
The Role of Environmental and Controller Complexity in the Distributed
Optimization of Multi-Robot Obstacle Avoidance

Ezequiel Di Mario Iñaki Navarro Alcherio Martinoli

Abstract— The ability to move in complex environments is
a fundamental requirement for robots to be a part of our
daily lives. Increasing the controller complexity may be a
desirable choice in order to obtain an improved performance.
However, these two aspects may pose a considerable challenge
on the optimization of robotic controllers. In this paper,
we study the trade-offs between the complexity of reactive
controllers and the complexity of the environment in the
optimization of multi-robot obstacle avoidance for resource-
constrained platforms. The optimization is carried out in
simulation using a distributed, noise-resistant implementation
of Particle Swarm Optimization, and the resulting controllers
are evaluated both in simulation and with real robots. We
show that in a simple environment, linear controllers with only
two parameters perform similarly to more complex non-linear
controllers with up to twenty parameters, even though the latter
ones require more evaluation time to be learned. In a more
complicated environment, we show that there is an increase
in performance when the controllers can differentiate between
front and backwards sensors, but increasing further the number
of sensors and adding non-linear activation functions provide
no further benefit. In both environments, augmenting reactive
control laws with simple memory capabilities causes the highest
increase in performance. We also show that in the complex
environment the performance measurements are noisier, the
optimal parameter region is smaller, and more iterations are
required for the optimization process to converge.

I. I NTRODUCTION

In simple environments, it is usually straightforward for
human designers to foresee the different conditions a robot
will be exposed to, thus robotic controllers can be designed
manually by simplifying the number of parameters or inputs
used. However, for more complex environments, the human
design of high-performing controllers becomes a challenging
task, especially when the design space is constrained by se-
vere limitations of the on-board resources. Machine-learning
techniques are an alternative to human design that can
automatically synthesize robotic controllers in large search
spaces, coping with discontinuities and nonlinearities, and
find innovative solutions not foreseen by human designers,
especially when a large plasticity is available for control
design.

Increasing the complexity of the controller is one possible
way to obtain a higher performance. In particular, for artifi-
cial neural networks this can be achieved by increasing the

Distributed Intelligent Systems and Algorithms Laboratory,
School of Architecture, Civil and Environmental Engineering, École
Polytechnique Fédérale de Lausanne{ezequiel.dimario,
inaki.navarro, alcherio.martinoli}@epfl.ch

This research was supported by the Swiss National Science Foundation
through the National Center of Competence in Research Robotics.

number of neurons and sensory inputs, adding memory in
the form of recurrence, or adding non-linear operators.

Yet this increased complexity of the controller creates a
harder problem for the learning algorithm. A harder prob-
lem may mean noisier performance measurements, narrower
optimal parameter regions, or slower convergence.

Thus, the goal of this article is to quantify the trade-offs
between the complexity of computer-synthesized controllers
and their performance in different environments. For this pur-
pose, we use multi-robot obstacle avoidance as a benchmark
task.

Obstacle avoidance was used in one of the earliest works
of evaluative adaptation with Genetic Algorithms applied
to real robots [1], and it has also been employed to test
other learning algorithms such as Particle Swarm Optimiza-
tion (PSO) [2] and Reinforcement Learning [3]. We chose
obstacle avoidance as a benchmark task because it can be
implemented with different number of robots, requires basic
sensors and actuators available in most mobile robots, and
the performance metric can be defined to be fully evaluated
with on-board resources. Thus, it can serve as a benchmark
for testing learning algorithms with real robots in the same
way that standard benchmark functions are used in numerical
optimization, such as DeJong’s test suite [4].

The adaptation technique used is PSO [5], which allows a
distributed implementation in each robot, speeding up the
optimization process and adding robustness to failure of
individual robots.

