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Abstract— The ability to move in complex environments is nhumber of neurons and sensory inputs, adding memory in
a fundamental requirement for robots to be a part of our the form of recurrence, or adding non-linear operators.
daily lives. Increasing the controller complexity may be a  vet this increased complexity of the controller creates a
desirable choice in order to obtain an improved performance . .
However, these two aspects may pose a considerable challeng harder problem fqr .the learning algorithm. A harder prob-
on the optimization of robotic controllers. In this paper, |€m may mean noisier performance measurements, narrower
we study the trade-offs between the complexity of reactive optimal parameter regions, or slower convergence.
controllers and the complexity of the environment in the Thus, the goal of this article is to quantify the trade-offs
optimization of multi-robot obstacle avoidance for resource- between the complexity of computer-synthesized contlle
constrained platforms. The optimization is carried out in . 7o . .
simulation using a distributed, noise-resistant implemetation and their performapce in different envanments. For this p
of Particle Swarm Optimization, and the resulting controllers ~ POS€, we use multi-robot obstacle avoidance as a benchmark
are evaluated both in simulation and with real robots. We task.
show that in a simple environment, linear controllers with aly Obstacle avoidance was used in one of the earliest works
two parameters perform similarly to more complex non-linea ¢ oy a1yative adaptation with Genetic Algorithms applied
controllers with up to twenty parameters, even though the lé&er .
ones require more evaluation time to be learned. In a more to real rob_ots [11, gnd it has also be_en employed tp f[est
complicated environment, we show that there is an increase Other learning algorithms such as Particle Swarm Optimiza-
in performance when the controllers can differentiate betveen  tion (PSO) [2] and Reinforcement Learning [3]. We chose
front and backwards sensors, butincreasing further the nunber  gpstacle avoidance as a benchmark task because it can be
of sensors and adding non-linear activation functions proide 516 mented with different number of robots, requires basi
no further benefit. In both environments, augmenting reactve . . .
control laws with simple memory capabilities causes the higest ~S€NSOrS and actuator_s available in most mobile robots, and
increase in performance. We also show that in the Comp|ex the performance metric can be defined to be fU”y evaluated
environment the performance measurements are noisier, the with on-board resources. Thus, it can serve as a benchmark
optimal parameter region is smaller, and more iterations ae  for testing learning algorithms with real robots in the same
required for the optimization process to converge. way that standard benchmark functions are used in numerical

optimization, such as DeJong’s test suite [4].

The adaptation technique used is PSO [5], which allows a
In simple environments, it is usually straightforward fordistributed implementation in each robot, speeding up the
human designers to foresee the different conditions a rop@ptimization process and adding robustness to failure of
will be exposed to, thus robotic controllers can be designdgdividual robots. _ S _
manually by simplifying the number of parameters or inputs The remainder of this article is organized as follows.
used. However, for more complex environments, the humapfction Il provides some background on PSO, and on the re-
design of high-performing controllers becomes a challeggi Iat|on.sh|p between enwro_mental and controller compjem
task, especially when the design space is constrained by §gbotic problems. In Section Ill, we describe the experimen
vere limitations of the on-board resources. Machine-lisgrn tal methodology, comprising controllers, environmentsd a
techniques are an alternative to human design that c&Rtimization algorithm. Section IV presents the experitaén
automatically synthesize robotic controllers in largerska results obtained and discusses the validity of the proposed
spaces, coping with discontinuities and nonlinearities] a hypotheses. Finally, Section V concludes the paper.
find innovative solutions not foreseen by human designers,

especially when a large plasticity is available for control ] ] o ]
design. PSO is a relatively new metaheuristic originally introddice

