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ABSTRACT: A solar energy conversion concept based on the photoinduced separation of
a pair of redox species in a biphasic liquid cell is presented. The redox pair is subsequently
discharged in an electrochemical flow cell to generate electricity. To illustrate this generic
concept, we have revisited the thionine/cobalt EDTA system where, upon light excitation,
the excited thionine dye is quenched in the aqueous solution by the [Co(II)EDTA]2−

complex to form both [Co(III)EDTA]− and reduced thionine, namely leucothionine, that
partitions to the organic phase. As a result, solar energy is converted to a redox pair,
leucothionine/[Co(III)EDTA]−. The two immiscible liquid phases are separated, and the
redox energy is stored in the respective electrolyte solutions. These two solutions can then
be electrochemically discharged in a flow cell to generate electricity on demand. The
electrode reactions involved are the reoxidation of leucothionine to thionine in the organic
solvent and the reduction of the Co(III) complex in water.

1. INTRODUCTION

In the quest for solar electricity, the dry route based on p|n
junctions is at present the major route for photovoltaic solar
energy conversion. The gist is the presence of an interfacial
electric field when two solid semiconductors doped with electron
acceptors and donors, respectively, are in contact. The
conversion efficiency is theoretically limited by the Shockley−
Quiesser limit1 at about 30−35% considering the blackbody
radiation, the radiative and nonradiative recombinations, and the
spectrum losses associated to the band gap.
An alternative approach is the photoelectrochemical route

pioneered in 1839 by Becquerel, where in modern versions an
excited sensitizer can inject an electron into a semiconductor
electrode, where it diffuses to the back contact.2 A redox couple
in solution is used to reduce the oxidized dye, thereby resetting it
for further photon capture. The oxidized form of the redox
couple diffuses in solution to the counter electrode, which is
often a platinum based electrode, to be reduced in the dark.3 In
this special issue dedicated to Prof. Michael Graẗzel, many papers
are dedicated to the performances of dye sensitized solar cells
(DSSC) for which the maximum conversion efficiency stands at
about 15% for perovskite based cells.4

An intrinsic characteristic of most photovoltaic systems is their
planar architecture and the need of a current collection pattern
made of busbars and fingers to collect the current from the light
permeable layer. Thus, optimization of such systems is required
to achieve a desirable compromise between light exposure and
low resistance of the current extractor.5

Other electrochemical routes have been proposed to capture
solar energy. Chief among these is the photogalvanic approach,
where a photoinduced electron transfer reaction occurs not at an
electrode but in the bulk of an electrolyte solution sandwiched
between two electrodes.6,7 In this approach, in the case of a

reductive quenching, the reduced sensitizer and the oxidized
quencher diffuse to the transparent and the dark electrodes to be
oxidized and reduced, respectively. Here, the recombination is
avoided mainly by kinetic factors, setting up concentration
gradients. Albery and Archer have shown that an optimum
efficiency of 18%8 is theoretically possible, albeit never
experimentally achieved with most reported systems operating
at an efficiency of only a few percent.6,7

The purpose of this article is to revisit the concept of charge
separation at the interface between two immiscible electrolyte
solutions (ITIES). In 1962 (nihil novi sub sole), Rabinowitch et
al. showed that photosystems comprising an aqueous dye, such as
thionine (Th+), and an aqueous redox quencher, such as Fe(II)
(investigated as early as 1940 as a photogalvanic cell9−13 and later
in microemulsions by Graẗzel14,15), provide charge separation if
the reaction is carried out in a biphasic water−ether emulsion.
The reduced dye is extracted to the organic phase, while the
oxidized quencher remains in the aqueous phase.16 In 1970, the
same authors showed that if the aqueous redox quencher is
[cobalt(II)EDTA]2−, then a 54% separation of the photo-
products is possible when working at pH 7.2.17

The concept of photochemical charge separation at a liquid−
liquid interface was also investigated in the nineties by Kotov and
Kuzmin, who published a series of papers where one of the
products of a photochemical reaction near a liquid−liquid
interface was extracted to the adjacent phase.18−20 If the
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transferring photoproduct was an ionic species, then a current
could be measured across the soft interface.
In our laboratory, we have studied for many years photo-

induced charge separations at polarized ITIES21 using
heterogeneous photoinduced charge transfer reactions between
aqueous sensitizers, such as porphyrins, and lipophilic redox
quenchers, such as ferrocene.22−25 We have shown that by using
supersensitizers such as ferrocyanide in the aqueous phase, we
could generate a redox charge storage of ferrocyanide in water
and ferricinium in 1,2-dichloroethane (DCE).26

More recently, Halls and Wadhawan have presented a
photogalvanic cell based on lyotropic liquid crystal layers
entrapping a sensitizer. In this lamellar biphasic approach, a 2%
efficiency was demonstrated.27

Herein, we present finite element simulations applicable to
generic sensitizer (S)/quencher (Q) combinations, and (photo)-
electrochemical experiments with the original Th+−cobalt
EDTA system to evaluate the potential of photoionic cells
where charge separation is obtained at a soft polarizable liquid−
liquid interface. We propose the coupling of a photoionic cell
with a flow electrolyzer, thereby realizing a complete photoredox
battery.