The remainder of this article is organized as follows.
Section II provides some background on PSO, and on the re-
lationship between enviromental and controller complexity in
robotic problems. In Section III, we describe the experimen-
tal methodology, comprising controllers, environments, and
optimization algorithm. Section IV presents the experimental
results obtained and discusses the validity of the proposed
hypotheses. Finally, Section V concludes the paper.

II. BACKGROUND

PSO is a relatively new metaheuristic originally introduced
by Kennedy and Eberhart [5], which was inspired by the
movement of flocks of birds and schools of fish. Because of
its simplicity and versatility, PSO has been used in a wide
range of applications such as antenna design, communication
networks, finance, power systems, and scheduling. Within
the robotics domain, popular topics are robotic search, path
planning, and odor source localization [6].

PSO is well suited for distributed implementations due to
its distinct individual and social components and the use of

the neighborhood concept. Most of the work on distributed
implementation has been focused on benchmark functions
running on computational clusters [7], [8]. Implementations
with mobile robots are mostly applied to odor source local-
ization [9], [10], and robotic search [11], where the particles’
position is usually directly matched to the robots’ position in
the arena. Thus, the search is conducted in two dimensions
and with few or even only one optima, which does not
represent a complex optimization problem.

Most of the research on optimization in noisy environ-
ments has focused on evolutionary algorithms [12]. The
performance of PSO under noise has not been studied so
extensively. Parsopoulos and Vrahatis showed that standard
PSO was able to cope with noisy and continuously changing
environments, and even suggested that noise may help to
avoid local minima [13]. Pan et al. proposed a hybrid PSO-
Optimal Computing Budget Allocation (OCBA) technique
for function optimization in noisy environments [14]. Pugh
et al. showed that PSO could outperform Genetic Algorithms
on benchmark functions and for certain scenarios of limited-
time learning in presence of noise [2], [15].

In our previous work [16], we analyzed in simulation
how different algorithmic parameters in a distributed imple-
mentation of PSO affect the total evaluation time and the
resulting fitness. We proposed guidelines aiming at reducing
the total evaluation time so that it is feasible to implement
the adaptation process within the limits of the robots’ energy
autonomy. Further, we analyzed how the behavior and perfor-
mance of the controllers differed based on the environment
where learning takes place [17], and showed that no single
learning environment was able to generate a behavior general
and robust enough to succeed in all testing environments.

Regarding controller complexity, Al-Kazemi and Habib
investigated the internal behavior of PSO when the com-
plexity of a problem is increased by adding dimensions to
the problem [18]. They used different metrics to conclude
that swarm particles behave in a similar way independently
of the dimension of the search space. Auerbach and Bongard
studied the relationship between environmental and mor-
phological complexity in evolved robots [19], showing that
many complex environments lead to the evolution of more
complex body forms than those of robots evolved in simple
environments.

III. M ETHODOLOGY

In order to analyze the trade-offs between controller
complexity and performance in different environments, we
perform a set of twelve experiments, involving six controller
architectures (described in Subsection III-C) and two envi-
ronments (Subsection III-D). The fitness function, experi-
mental platform, and optimization algorithm are the same
for all experiments. The learning is conducted in simulation,
and the best solutions are later tested both in simulation and
with real robots.

A. Fitness Function

We use the same metric of performance as [1], which
is present in several studies on learning obstacle avoidance
(e.g., [2], [20], and our own previous work [16]). The fitness
function consists of three factors, all normalized to the
interval [0, 1]:

f = fv · (1−
√

ft) · (1− fi) (1)

fv =
1

Neval

Neval

∑
k=1

|vl ,k+ vr,k|

2
(2)

ft =
1

Neval

Neval

∑
k=1

|vl ,k− vr,k|

2
(3)

fi =
1

Neval

Neval

∑
k=1

imax,k (4)

where{vl ,k,vr,k} are the normalized speeds of the left and
right wheels at time stepk, imax,k is the normalized proximity
sensor activation value of the most active sensor at time step
k, and Neval is the number of time steps in the evaluation
period. This function rewards robots that move quickly (fv),
turn as little as possible (ft), and stay away from obstacles
(fi). Each factor is calculated at each time step and then
the product is averaged for the total number of time steps
in the evaluation period. The averaging effect reduces the
impact of the initial conditions, but it also filters abrupt
variations, unless they last appreciably in time, e.g., therobot
getting stuck is much more heavily penalized than a single
instantaneous collision.