Increasing the complexity of the controller is one possibl@Y Kennedy and Eberhart [5], which was inspired by the
way to obtain a higher performance. In particular, for artifi movement of flocks of birds and schools of fish. Because of

cial neural networks this can be achieved by increasing t

I. INTRODUCTION

II. BACKGROUND

fts simplicity and versatility, PSO has been used in a wide

range of applications such as antenna design, commurricatio
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: . i i PSO is well suited for distributed implementations due to
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the neighborhood concept. Most of the work on distributed. Fitness Function
implementation has been focused on benchmark functions\ye yse the same metric of performance as [1], which

running on computational clusters [7], [8]. Implementao s present in several studies on learning obstacle avoidanc
with mobile robots are mostly applied to odor source locale . [2], [20], and our own previous work [16]). The fitness

ization [9], [10], and robotic search [11], where the pdeSt  fnction consists of three factors, all normalized to the
position is usually directly matched to the robots’ positio  ,terval [0, 1J:

the arena. Thus, the search is conducted in two dimensions

and with few or even only one optima, which does not f= fi(1-Vhk)- -1-1f) 1)
represent a complex optimization problem. . 1 Neval Vi k+ Vex] @
v = - :

Most of the research on optimization in noisy environ-

. . Neval K=1 2
ments has focused on evolutionary algorithms [12]. The

1 Neval |V|,k _ Vl',k|

performance of PSO under noise has not been studied so fi = (3)

extensively. Parsopoulos and Vrahatis showed that stedndar Neval (& 2

PSO was able to cope with noisy and continuously changing 1 Neva

environments, and even suggested that noise may help to fi = Nowm > imaxk (4)
K=1

avoid local minima [13]. Pan et al. proposed a hybrid PSO-
Optimal Computing Budget Allocation (OCBA) techniquewhere {vi x, v} are the normalized speeds of the left and
for function optimization in noisy environments [14]. Pughright wheels at time stek, imaxk is the normalized proximity
et al. showed that PSO could outperform Genetic Algorithmsensor activation value of the most active sensor at time ste
on benchmark functions and for certain scenarios of limiteck, and Ney5 is the number of time steps in the evaluation
time learning in presence of noise [2], [15]. period. This function rewards robots that move quickily)(

In our previous work [16], we analyzed in simulationturn as little as possiblef{), and stay away from obstacles
how different algorithmic parameters in a distributed impl (fi). Each factor is calculated at each time step and then
mentation of PSO affect the total evaluation time and thtéhe product is averaged for the total number of time steps
resulting fithess. We proposed guidelines aiming at reducinn the evaluation period. The averaging effect reduces the
the total evaluation time so that it is feasible to implemenimpact of the initial conditions, but it also filters abrupt
the adaptation process within the limits of the robots’ gger variations, unless they last appreciably in time, e.g. et
autonomy. Further, we analyzed how the behavior and perfdetting stuck is much more heavily penalized than a single
mance of the controllers differed based on the environmeiitstantaneous collision.
where learning takes place [17], and showed that no singée

learning environment was able to generate a behavior genera _ ) )
and robust enough to succeed in all testing environments. Our experimental platform is the Khepera Ill mobile robot,
Regarding controller complexity, Al-Kazemi and Habib® differential wheeled vehicle with a diameter of 12 cm. It is

investigated the internal behavior of PSO when the Con%a_quipped with nine infra-red sensors for short range obestac
etection, which in our case are the only external inputs for

plexity of a problem is increased by adding dimensions t roll dt heel d hich dt
the problem [18]. They used different metrics to concludé € controliers, and two wheel encoders, which are used to
easure the wheel speeds for the fitness calculations.

that swarm particles behave in a similar way independently ~_~ . .
P y P W ince the response of the Khepera Il proximity sensors is

of the dimension of the search space. Auerbach and Bongar i functi fthe dist o the obstacle. th
studied the relationship between environmental and moj Ot a finear function ot the distance fo the obstacle, tha-pro

phological complexity in evolved robots [19], showing that”?'tt%/ valu?s agetmverted, and normalized l:csmgt_mea?l:jr.esinent
many complex environments lead to the evolution of mor € real robot Sensors response as a function ot distance

complex body forms than those of robots evolved in simpl his inversion an_d normalization results in a proximityual
environments. of 1 when touching an obstacle, and a value of O when the

distance to the obstacle is equal to or larger than 10 cm.
Simulations are performed in Webots [21], a realistic
physics-based submicroscopic simulator that models dynam
ical effects such as friction and inertia. In this context, b
submicroscopic we mean that it provides a higher level of
In order to analyze the trade-offs between controllegetail than usual microscopic models, faithfully reproidac
complexity and performance in different environments, Wentra-robot modules (e.g., individual sensors and actsjto
perform a set of twelve experiments, involving six contoll
architectures (described in Subsection 11-C) and two envfc- Controllers
ronments (Subsection IlI-D). The fitness function, experi- Six controllers of incremental complexity are used to
mental platform, and optimization algorithm are the samanderstand the effect of complexity in the adaptation pgsce
for all experiments. The learning is conducted in simulatio and its relationship with the environment. The incremental
and the best solutions are later tested both in simulatioh acomplexity is achieved by increasing the number of sensors
with real robots. used as inputs, adding non-linearities, and adding memory

