principals is straightforward.

Let us first consider the simpler problem of enforcing a
stateless security policy. When a principal issues a query Q,
a reference monitor decides whether to answer or refuse the
query based solely on the query’s disclosure label and on the
security policy itself. In this model, a security policy can be
represented as a set W of disclosure labels for single-atom
views; a query is answered if its disclosure label is belowW,
and is refused otherwise.

We now discuss a variant of this algorithm that limits cu-
mulative information disclosure over time. When a princi-
pal issues a query Qn, a reference monitor looks at both Qn

and the list of previously answered queriesQ1, Q2, . . . , Qn−1.
In the case where {Q1, Q2, . . . , Qn} � W, the query is an-
swered. Otherwise, the query is refused.

Crucially but perhaps counterintuitively, the two models
described above are actually equivalent. Formally, the first
model ensures that {Qi} � W for each i = 1, 2, . . . , n. The
second model ensures that {Q1, Q2, . . . , Qn} � W. Equiva-
lence follows immediately from the definition of a disclosure
order (Definition 3.1).

What this means in practice is that even a stateless ref-
erence monitor can restrict cumulative information disclo-
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sure. Unfortunately, this guarantee comes at a cost: it is no
longer possible to represent stateful security policies, such
as the Chinese Wall policies required by many business ap-
plications, with this model. In order to support such poli-
cies, we represent a security policy as a collection of sets
of single-atom disclosure labels, say {W1,W2, . . . ,Wk}. We
enforce the invariant that if Q1, Q2, . . . , Qn are the queries
that have been answered so far then {Q1, Q2, . . . , Qn} � Wi

must hold for some Wi. We refer to each Wi as a partition
of the security policy.

Example 6.2. Consider the security policy {W1,W2} in
which W1 = {V1} and W2 = {V3}. This policy encodes the
constraint that a principal may access either Meetings or
Contacts, but not both. If the principal Alice issues query
V6, this query will be accepted, since {V6} � W2. If she
next issues the query V7, this query will also be accepted,
since {V6, V7} � W2. However, if she then issues the query
V2, this query will be refused, since {V6, V7, V2} �� W1 and
{V6, V7, V2} �� W2.

A näıve implementation of this scheme would require us to
search through a principal’s entire query history whenever
we make a policy decision for a new query. Fortunately, this
is not necessary. In fact, we only need to keep track of which
of theWi are consistent with all the queries answered so far;
we can do so with a bit vector that contains one bit for each
partition of the policy.

Example 6.3. In Example 6.2, the reference monitor’s
bit vector is initially 〈1, 1〉, which indicates that ∅ � W1

and ∅ � W2. After answering V6, the bit vector becomes
〈1, 0〉 because the {V6} � W1 but {V6} �� W2. The bit
vector is left unchanged after the second query. If the third
query was answered, the bit vector would become 〈0, 0〉 to
indicate that {V6, V7, V2} is not below eitherW1 orW2 in the
lattice of disclosure labels. However, the reference monitor
will instead refuse the query and leave the bit vector as 〈1, 0〉.

7. LABELING IN PRACTICE
In this Section, we showcase the practical applicability

and usefulness of our labeling-based disclosure control tech-
niques. We begin by presenting results of a manual re-
view of an existing labeling-based disclosure control system –
the permissions structure associated with Facebook’s Graph
API and FQL. Next, we present experimental results from
an implementation of our labeling algorithms. We conclude
by evaluating the throughput of the policy checker described
in Section 6.2.

7.1 Reviewing Facebook’s APIs
Facebook provides two APIs through which apps can query

user data: the Graph API and FQL. They also define a set
of permissions such as user_likes and friends_likes, each
of which grants an app access to a particular view over the
data. Before an app can issue an API query, it must request
access to a specific set of permissions. In our terminology,
a set of permissions corresponds to a disclosure label, and
each Facebook app is effectively a different principal.