B. Experimental Platform

Our experimental platform is the Khepera III mobile robot,
a differential wheeled vehicle with a diameter of 12 cm. It is
equipped with nine infra-red sensors for short range obstacle
detection, which in our case are the only external inputs for
the controllers, and two wheel encoders, which are used to
measure the wheel speeds for the fitness calculations.

Since the response of the Khepera III proximity sensors is
not a linear function of the distance to the obstacle, the prox-
imity values are inverted and normalized using measurements
of the real robot sensor’s response as a function of distance.
This inversion and normalization results in a proximity value
of 1 when touching an obstacle, and a value of 0 when the
distance to the obstacle is equal to or larger than 10 cm.

Simulations are performed in Webots [21], a realistic
physics-based submicroscopic simulator that models dynam-
ical effects such as friction and inertia. In this context, by
submicroscopic we mean that it provides a higher level of
detail than usual microscopic models, faithfully reproducing
intra-robot modules (e.g., individual sensors and actuators).

C. Controllers

Six controllers of incremental complexity are used to
understand the effect of complexity in the adaptation process
and its relationship with the environment. The incremental
complexity is achieved by increasing the number of sensors
used as inputs, adding non-linearities, and adding memory

TABLE I

SUMMARY OF CONTROLLERARCHITECTURES

Controller # Parameters # Sensors Linear Memory
brait2a 2 2 Yes No
brait2b 2 2 Yes No
brait10 10 4 Yes No
brait20 20 9 Yes No
ann20 20 9 No No
ann24 24 9 No Yes

in the form of recurrent neural network connections. Table I
presents a summary of the controller architectures.

The two simplest Braitenberg controllers use only two
parameters. They both take as inputs two virtual sensors,
left and right, obtained from averaging and normalizing the
sensor values of the three front sensors situated at the left
and right sides of the robot, disregarding the three sensors
in the back part. Equation 5 specifies the normalized wheel
speeds{vl ,vr} for controller brait2a, wherew0 and w1 are
the parameters to be optimized; andi l and ir the virtual left
and right sensors.

vl = 1+w0 · ir
vr = 1+w1 · i l (5)

Equation 6 defines thebrait2b controller:

vl = w0+w1 · ir
vr = w0+w1 · i l (6)

Controller brait2a uses one parameter for each virtual
sensor and a fixed bias speed set at the maximum, while
controller brait2b uses the same parameter for both virtual
sensors and has the bias speed as another parameter.

The brait10 controller uses ten parameters. It takes as
inputs four virtual sensors (front-left, front-right, back-left
and back-right) obtained from averaging and normalizing in
pairs the sensor values of eight sensors of the robot and dis-
carding the central sensor in the back part. Equation 7 defines
the normalized wheel speeds{vl ,vr} for controllerbrait10,
where{w0, · · · ,w10} are the parameters to be optimized; and
{iv1, · · · , iv4} represent the four virtual sensors.

vl = w0+
4

∑
k=1

ivk ·wk

vr = w5+
4

∑
k=1

ivk ·wk+5 (7)

The brait20 controller uses all the sensors as inputs
(Equation 8). The wheel speeds{vl ,vr} depend on the
normalized proximity sensor values{i1, · · · , i9}, and the
20 weight parameters being optimized{w0, · · · ,w19} (one
weight per proximity sensor per wheel, and the two wheel
speed biases).

vl = w0+
9

∑
k=1

ik ·wk

vr = w10+
9

∑
k=1

ik ·wk+10 (8)