Experimental Platform

IIl. METHODOLOGY



TABLE |

SUMMARY OF CONTROLLERARCHITECTURES
9

Controller ~ # Parameters  # Sensors  Linear Memory Vi = Wo+ Z T - Wi

brait2a 2 2 Yes No k=1

brait2b 2 2 Yes No 9

brait10 10 4 Yes No — [

brait20 20 9 Yes No Vi = Waot kzllk Wict10 (8)
ann20 20 9 No No .

ann24 24 9 No Yes The last two controllers are artificial neural networks. The

ann20controller is a non-recurrent artificial neural network
of two units with sigmoidal activation functiorii(-). The
in the form of recurrent neural network connections. Table Qutputs of the units define the wheel spegdsv; }, as shown
presents a summary of the controller architectures. in Equation 9. Each neuron has 10 input connections: the 9
The two simplest Braitenberg controllers use only twdnfrared sensors and a connection to a constant bias speed.
parameters. They both take as inputs two virtual sensors, 9
left and right, obtained from averaging and normalizing the vio= fwot ) kW)
sensor values of the three front sensors situated at the left k=1

and right sides of the robot, disregarding the three sensors 2

in the back part. Equation 5 specifies the normalized wheel Vi = f(W10+k;Ik~Wk+1o)
speeds{v;,v; } for controllerbrait2a, wherewy andw, are 9)
the parameters to be optimized; aipcdndi, the virtual left
and right sensors. The ann24 controller is a recurrent artificial neural net-
work of two units with sigmoidal activation functionf-).
v = 1+Wo-ir By recurrent we mean that the outputs .of the network
. from the previous time step are stored in memory and
Vi = 14w ®)  ysed as inputs for the next time step. The outputs of the
units determine the wheel speedg,v;1}, as shown in
Equation 6 defines thrait2b controller: Equation 10. Each neuron has 12 input connections: the
9 infrared sensors, a connection to a constant bias speed,
Vi = Wo+Wp-ir a recurrent connection from its own output, and a lateral
Vi = Wo+Wy-i (6) connection from the other neuron’s output, resulting in 24
weight parameters in total.
Controller brait2a uses one parameter for each virtual 9

sensor and a fixed bias speed set at the maximum, while/.t

controller brait2b uses the same parameter for both virtual

sensors and has the bias speed as another parameter.

The braitl0 controller uses ten parameters. It takes as &

inputs four virtual sensors (front-left, front-right, Bateft (10)

and back-right) obtained from averaging and normalizing in )

pairs the sensor values of eight sensors of the robot and df3- Environments

carding the central sensor in the back part. Equation 7 define We conduct experiments in two different environments.

the normalized wheel speeds;,v;} for controllerbrait1l0, The first one is an empty square arena of 2m x 2m, where the

where{wp,-- ,wio} are the parameters to be optimized; andvalls and the other robots are the only obstacles. The second

{ivy,--- ,iv4} represent the four virtual sensors. environment is the same bounded arena with cylindrical
obstacles added, shown in Figure 1. The obstacles have two
different sizes: there are 5 large obstacles (diameter 25cm

F(Wo+ i Wic+Wio- Vig—1+ Wit Vre-1)
=

9
= f(wiz+ Z k- Wit 12+ Wo2- Vi 11+ Wo3- Vig—1)
s}

4 and 15 small obstacles (diameter 10cm). In simulation,
Vi = W0+kz Vi - Wi the obstacles are randomly repositioned before each fithess

jl evaluation, which means that the obstacle configuration is
Vi = Ws+ z Vi - Wi 5 @) different for each eyalqatlon. In.r.eal-robot expe_rlmertﬂna