Facebook’s developer documentation specifies the mini-
mal set of permissions needed to execute different API queries.
In other words, it provides a hand-generated disclosure la-
bel for each of these queries. We hypothesized that as the

APIs grow larger and more complex, manual labeling be-
comes error-prone. We identified 42 different views over the
User table accessible through both APIs and compared the
respective permissions as given in the documentation. That
is, we identified pairs of corresponding queries in both APIs
where both queries selected a particular attribute of the User
table. We then compared the required permissions listed in
the documentation for each pair of queries.

We found discrepancies in the permissions needed for six
of the 42 views; details are shown in Figure 2. This illus-
trates the difficulty of manually labeling queries. Our find-
ings are consistent with previous studies of human-generated
query labels in a different setting, namely Android apps [16].

For each of the six Facebook views mentioned above, we
issued appropriate queries in both APIs to determine which
permissions were really required. In all six cases, we found
that the same query in both APIs required the same per-
missions, as shown for each query in the last column of Fig-
ure 2. Thus, the inconsistencies were in the documentation
only. Nonetheless, such errors are alarming. Tracking com-
plex permission structures by hand is challenging, and the
chances that developers will select the wrong permissions
for their apps are compounded if they rely on inaccurate
documentation.

7.2 Experimental evaluation
We implemented and evaluated two key systems: a disclo-

sure labeler for multi-atom queries, and a mechanism that
makes policy decisions based on the labeler’s output. The
disclosure labeler, which emphasized scalability but not raw
performance, was implemented in Java, and was tested with
the Java 1.7 VM. The policy mechanism was implemented in
C and compiled with GCC 4.2. All our tests were conducted
on a laptop with a 2.9GHz Intel Core i7 processor running
Mac OS X 10.8. Our benchmarks measured process rather
than wall time.

Our test database contained eight different relations that
captured core functionality from the Facebook API. The
largest of these was the User relation, which contained 34
distinct attributes. Each of the remaining relations con-
tained between 3 and 10 attributes.3

For each relation, we selected a set of security views that
could support the confidentiality policies described in Face-
book’s developer documentation. The most complex rela-
tion, the User relation, required us to define a generating
set Fgen with 16 distinct security views; most of the other
relations we considered could be modeled using just three
views. The main difficulty that we encountered was that
some of the permissions that Facebook uses require a notion
of joins. For instance, there is a permission that allows a
Facebook app to see the birthdays of all of a user’s Facebook
friends. Formally, this can be modeled using a join between
the User relation and the Friend relation. Our current im-
plementation does not yet support security views that have
joins in them. We dealt with this issue by adding an extra
column to each relation that indicated whether the owner
of a given tuple was friends with the principal executing the
query. Since the list of a user’s friends is available to any

3In preliminary tests on synthetic data, we tried increas-
ing the total number of relations to 1,000 while keeping the
number of security views per relation constant; the total
number of relations did not have any appreciable impact on
the hash-based disclosure labelers’ throughput.
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Attribute FQL Permissions Graph API Permissions Correct Labeling

pic (“picture” in Graph API) none any for pages with whitelisting/targeting restric-
tions, otherwise none

FQL

timezone any Available only for the current user Graph API
devices any any; only available for friends of the current user Graph API
relationship status any user_relationships or friends_relationships Graph API
quotes user_likes or

friends_likes

user_about_me or friends_about_me FQL

profile url (“link” in Graph API) any none FQL

Table 2: Inconsistencies between the FQL and Graph API permissions labeling of User attributes; “any”
means any nonempty set of permissions and “none” means no permissions are required
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Figure 5: Disclosure labeler performance.

app running on behalf of that user, this denormalization did
not affect the accuracy of our model.

After examining a number of sample Facebook applica-
tions, we decided to use a workload of queries that were
randomly generated with the following process:

1. Select a random relation from the schema.

2. Select a random subset of its attributes.

3. Randomly request these attributes for either (i) the
current user, (ii) friends of the current user, (iii) friends
of friends of the current user, or (iv) a non-friend.