The last two controllers are artificial neural networks. The
ann20controller is a non-recurrent artificial neural network
of two units with sigmoidal activation functionf (·). The
outputs of the units define the wheel speeds{vl ,vr}, as shown
in Equation 9. Each neuron has 10 input connections: the 9
infrared sensors and a connection to a constant bias speed.

vl = f (w0+
9

∑
k=1

ik ·wk)

vr = f (w10+
9

∑
k=1

ik ·wk+10)

(9)

The ann24controller is a recurrent artificial neural net-
work of two units with sigmoidal activation functionsf (·).
By recurrent we mean that the outputs of the network
from the previous time step are stored in memory and
used as inputs for the next time step. The outputs of the
units determine the wheel speeds{vl ,t ,vr,t}, as shown in
Equation 10. Each neuron has 12 input connections: the
9 infrared sensors, a connection to a constant bias speed,
a recurrent connection from its own output, and a lateral
connection from the other neuron’s output, resulting in 24
weight parameters in total.

vl ,t = f (w0+
9

∑
k=1

ik ·wk+w10 ·vl ,t−1+w11 ·vr,t−1)

vr,t = f (w12+
9

∑
k=1

ik ·wk+12+w22 ·vl ,t−1+w23 ·vr,t−1)

(10)

D. Environments

We conduct experiments in two different environments.
The first one is an empty square arena of 2m x 2m, where the
walls and the other robots are the only obstacles. The second
environment is the same bounded arena with cylindrical
obstacles added, shown in Figure 1. The obstacles have two
different sizes: there are 5 large obstacles (diameter 25cm),
and 15 small obstacles (diameter 10cm). In simulation,
the obstacles are randomly repositioned before each fitness
evaluation, which means that the obstacle configuration is
different for each evaluation. In real-robot experiments,the
obstacles are kept in fixed positions, the variation between
runs is provided by the randomized initial pose of the robots.

All experiments are conducted with 4 robots. The method
for initializing the robots’ pose for each fitness evaluation
is different between simulation and experiments with real
robots. In simulation, the initial positions are set randomly
with a uniform probability distribution, verifying that they
do not overlap with obstacles or other robots. For the

(a)

(b)

Fig. 1. Complex environment formed by outer walls and twentycylindrical
obstacles of different sizes. (a) Simulation arena (b) Realarena.

1: Intialize particles
2: for Ni iterationsdo
3: for

⌈

Np/Nrob
⌉

particlesdo
4: Update particle position
5: Evaluate particle
6: Re-evaluate personal best
7: Aggregate with previous best
8: Share personal best
9: end for

10: end for

Fig. 2. Noise-resistant PSO algorithm.

experiments with real robots, in the empty arena a random
speed is applied to each wheel for three seconds to randomize
the robots’ pose. In the arena with obstacles, the robots are
manually repositioned to avoid disturbing the location of the
obstacles, and then the robots turn in place with a random
speed for two seconds to randomize the orientation.

E. Optimization Algorithm

The optimization algorithm is the distributed, noise-
resistant variation of PSO introduced by Pugh et al. [15],
which operates by re-evaluating personal best positions and
aggregating them with the previous evaluations (in our casea
regular average performed at each iteration of the algorithm).
The pseudocode for the algorithm is shown in Figure 2.

The position of each particle represents a set of weights
of a controller. Each particle evaluation consists of a robot
moving in the arena for a fixed time (te =40 s) running the
controller with the weights given by that particles position.
The tness corresponding to the particle is equivalent to the
performance of the robot measured with function F from

TABLE II

PSOPARAMETER VALUES

Parameter Value
Number of robotsNrob 4
Population sizeNp 24
IterationsNi 200
Evaluation spante 40 s
Re-evaluationsNre 1
Personal weightpw 2.0
Neighborhood weightnw 2.0
DimensionD 24
Inertia w 0.8
Vmax 20