&1 obstacles are kept in fixed positions, the variation between

runs is provided by the randomized initial pose of the robots
The brait20 controller uses all the sensors as inputs All experiments are conducted with 4 robots. The method
(Equation 8). The wheel speedss,v;} depend on the for initializing the robots’ pose for each fitness evaluatio
normalized proximity sensor value§i,---,ig}, and the is different between simulation and experiments with real
20 weight parameters being optimizédp,--- ,wig} (one robots. In simulation, the initial positions are set rantiom
weight per proximity sensor per wheel, and the two wheekith a uniform probability distribution, verifying that &y
speed biases). do not overlap with obstacles or other robots. For the



(b)

Fig. 1. Complex environment formed by outer walls and tweytjndrical
obstacles of different sizes. (a) Simulation arena (b) Reaha.

1: Intialize particles

2: for N; iterationsdo

for [Np/Nwop| particlesdo
Update particle position
Evaluate particle
Re-evaluate personal best
Aggregate with previous best
Share personal best

9: end for

10: end for

© N R

Fig. 2. Noise-resistant PSO algorithm.

TABLE I
PSOPARAMETER VALUES

Parameter Value
Number of robotdN,qp 4
Population sizeN, 24
IterationsN; 200
Evaluation spare 40 s
Re-evaluationd\,e 1
Personal weighpw 2.0
Neighborhood weightw 2.0
DimensionD 24
Inertia w 0.8
Vimax 20

Eq 1.

The movement of particlé in dimensionj depends on
three components: the velocity at the previous step weighte
by an inertia coefficienty, a randomized attraction to its per-
sonal besk’; weighted byw, and a randomized attraction to
the neighborhood’s beg j weighted byw, (Eqg. 11).rand()
is a random number drawn from a uniform distribution
between 0 and 1.

Vi,j =W-Vi j+Wp-rand() - (' =i j) +Wwn-rand() - (5 ; —Xi j)
(11)

The algorithm is implemented in a distributed fashion,
which reduces the total evaluation time required by a factor
equal to the number of robots. Each robot evaluates in paral-
lel a different candidate solution and shares the solutiin w
its neighbors in order to create the next pool of candidate
solutions. Communication is used only to share the solstion
and the communication delay is negligible in comparison to
the evaluation time of the controllers, which is 40 s. There
is no explicit communication used to coordinate the motion
of the robots.

The PSO neighborhood presents a ring topology with one
neighbor on each side. Particles’ positions and velocities
are initialized randomly with a uniform distribution in the

experiments with real robots, in the empty arena a randofn 20,20 interval, and their maximum velocity is also limited
speed is applied to each wheel for three seconds to randomigethat interval. _
the robots’ pose. In the arena with obstacles, the robots areThe PSO algorithmic parameters are set following the

manually repositioned to avoid disturbing the locationlod t

guidelines for limited-time adaptation we presented in our

obstacles, and then the robots turn in place with a randoRf€vious work [16] and are shown in Table Il. The parameters

speed for two seconds to randomize the orientation.

E. Optimization Algorithm

The optimization algorithm is the distributed, noise-
resistant variation of PSO introduced by Pugh et al. [15]"’,1
which operates by re-evaluating personal best positiods an
aggregating them with the previous evaluations (in our ease

regular average performed at each iteration of the algujith
The pseudocode for the algorithm is shown in Figure 2.

were chosen for the more complex controllani24 and
kept the same for the simpler ones in order to keep the total
learning time constant for all experiments, although sanpl
controllers could have been optimized with less iterations
nd/or less particles.

