Network dynamics of spiking neurons with adaptation
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Circuit level: population dynamics

How to describe circuit level cortical dynamics?

» Cortex is layered.

» Few neuron types per layer.

» Each type in a layer forms a population.
» Populations have finite size.

Here we derive a theory for such interacting
populations, exploiting that neurons can be
treated as quasi-renewal point processes, even
in presence of spike-frequency adaptation.

Fig.: Oberlaender (2012)
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Stochastic population integral equation
» spike trains s;(t)
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we have (cf. [4])

a(t)
with fluctuations §A(t) that obey (for 7 > 0, conditioned on A( < t))
(0A(t + T)IA()) =

N~'a(t) 6(7) — N—l/
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Because of synaptic coupling, external inputs and adaptation,
P(t|t) depends on the past activity and on time (inhomogeneous
renewal point process).
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Population of 500 randomly connected excitatory neurons with adaptation.

From neuronal dynamics to populations

Generalized linear model synaptic input K_}n
neuron: oo
h;(t)—9(t
pi(t) = ceM®-%)

neuron i

. . . tit itput
Quasi-renewal approximation. ynepRe R

mean-field [4] h;(t, {tjf}j,f) ~h(t) =(k*x[JA+I)()
adaptation [3] Wi(t, {ti}¢ ) =~ I(t|t) = n(t — ) + (v * A)(t)
plts {e}i0) = p(tff) = cet =00

survivor function S(t|t) = exp(— f; p(t'|t)dt)
interval density P(t|t) = p(t|t) S(t|t)

intensity

Then follows

Linearized dynamics in the Al state

Assuming A(t) = Ag + AA(t), with small AA, we linearize the
population integral equation:

a(t) = Ao + (Po * AA)(t)+
AO%{L * [(kd + 7v) * AA 4+ Kk * Al]}(t)

Then A(t) = a(t) + \/%E(t) with colored noise £(t).
(&(t+ 7)E(t)) = 6(7) — fy~ Po(s + 7)Po(s)ds

Spectral density of population activity

For renewal processes with ISI density Py and rate Ag, the power
spectrum is

Co(w) = Ao(1 — Po) (1 — PoP5)(1 — Py) "
Using the linear response function R(t) of the neurons to input
currents, the spectral density of the population activity A(t) is

C B & L BE BB =~ ~ -1
€(w) = BN}(Co+RCR"B™, B = [1 —RU+ R.l—l;?)}
Here C, is the input spectrum, and R(w) = (1 — Po) liwA¢Li.
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Special cases:
J=5=¢=0:
=0

Py ~ exp and 4 = 0: Hawkes process (Hawkes, 1971)

renewal process, C= éo dotted
linear response theory for LIF [2] dash-dotted
dashed

Conclusions

New theory explains effects of adaptation at the circuit level:
» Finite-size fluctations in coupled, randomly connected populations.
» Noise-shaping through adaptation: reduction in low-frequencies.
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