Eq 1.
The movement of particlei in dimension j depends on

three components: the velocity at the previous step weighted
by an inertia coefficientw, a randomized attraction to its per-
sonal bestx∗i, j weighted bywp, and a randomized attraction to
the neighborhood’s bestx∗i′, j weighted bywn (Eq. 11).rand()
is a random number drawn from a uniform distribution
between 0 and 1.

vi, j =w·vi, j +wp·rand()·(x∗i, j −xi, j)+wn ·rand()·(x∗i′, j −xi, j)
(11)

The algorithm is implemented in a distributed fashion,
which reduces the total evaluation time required by a factor
equal to the number of robots. Each robot evaluates in paral-
lel a different candidate solution and shares the solution with
its neighbors in order to create the next pool of candidate
solutions. Communication is used only to share the solutions,
and the communication delay is negligible in comparison to
the evaluation time of the controllers, which is 40 s. There
is no explicit communication used to coordinate the motion
of the robots.

The PSO neighborhood presents a ring topology with one
neighbor on each side. Particles’ positions and velocities
are initialized randomly with a uniform distribution in the
[−20,20] interval, and their maximum velocity is also limited
to that interval.

The PSO algorithmic parameters are set following the
guidelines for limited-time adaptation we presented in our
previous work [16] and are shown in Table II. The parameters
were chosen for the more complex controller (ann24) and
kept the same for the simpler ones in order to keep the total
learning time constant for all experiments, although simpler
controllers could have been optimized with less iterations
and/or less particles.

IV. RESULTS AND DISCUSSION

We begin by presenting the performance obtained in
simulation for the twelve experimental conditions described
in Section III. Figure 3 shows the fitness of the best set
of weights found with PSO in 20 evaluation runs performed
with four robots, leading to 80 fitness measurements per case.
{A, B, C, D, E, F} represent the six controllers{brait2a,
brait2b, brait10, brait20, ann20, ann24}, e stands for empty
arena, ando stands for arena with obstacles.

Ae Be Ce De Ee Fe Ao Bo Co Do Eo Fo
0

0.2

0.4

0.6

0.8

1

F
itn

es
s

Fig. 3. Best weights evaluated in simulation.{A, B, C, D, E, F} represent
the six controllers{brait2a, brait2b, brait10, brait20, ann20, ann24}, e
stands for empty arena, ando stands for arena with obstacles. The box
represents the upper and lower quartiles, the line across the middle marks
the median, and the crosses show outliers.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

(b)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

(c)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

(d)

Fig. 4. Trajectories for the best weights for recurrent and non-recurrent
controllers in the two environments. (a) Controllerbrait20 in empty arena
(b) Controllerbrait20 in obstacles arena (c) Controllerann24in empty arena
(d) Controllerann24 in obstacles arena.

As expected, the fitness in the environment with obstacles
is generally lower than in the empty environment. In both
environments, the greatest gain in performance is observed
when adding recurrence (e.g., 27% improvement between
ann20 and ann24 in the empty environment, 47% in the
environment with obstacles). Recurrence allows the robots
to switch the direction of movement between forwards and
backwards, while non-recurrent controllers move always
forwards. This difference in behavior can be seen in the tra-
jectories described by recurrent and non-recurrent controllers
in each environment, shown in Figure 4. The trajectories for
all the non-recurrent controllers, although not shown here,
are very similar.

Ae Be De Fe Ao Bo Do Fo
0

0.2

0.4

0.6

0.8

1

F
itn

es
s

Fig. 5. Best weights evaluated with real robots.{A,B,D,F} represent the
4 controllers{brait2a, brait2b, brait20, ann24}, e stands for empty arena,
ando stands for arena with obstacles.

Interestingly, increasing the number of sensors from four
to nine and adding non-linearities do not bring any significant
improvement in neither environment. For example, when
comparing the fitness of controllerbrait10 with ann20,
there is no statistically significant difference in the empty
environment (Mann-Whitney U test,p= 0.38), andann20is
slightly worse in the environment with obstacles (p= 0.03).
However, in the environment with obstacles, going from two
to four sensors (brait2a/brait2b to brait10) has a much larger
impact on performance than in the empty environment. This
suggests that the more complex environment requires the
robot to be able to differentiate obstacles in the front and
in the back, which is enabled by the two additional sensors.