IV. RESULTS ANDDISCUSSION

We begin by presenting the performance obtained in
simulation for the twelve experimental conditions desedib

The position of each particle represents a set of weighiis Section Ill. Figure 3 shows the fitness of the best set
of a controller. Each particle evaluation consists of a tobmf weights found with PSO in 20 evaluation runs performed

moving in the arena for a fixed timé. &40 s) running the
controller with the weights given by that particles positio

with four robots, leading to 80 fitness measurements per case
{A, B, C, D, E, K represent the six controllersrait2a,

The tness corresponding to the particle is equivalent to thwait2b, brait10, brait20, ann20, ann24e stands for empty
performance of the robot measured with function F fronarena, and stands for arena with obstacles.
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Fig. 3. Best weights evaluated in simulatig, B, C, D, E, B represent Fig. 5. Best weights evaluated with real rob{#sB,D,F} represent the
the six controllers{brait2a, brait2b, brait10, brait20, ann20, ann4e 4 controllers{brait2a, brait2b, brait20, ann2}, e stands for empty arena,
stands for empty arena, amastands for arena with obstacles. The boxando stands for arena with obstacles.

represents the upper and lower quartiles, the line acressniddle marks

the median, and the crosses show outliers.

Interestingly, increasing the number of sensors from four
to nine and adding non-linearities do not bring any significa
improvement in neither environment. For example, when
comparing the fitness of controlldoraitl0 with ann2Q
there is no statistically significant difference in the eynpt
environment (Mann-Whitney U tesp,= 0.38), andann20is

0.5

> 0
slightly worse in the environment with obstaclgs=£ 0.03).
05 However, in the environment with obstacles, going from two
to four sensorstrait2a/brait2bto brait10) has a much larger
| A impact on performance than in the empty environment. This
X suggests that the more complex environment requires the
(b) robot to be able to differentiate obstacles in the front and

in the back, which is enabled by the two additional sensors.
In general, the performance difference between contsoller
is higher in the complex arena than in the empty one,
meaning that fewer parameters may be used in simpler en-
vironments without a significant performance loss, but more
complex environments require more complex controllers.
The best weights obtained in simulation for controllers
brait2a, brait2b, brait20, ann24vere also evaluated for 20
Ea— 5 o5 1 E E— 05 1 runs of 40 s with real robots in the two environments, and
) the results are shown in Figure 5. The performances are
(©) (d) - : -
slightly lower, but the same trends mentioned for Figure 3

Fig. 4. Trajectories for the best weights for recurrent and-recurrent g1 gpserved: the controllers with more parameters perform
controllers in the two environments. (a) Controllenait20 in empty arena

(b) Controllerbrait20 in obstacles arena (c) Controllann24in empty arena  Detter than the simpler ones, and this difference is langer i
(d) Controllerann24in obstacles arena. the environment with obstacles than in the empty one.

Since PSO is a stochastic optimization method, each PSO
optimization run may converge to a different solution. Ther
As expected, the fitness in the environment with obstacldere, for statistical significance, we performed in simiglat

is generally lower than in the empty environment. In botl00 PSO optimization runs for each experimental condition.
environments, the greatest gain in performance is observE@ure 6 shows the progress of the PSO optimization for the
when adding recurrence (e.g., 27% improvement betwesix controllers in the two environments. Note that in thisea
ann20 and ann24in the empty environment, 47% in the the error bars represent the variation in the best perfoceman
environment with obstacles). Recurrence allows the robotsund at each iteration among the 100 optimization runs,
to switch the direction of movement between forwards andhich is different from the variation in the 20 evaluation
backwards, while non-recurrent controllers move alwayguns performed with the best solution shown in Figures 3
forwards. This difference in behavior can be seen in the trand 5.
jectories described by recurrent and non-recurrent cthaitso The optimization takes more time to converge for the more
in each environment, shown in Figure 4. The trajectories faromplex controllers. For example, the fitness for the remirr
all the non-recurrent controllers, although not shown herdNN keeps improving during the 200 iterations, while it
are very similar. quickly flattens before 100 iterations for the Braitenberg

0.5

-0.5

xo
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Fig. 6. Best fitness found at each iteration for 100 PSO opétitn runs. Bars represent the standard deviation between (a) Controlleibrait2a (b)
Controller brait2b (c) Controllerbrait10 (d) Controllerbrait20 (e) Controllerann20(f) Controller ann24

controllers. This is what we expected as the search for the Regarding controllebrait2b, the best solutions are located
more complex controllers takes place in a space of higher a triangular region in the fourth quadrant (lower right).
dimension. In addition, for each controller, the optimiaat This region seems to be unbounded, meaning that the bias
in the complex environment is generally noisier and takespeed parameter can increase as long as the sensor weight
more time to converge than in the empty environment. Ancreases proportionally to make the robots turn around
notable exception is controlldrrait2a, where the average obstacles, and the actual robot speed will saturatéaf
fitness does not increase with the iterations, even though ttvhen there are no obstacles around.

standard deviation is reduced. We suspect this is due to theFor both controllers, the fitness in the complex environ-
fact that it is more likely to find a good solution by chancement with obstacles is lower than in the empty environment,
in the random initialization, as we are using 24 particles ibut also the best solution regions are smaller, and thus, the
a two-dimensional search space. optimization process is harder.