In Step (3) above, we note that Option (ii) involved a
join with the Friend relation, and Option (iii) involved two
joins with the Friend relation. Hence, each query contained
between one and three body atoms. In order to stress-test
our algorithm, we extended our workload to generate (un-
realistically) complex queries; we did this by repeating the
process above between one and five times, and joining the
resulting subqueries on the uid (User ID) attribute, which
appeared in all the relations we considered.

We used this workload to evaluate the performance of
three different versions of our disclosure labeling algorithm.
The first version, which we used as a baseline, was a straight-
forward adaptation of the LabelGen algorithm from Sec-
tion 4.2. The second version used a hashtable to partition
views based on the relation they referenced. The third ver-
sion made use of both hashtable partitioning and the bit vec-
tor optimization from Section 6.1. In a fourth experiment,
we considered only the time needed to randomly generate
parsed queries but not to label them.
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Figure 6: Policy checker performance. The top-to-
bottom ordering in the legend mirrors the top-to-
bottom ordering of the curves.

Results are shown in Figure 5. The labeler that only in-
corporated hashing generally outperformed the baseline by
a small margin. The labeler that additionally made use of
the bit vector optimization consistently outperformed both
of them by a factor of 3x to 4x – it was able to process a
million queries, each with between 1 and 3 body atoms, in
slightly more than 2 seconds.

We hypothesized that the optimizations from Section 6
would make it possible to reason about complex security
policies very efficiently once the disclosure label for a query
was known. To verify this hypothesis, we wrote a simple
policy checker that maintained information about the secu-
rity policies of between 1,000 and 1,000,000 distinct princi-
pals. Each principal’s security policy was randomly gener-
ated. The maximum number of partitions per policy was set
to either 1 (a stateless security policy) or 5 (a fairly complex
Chinese Wall policy). However, the actual number of parti-
tions per policy could vary between principals, reflecting the
intuition that some principals would require more complex
policies than others. Similarly, we allowed the maximum
number of elements (i.e., single-atom views) per partition to
vary between 5 and 50. Intuitively, we should expect the
number of security views to increase as users define fine-
grained policies to control how their data is shared.

We ran our experiment on a collection of 10 million disclo-
sure labels output by the previous experiment. Each labeled
query contained between one and three body atoms. Queries
were randomly assigned to principals, and the appropriate
policy was enforced for each principal.
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The results are shown in Figure 6. For relatively simple
policies, the analysis time for a million queries was between
0.04 and 0.15 seconds, depending on the number of princi-
pals in the system. Throughput decreased very gradually
as the number of principals in the system increased. This
decrease was likely due to issues with cache locality: as the
number of principals grew larger, it became increasingly im-
probable that the metadata for a randomly selected principal
would reside in an on-chip cache. For a million principals,
our system was able to analyze a million disclosure labels in
about 0.57 seconds on the most complex policies we tested.

8. RELATED WORK
We have already discussed some related work, particularly

on the topic of enforcing security policies through equivalent
view rewriting. An alternative approach is to semantically
modify the original query into a new query that is safe to
be executed, as in Oracle’s Virtual Private Database and
similar systems [24]. In such systems, the query that is an-
swered may not be the same as the one that a principal
issues [27]. Miklau and Suciu propose a probabilistic notion
of non-disclosure in database systems [22]. Their work is in
some sense dual to ours: whereas they are able to enforce
strong guarantees about the information that a query does
not disclose, our approach is able to capture nuances of the
information that a query does disclose. The authors of [19]
develop a number of axioms for query pricing that have par-
allels to our requirements for disclosure labelers. However,
because the authors explicitly decouple the relative pricing
of queries from the relative amount of information disclosed
by these queries, our approach is not directly comparable
with theirs. There are also connections between our labeling
approach and data integration work on universal solutions
[15]. Exploring these connections in depth is future work.
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