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Circuit level: population dynamics

Fig.: Oberlaender (2012) Cereb Cortex

How to describe circuit level cortical dynamics?

�Cortex is layered.
�Few neuron types per layer.
�Each type in a layer forms a population.
�Populations have finite size.

Here we derive a theory for such interacting
populations, exploiting that neurons can be
treated as quasi-renewal point processes, even
in presence of spike-frequency adaptation.

Stochastic population integral equation
For a population of N neurons with
� spike trains si(t)
� population activity

A(t) = 1
N

�N
i si(t)

� inter-spike-interval (ISI)

probability density P(t|̂t)

we have (cf. [4]) A(t) =

� t

−∞
P(t|̂t)A(̂t)dt̂

� �� �
a(t)

+δA(t)

with fluctuations δA(t) that obey (for τ ≥ 0, conditioned on A(̂t < t))

�δA(t + τ )δA(t)� =
N−1 a(t) δ(τ ) − N−1

� t

−∞
P(t + τ |̂t)P(t|̂t)A(̂t)dt̂

Because of synaptic coupling, external inputs and adaptation,
P(t|̂t) depends on the past activity and on time (inhomogeneous
renewal point process).

Network response to current injection
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Population of 500 randomly connected excitatory neurons with adaptation.

From neuronal dynamics to populations

Generalized linear model
neuron:

ρi(t) = c ehi(t)−ϑi(t)

Quasi-renewal approximation:

mean-field [4] hi(t, {tfj}j,f) ≈ h(t) = (κ ∗ [J A + I])(t)

adaptation [3] ϑi(t, {tfi}f ) ≈ ϑ(t|̂t) = η(t − t̂) + (γ ∗ A)(t)

intensity ρi(t, {tfj}j,f) ≈ ρ(t|̂t) = c eh(t)−ϑ(t|̂t)

Then follows
survivor function S(t|̂t) = exp(− � t

t̂ ρ(t
�|̂t)dt�)

interval density P(t|̂t) = ρ(t|̂t) S(t|̂t)

Linearized dynamics in the AI state
Assuming A(t) = A0 + ΔA(t), with small ΔA, we linearize the
population integral equation:

a(t) = A0 + (P0 ∗ ΔA)(t)+

A0
d

dt
{L ∗ [(κJ + γ) ∗ ΔA + κ ∗ ΔI]}(t)

Then A(t) = a(t) +
�

A0

N
ξ(t), with colored noise ξ(t).

�ξ(t + τ )ξ(t)� = δ(τ ) − �∞
0 P0(s + τ )P0(s)ds

Spectral density of population activity
For renewal processes with ISI density P0 and rate A0, the power
spectrum is

C̃0(ω) = A0(1 − P̃0)
−1(1 − P̃0P̃

∗
0)(1 − P̃∗

0)
−1.

Using the linear response function R(t) of the neurons to input
currents, the spectral density of the population activity A(t) is

C̃(ω) = B̃N−1(C̃0+R̃C̃IR̃
∗)B̃T∗, B̃ =

�
1 − R̃(J + κ̃−1γ̃)

�−1

Here C̃I is the input spectrum, and R̃(ω) = (1 − P̃0)−1iωA0L̃κ̃.
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Special cases:
J = γ̃ = C̃I = 0: renewal process, C̃ = C̃0 dotted

γ̃ = 0: linear response theory for LIF [2] dash-dotted

P0 ∼ exp and γ̃ = 0: Hawkes process (Hawkes, 1971) dashed

Conclusions
New theory explains effects of adaptation at the circuit level:
�Finite-size fluctations in coupled, randomly connected populations.
�Noise-shaping through adaptation: reduction in low-frequencies.
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