In the case of controllerbrait2a and brait2b the fitness ~_1he white circles in Figure 7 mark the best points found
landscape can be systematically explored, which is not téth the 100 PSO optimization runs. As there is no distinct
case with the more complex parameters due to the highl@imum in the fitness landscape, the solutions are spread
dimensional search spaces. Figure 7 shows the fitness @Rong the high fitness areas previously described.
controllersbrait2zaandbrait2bin the two environments. Each V. CONCLUSION
point (paranD, parani) represents the average of 40 fitness
measurements performed with the corresponding parame{ﬁ(r_:‘ complexity of controllers and the complexity of the
values. . . L L .

environment in the distributed optimization of robotic eon

It should be noted that there is no distinct maximum in any|lers. For this purpose, we employed a multi-robot otista
of the settings. Instead, there are regions of high perfoo@a ayoidance case study in which the complexity of controllers
where a range of parameter values achieve similar fitnessyas varied by changing the number of sensors used as

As expected, the performance of controllerait2a is input, adding non-linear functions, and adding memory by
symmetric with respect to thewy = w; line, given the using the output of the previous time step as an additional
symmetric disposition of the proximity sensors and thénput. Experiments were conducted in two environments of
sensor clustering. In the arena with obstacles, solutians different complexity, given by the number of obstacles ia th
the first quadrant (upper right) perform poorly, and the besinvironment. The optimization algorithm was a distribyted
performing regions in the second and fourth quadrants (uppeoise-resistant variation of PSO.
left and lower right) are shifted towards higher parameter In the simple environment, linear controllers with only
values with respect to the empty arena, implying a moravo parameters performed similarly to more complex non-
aggressive turning behavior. linear controllers with up to twenty parameters, even tlioug

Our goal in this paper was to study the trade-offs between
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the latter ones required more iterations to be learned whilgs)
the simpler ones could have been designed by hand or
with a systematic search of the parameter space. Only thﬁ]
addition of memory resulted in a significant improvement in
performance.

However, in the more complex environment, the difference[g]

) p ,
in performance between controllers was more noticeable. Th
first significant performance improvement was seen wher?)
the number of sensors was increased so robots were able
to differentiate between obstacles in the front and in the
back, and the second improvement was due to the addition f!
memory by using the output of the previous time step as an
additional input. These differences in performance juestifi [11]
the use of more complex controllers with a larger number of
parameters in more complex environments. [12]

Regarding the effects of the environment on the optimiza-
tion process, we showed that in complex environments tq&]
optimization problem was harder in three aspects: the per-
formance measurements were noisier, the optimal parameter
region was smaller, and more iterations were required f®r ﬂfl4]
optimization process to converge.

These challenges motivate our ongoing effort to stud?/15
distributed, noise-resistant adaptation techniques taat ]
optimize high-performing robotic controllers quickly and
robustly. As future work, we intend to explore different eon [16]
troller architectures that can be parametrized and opéidhiz
as well as other performance metrics that results in differe
avoidance behaviors. [17]

REFERENCES

[1] D. Floreano and F. Mondada, “Evolution of homing navigatin
a real mobile robot”IEEE Transactions on Systems, Man, and[18]
Cybernetics, Part B: Cyberneticsol. 26, no. 3, pp. 396-407, 1996.
[2] J. Pugh and A. Martinoli, “Distributed scalable multibot learning
using particle swarm optimization@warm Intelligencevol. 3, no. 3,
pp. 203-222, May 2009.
B. Huang, G. Cao, and M. Guo, “Reinforcement Learning fdéu
Network to the Problem of Autonomous Mobile Robot Obstacle
Avoidance,” in International Conference on Machine Learning and
Cybernetics 2005, pp. 85-89.
[4] K. A. De Jong, “An Analysis of the Behavior of a Class of @&¢n
Adaptive Systems,” Ph.D. dissertation, University of Mgam, 1975.
[5] J. Kennedy and R. Eberhart, “Particle swarm optimization IEEE
International Conference on Neural Network€995, pp. 1942 — 1948 [21]
vol.4.