In general, the performance difference between controllers
is higher in the complex arena than in the empty one,
meaning that fewer parameters may be used in simpler en-
vironments without a significant performance loss, but more
complex environments require more complex controllers.

The best weights obtained in simulation for controllers
brait2a, brait2b, brait20, ann24were also evaluated for 20
runs of 40 s with real robots in the two environments, and
the results are shown in Figure 5. The performances are
slightly lower, but the same trends mentioned for Figure 3
are observed: the controllers with more parameters perform
better than the simpler ones, and this difference is larger in
the environment with obstacles than in the empty one.

Since PSO is a stochastic optimization method, each PSO
optimization run may converge to a different solution. There-
fore, for statistical significance, we performed in simulation
100 PSO optimization runs for each experimental condition.
Figure 6 shows the progress of the PSO optimization for the
six controllers in the two environments. Note that in this case
the error bars represent the variation in the best performance
found at each iteration among the 100 optimization runs,
which is different from the variation in the 20 evaluation
runs performed with the best solution shown in Figures 3
and 5.

The optimization takes more time to converge for the more
complex controllers. For example, the fitness for the recurrent
ANN keeps improving during the 200 iterations, while it
quickly flattens before 100 iterations for the Braitenberg

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Iteration

F
itn

es
s

empty
obstacles

(a)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Iteration

F
itn

es
s

empty
obstacles

(b)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Iteration

F
itn

es
s

empty
obstacles

(c)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Iteration

F
itn

es
s

empty
obstacles

(d)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Iteration

F
itn

es
s

empty
obstacles

(e)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Iteration

F
itn

es
s

empty
obstacles

(f)

Fig. 6. Best fitness found at each iteration for 100 PSO optimization runs. Bars represent the standard deviation betweenruns. (a) Controllerbrait2a (b)
Controller brait2b (c) Controllerbrait10 (d) Controllerbrait20 (e) Controllerann20(f) Controller ann24

controllers. This is what we expected as the search for the
more complex controllers takes place in a space of higher
dimension. In addition, for each controller, the optimization
in the complex environment is generally noisier and takes
more time to converge than in the empty environment. A
notable exception is controllerbrait2a, where the average
fitness does not increase with the iterations, even though the
standard deviation is reduced. We suspect this is due to the
fact that it is more likely to find a good solution by chance
in the random initialization, as we are using 24 particles in
a two-dimensional search space.

In the case of controllersbrait2a and brait2b the fitness
landscape can be systematically explored, which is not the
case with the more complex parameters due to the high-
dimensional search spaces. Figure 7 shows the fitness of
controllersbrait2aandbrait2b in the two environments. Each
point (param0, param1) represents the average of 40 fitness
measurements performed with the corresponding parameter
values.

It should be noted that there is no distinct maximum in any
of the settings. Instead, there are regions of high performance
where a range of parameter values achieve similar fitness.

As expected, the performance of controllerbrait2a is
symmetric with respect to thew0 = w1 line, given the
symmetric disposition of the proximity sensors and the
sensor clustering. In the arena with obstacles, solutions in
the first quadrant (upper right) perform poorly, and the best
performing regions in the second and fourth quadrants (upper
left and lower right) are shifted towards higher parameter
values with respect to the empty arena, implying a more
aggressive turning behavior.

Regarding controllerbrait2b, the best solutions are located
in a triangular region in the fourth quadrant (lower right).
This region seems to be unbounded, meaning that the bias
speed parameter can increase as long as the sensor weight
increases proportionally to make the robots turn around
obstacles, and the actual robot speed will saturate atVmax

when there are no obstacles around.
For both controllers, the fitness in the complex environ-

ment with obstacles is lower than in the empty environment,
but also the best solution regions are smaller, and thus, the
optimization process is harder.

