

Network dynamics of spiking neurons with adaptation Moritz Deger¹, Tilo Schwalger¹, Richard Naud², and Wulfram Gerstner¹

1. School of Life Sciences, Brain Mind Institute & School of Computer and Communication Sciences, EPFL, Switzerland 2. Department of Physics, University of Ottawa, Ontario, Canada

CORE

Circuit level: population dynamics How to describe circuit level cortical dynamics? Cortex is layered. Cortex is layered. Few neuron types per layer. Each type in a layer forms a population. Populations have finite size. Here we derive a theory for such interacting populations, exploiting that neurons can be treated as quasi-renewal point processes, even in presence of spike-frequency adaptation.

Fig.: Oberlaender (2012) Cereb Cortex

Stochastic population integral equation

$$A(t) = \underbrace{\int_{-\infty}^{-\infty} I(t)A(t)A(t)dt}_{a(t)}$$

with fluctuations
$$\delta {\sf A}({\sf t})$$
 that obey (for $au \geq$ 0, conditioned on ${\sf A}({{
m \hat t}} < {\sf t})$)

$$\begin{split} \langle \delta \mathsf{A}(\mathsf{t}+\tau) \delta \mathsf{A}(\mathsf{t}) \rangle &= \\ \mathsf{N}^{-1} \mathsf{a}(\mathsf{t}) \, \delta(\tau) - \mathsf{N}^{-1} \int_{-\infty}^{\mathsf{t}} \mathsf{P}(\mathsf{t}+\tau|\hat{\mathsf{t}}) \mathsf{P}(\mathsf{t}|\hat{\mathsf{t}}) \mathsf{A}(\hat{\mathsf{t}}) \mathsf{d}\hat{\mathsf{t}} \end{split}$$

Because of synaptic coupling, external inputs and adaptation, $P(t|{\bf \hat{t}})$ depends on the past activity and on time (inhomogeneous renewal point process).

Network response to current injection

Population of 500 randomly connected excitatory neurons with adaptation

From neuronal dynamics to populations

Generalized linear model neuron: $ho_{\rm i}({f t})={f c}\,{f e}^{{f h}_{\rm i}({f t})-artheta_{
m i}({f t})}$

Quasi-renewal approximation

 $\begin{array}{ll} \text{mean-field } [4] & h_i(t, \{t_j^f\}_{j,f}) \approx h(t) &= (\kappa * [\mathsf{J} \mathsf{A} + \mathsf{I}])(t) \\ \text{adaptation } [3] & \vartheta_i(t, \{t_i^f\}_f) \approx \vartheta(t|\hat{t}) = \eta(t - \hat{t}) + (\gamma * \mathsf{A})(t) \\ \text{intensity} & \rho_i(t, \{t_j^f\}_{j,f}) \approx \rho(t|\hat{t}) = c \, e^{h(t) - \vartheta(t|\hat{t})} \end{array}$

Then follows survivor function $S(t|\hat{t}) = exp(-\int_{\hat{t}}^{t} \rho(t'|\hat{t})dt')$ interval density $P(t|\hat{t}) = \rho(t|\hat{t}) S(t|\hat{t})$

Linearized dynamics in the AI state

Assuming $A(t) = A_0 + \Delta A(t)$, with small ΔA , we linearize the population integral equation:

$$\mathbf{A}(\mathbf{t}) = \mathbf{A}_0 + (\mathbf{P}_0 * \Delta \mathbf{A})(\mathbf{t}) + \mathbf{A}_0 \frac{\mathbf{d}}{\mathbf{dt}} \{ \mathcal{L} * [(\kappa \mathbf{J} + \gamma) * \Delta \mathbf{A} + \kappa * \Delta \mathbf{I}] \} (\mathbf{t})$$

with colored poice $\xi(\mathbf{t})$

Then $A(t) = a(t) + \sqrt{\frac{A_0}{N}\xi(t)}$, with colored noise $\xi(t)$. $\langle \xi(t+\tau)\xi(t) \rangle = \delta(\tau) - \int_0^\infty P_0(s+\tau)P_0(s)ds$

Spectral density of population activity

For renewal processes with ISI density ${\bf P}_0$ and rate ${\bf A}_0,$ the power spectrum is

 $ilde{\mathsf{C}}_0(\omega) = \mathsf{A}_0(1- ilde{\mathsf{P}}_0)^{-1}(1- ilde{\mathsf{P}}_0 ilde{\mathsf{P}}_0^*)(1- ilde{\mathsf{P}}_0^*)^{-1}.$

Using the linear response function R(t) of the neurons to input currents, the spectral density of the population activity $\boldsymbol{A}(t)$ is

$$\tilde{\mathsf{C}}(\omega) = \tilde{\mathsf{B}}\mathsf{N}^{-1}(\tilde{\mathsf{C}}_0 + \tilde{\mathsf{R}}\tilde{\mathsf{C}}_1\tilde{\mathsf{R}}^*)\tilde{\mathsf{B}}^{\mathsf{T}*}, \quad \tilde{\mathsf{B}} = \left[1 - \tilde{\mathsf{R}}(\mathsf{J} + \tilde{\kappa}^{-1}\tilde{\gamma})\right]^{-1}$$

Here $\tilde{\mathsf{C}}_1$ is the input spectrum, and $\tilde{\mathsf{R}}(\omega) = (1 - \tilde{\mathsf{P}}_0)^{-1}i\omega\mathsf{A}_0\tilde{\mathcal{L}}\tilde{\kappa}.$

Conclusions

New theory explains effects of adaptation at the circuit level:

- \blacktriangleright Finite-size fluctations in coupled, randomly connected populations.
- \blacktriangleright Noise-shaping through adaptation: reduction in low-frequencies.

References

- 1. Deger, Schwalger, Naud, Gerstner (in review) *arXiv:1311.4206* 2. Lindner, Doiron, Longtin (2005) *Phys Rev E*
- Trousdale, Hu, Shea-Brown, Josic (2012) PLoS Comput Biol
- 3. Naud & Gerstner (2012) PLoS Comput Biol
- 4. Gerstner (2000) Neural Comput