[19]

(31

R. Poli, “Analysis of the publications on the applicat®o of particle
swarm optimisation,Journal of Artificial Evolution and Applications
vol. 2008, no. 2, pp. 1-10, 2008.

S. B. Akat and V. Gazi, “Decentralized asynchronous iplrtswarm
optimization,” in IEEE Swarm Intelligence SymposiumEEE, Sept.
2008.

J. Rada-Vilela, M. Zhang, and W. Seah, “Random Asynchusn
PSO,”The 5th International Conference on Automation, Robotitd a
Applications pp. 220-225, Dec. 2011.

M. Turduev and Y. Atas, “Cooperative Chemical Concetitra Map
Building Using Decentralized Asynchronous Particle Swabnpti-
mization Based Search by Mobile Robots,"IEEE/RSJ International
Conference on Intelligent Robots and Syste2@40, pp. 4175-4180.
L. Marques, U. Nunes, and A. T. Almeida, “Particle swabased
olfactory guided searchAutonomous Robatsol. 20, no. 3, pp. 277—
287, May 2006.

J. Hereford and M. Siebold, “Using the particle swarntimjzation
algorithm for robotic search applications,” lIBEE Swarm Intelligence
Symposium2007, pp. 53-59.

Y. Jin and J. Branke, “Evolutionary Optimization in UWstain Envi-
ronmentsA Survey,JEEE Transactions on Evolutionary Computation
vol. 9, no. 3, pp. 303-317, June 2005.

K. E. Parsopoulos and M. N. Vrahatis, “Particle Swarmti@jzer
in Noisy and Continuously Changing Environments,” Autificial
Intelligence and Soft Computinyl. H. Hamza, Ed. IASTED/ACTA
Press, 2001, pp. 289-294.

H. Pan, L. Wang, and B. Liu, “Particle swarm optimizatidor
function optimization in noisy environment&pplied Mathematics and
Computation vol. 181, no. 2, pp. 908-919, Oct. 2006.

J. Pugh, Y. Zhang, and A. Martinoli, “Particle swarm iogization for
unsupervised robotic learning,” ilEEEE Swarm Intelligence Sympo-
sium 2005, pp. 92-99.

E. Di Mario and A. Martinoli, “Distributed Particle Swia Opti-
mization for Limited Time Adaptation in Autonomous Robbts)
International Symposium on Distributed Autonomous Reb®yistems
2012 Springer Tracts in Advanced Robotics 2014 (to appear).

E. Di Mario, I. Navarro, and A. Martinoli, “The effect dhe environ-
ment in the synthesis of robotic controllers: A case studwiiiti-robot
obstacle avoidance using distributed particle swarm apétion,” in
Proceedings of the Twelfth European Conference on the &gistand
Simulation of Living Systems, Advances in Artificial LIf€AE 2013
2013, pp. 561-568.

B. Al-Kazemi and S. Habib, “Complexity analysis of pteim-
dimension using PSO,” iIWSEAS International Conference on Evo-
lutionary Computing 2006, pp. 45-52.

J. E. Auerbach and J. C. Bongard, “On the relationshipvbeen
environmental and morphological complexity in evolved atstj' in
Genetic and Evolutionary Computation ConferenceACM Press,
2012, pp. 521-528.

] R. E. Palacios-Leyva, R. Cruz-Alvarez, F. Montes-Galaz, and

L. Rascon-Perez, “Combination of reinforcement learninh vevo-
lution for automatically obtaining robot neural controfi¢ in IEEE
International Conference on Evolutionary Computatic2013, pp.
119-126.

O. Michel, “Webots: Professional Mobile Robot Simidat’ Ad-
vanced Robotic Systemwl. 1, no. 1, pp. 39-42, 2004.