The white circles in Figure 7 mark the best points found
with the 100 PSO optimization runs. As there is no distinct
maximum in the fitness landscape, the solutions are spread
among the high fitness areas previously described.

V. CONCLUSION

Our goal in this paper was to study the trade-offs between
the complexity of controllers and the complexity of the
environment in the distributed optimization of robotic con-
trollers. For this purpose, we employed a multi-robot obstacle
avoidance case study in which the complexity of controllers
was varied by changing the number of sensors used as
input, adding non-linear functions, and adding memory by
using the output of the previous time step as an additional
input. Experiments were conducted in two environments of
different complexity, given by the number of obstacles in the
environment. The optimization algorithm was a distributed,
noise-resistant variation of PSO.

In the simple environment, linear controllers with only
two parameters performed similarly to more complex non-
linear controllers with up to twenty parameters, even though

−200 −100 0 100 200
−200

−150

−100

−50

0

50

100

150

200

w0 (left wheel)

w
1

(r
ig

ht
 w

he
el

)

0.1

0.2

0.3

0.4

0.5

0.6

(a)

−200 −100 0 100 200
−200

−150

−100

−50

0

50

100

150

200

w0 (left wheel)

w
1

(r
ig

ht
 w

he
el

)

0.05

0.1

0.15

0.2

0.25

(b)

0 100 200
−350

−300

−250

−200

−150

−100

−50

0

50

w0 (speed bias)

w
1

(w
he

el
 c

oe
ffi

ci
en

t)

0.1

0.2

0.3

0.4

0.5

0.6

(c)

0 100 200
−350

−300

−250

−200

−150

−100

−50

0

50

w0 (speed bias)

w
1

(w
he

el
 c

oe
ffi

ci
en

t)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(d)

Fig. 7. Fitness landscape for the two-parameter controllers. The solutions found by PSO are marked with white circles. (a) brait2a in empty arena (b)
brait2a with obstacles (c)brait2b in empty arena empty (d)brait2b with obstacles.

the latter ones required more iterations to be learned while
the simpler ones could have been designed by hand or
with a systematic search of the parameter space. Only the
addition of memory resulted in a significant improvement in
performance.

However, in the more complex environment, the difference
in performance between controllers was more noticeable. The
first significant performance improvement was seen when
the number of sensors was increased so robots were able
to differentiate between obstacles in the front and in the
back, and the second improvement was due to the addition of
memory by using the output of the previous time step as an
additional input. These differences in performance justifies
the use of more complex controllers with a larger number of
parameters in more complex environments.

Regarding the effects of the environment on the optimiza-
tion process, we showed that in complex environments the
optimization problem was harder in three aspects: the per-
formance measurements were noisier, the optimal parameter
region was smaller, and more iterations were required for the
optimization process to converge.

These challenges motivate our ongoing effort to study
distributed, noise-resistant adaptation techniques thatcan
optimize high-performing robotic controllers quickly and
robustly. As future work, we intend to explore different con-
troller architectures that can be parametrized and optimized,
as well as other performance metrics that results in different
avoidance behaviors.

REFERENCES

[1] D. Floreano and F. Mondada, “Evolution of homing navigation in
a real mobile robot,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 26, no. 3, pp. 396–407, 1996.

[2] J. Pugh and A. Martinoli, “Distributed scalable multi-robot learning
using particle swarm optimization,”Swarm Intelligence, vol. 3, no. 3,
pp. 203–222, May 2009.

[3] B. Huang, G. Cao, and M. Guo, “Reinforcement Learning Neural
Network to the Problem of Autonomous Mobile Robot Obstacle
Avoidance,” in International Conference on Machine Learning and
Cybernetics, 2005, pp. 85–89.

[4] K. A. De Jong, “An Analysis of the Behavior of a Class of Genetic
Adaptive Systems,” Ph.D. dissertation, University of Michigan, 1975.

[5] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE
International Conference on Neural Networks, 1995, pp. 1942 – 1948
vol.4.

[6] R. Poli, “Analysis of the publications on the applications of particle
swarm optimisation,”Journal of Artificial Evolution and Applications,
vol. 2008, no. 2, pp. 1–10, 2008.

[7] S. B. Akat and V. Gazi, “Decentralized asynchronous particle swarm
optimization,” in IEEE Swarm Intelligence Symposium. IEEE, Sept.
2008.

[8] J. Rada-Vilela, M. Zhang, and W. Seah, “Random Asynchronous
PSO,”The 5th International Conference on Automation, Robotics and
Applications, pp. 220–225, Dec. 2011.

[9] M. Turduev and Y. Atas, “Cooperative Chemical Concentration Map
Building Using Decentralized Asynchronous Particle SwarmOpti-
mization Based Search by Mobile Robots,” inIEEE/RSJ International
Conference on Intelligent Robots and Systems, 2010, pp. 4175–4180.

[10] L. Marques, U. Nunes, and A. T. Almeida, “Particle swarm-based
olfactory guided search,”Autonomous Robots, vol. 20, no. 3, pp. 277–
287, May 2006.

[11] J. Hereford and M. Siebold, “Using the particle swarm optimization
algorithm for robotic search applications,” inIEEE Swarm Intelligence
Symposium, 2007, pp. 53–59.

[12] Y. Jin and J. Branke, “Evolutionary Optimization in Uncertain Envi-
ronmentsA Survey,”IEEE Transactions on Evolutionary Computation,
vol. 9, no. 3, pp. 303–317, June 2005.

[13] K. E. Parsopoulos and M. N. Vrahatis, “Particle Swarm Optimizer
in Noisy and Continuously Changing Environments,” inArtificial
Intelligence and Soft Computing, M. H. Hamza, Ed. IASTED/ACTA
Press, 2001, pp. 289–294.

[14] H. Pan, L. Wang, and B. Liu, “Particle swarm optimization for
function optimization in noisy environment,”Applied Mathematics and
Computation, vol. 181, no. 2, pp. 908–919, Oct. 2006.

[15] J. Pugh, Y. Zhang, and A. Martinoli, “Particle swarm optimization for
unsupervised robotic learning,” inIEEE Swarm Intelligence Sympo-
sium, 2005, pp. 92–99.

[16] E. Di Mario and A. Martinoli, “Distributed Particle Swarm Opti-
mization for Limited Time Adaptation in Autonomous Robots,” in
International Symposium on Distributed Autonomous Robotic Systems
2012, Springer Tracts in Advanced Robotics 2014 (to appear).

[17] E. Di Mario, I. Navarro, and A. Martinoli, “The effect ofthe environ-
ment in the synthesis of robotic controllers: A case study inmulti-robot
obstacle avoidance using distributed particle swarm optimization,” in
Proceedings of the Twelfth European Conference on the Synthesis and
Simulation of Living Systems, Advances in Artificial Life, ECAL 2013,
2013, pp. 561–568.

[18] B. Al-Kazemi and S. Habib, “Complexity analysis of problem-
dimension using PSO,” inWSEAS International Conference on Evo-
lutionary Computing, 2006, pp. 45–52.

[19] J. E. Auerbach and J. C. Bongard, “On the relationship between
environmental and morphological complexity in evolved robots,” in
Genetic and Evolutionary Computation Conference. ACM Press,
2012, pp. 521–528.

[20] R. E. Palacios-Leyva, R. Cruz-Alvarez, F. Montes-Gonzalez, and
L. Rascon-Perez, “Combination of reinforcement learning with evo-
lution for automatically obtaining robot neural controllers,” in IEEE
International Conference on Evolutionary Computation, 2013, pp.
119–126.

[21] O. Michel, “Webots: Professional Mobile Robot Simulation,” Ad-
vanced Robotic Systems, vol. 1, no. 1, pp. 39–42, 2004.