2. PHOTOIONIC CELL PRINCIPLE
In a photoelectronic cell, by contacting a p-type and an n-type
semiconductor, to form a p|n-junction, the absorption of light by
silicon atoms creates an electron−hole pair separated by a
gradient of electrochemical potential. The latter drives the charge
separation process, as illustrated in Scheme 1. In a photoionic cell

based on the Th+−cobalt EDTA system, the absorption of light
by the sensitizer dye (S+) and the redox quenching of the excited
dye by a quencher (Q) in the same solution results in a charge
separation process forming a pair (S−Q+) for an oxidative
quenching. The specificity of a photoionic cell stems from the
presence of an electrochemical potential gradient at a liquid−
liquid interface arising from a difference of solvation energy of
the different species, as illustrated in Scheme 1.
In the Th+−[Co(II)EDTA]2− system, discussed below, the

system can be described by a simplified model where an aqueous
solution containing the aqueous sensitizer, S+w, and the reducing
quencher, Rw, are mixed or mechanically emulsified with an
organic solvent in a photoreactor. Light absorption triggers the
following reactions:6

→ *
ν+ +S S

hw w (1)

* + → ++S R S O
kw w w wq

(2)

⇄S S
K

w op
(3)

The first reaction is light absorption, followed by the
homogeneous redox quenching of the excited dye, S+w*, in
water (eq 2) and the extraction of the lipophilic reduced
sensitizer, S, into the organic phase (eq 3). To maximize the
concentration of S+w * in eq 1, it is important to work with high
concentrations of strongly absorbing dyes in a cell geometry that
allows for a sufficient aqueous layer thickness. To favor eq 2, it is
important to choose a dye with a long excited state lifetime,
preferably in the microsecond range, along with a high
concentration of quencher. For the extraction to take place, the
photoproduct S has to be neutral. The reduced form of Th+,
leucothionine (HTh), is protonated at a pH below 6, so the pH
has to be higher than the pKa of the leucodye. To ensure that the
extraction reaction is fast compared to diffusion in solution, the
biphasic system should be emulsified to increase the contact area
between the two phases, optimize the surface to volume ratio,
and reduce the diffusion time of S in the aqueous phase so as to
avoid the recombination reaction 4:

+ ⎯→⎯ ++S O S R
kw w w wrec (4)

Additionally, to control the partition of different ionic species
at a liquid−liquid interface, it is important to realize that these
liquid−liquid interfaces are polarized and that the partition of
charged species depends on the Galvani potential difference
between the two phases. This is a key aspect of a photoionic cell.
For example, if the interface is polarized negatively (water vs oil)
by the distribution of a lipophilic cation (vide infra), then the
heterogeneous back reaction 5 is not favored.

+ → ++S O S Ro w w w (5)

Next, the two immiscible solutions are separated at the exit of
the photoionic cell. The aqueous phase contains the oxidized
quencher, Ow, and the organic phase the reduced sensitizer, So.
After this physical separation of the two phases, the
heterogeneous back reaction 5 is no longer possible and the
photoenergy effectively stored as redox energy. As such, a
photoionic cell produces “redox solar fuels” that can be stored.
The mechanism presented above is simply one of many

possible permutations. Indeed, one can imagine processes where
the quencher rather than the sensitizer is extracted to the organic
phase. Also, one can imagine heterogeneous quenching
processes using supersensitizers. From an engineering viewpoint,
there are many possible strategies to design a photoionic cell and
similarities to approaches used for solvent extraction processes
are inevitable. Basically, the basis of a photoionic cell can be
achieved by dispersing light absorbing aqueous microdroplets,
generated by a transparent polymer or glass column with sieve
plates or shower heads, in a nonlight-absorbing organic phase.
This is a major advantage compared to other photovoltaic
systems that require costly large glass flat panels.
In the final step, the two solutions generated in the photoionic

cell are passed through a flow cell releasing the redox energy as
electricity. The reactions are:

→ ++ −eS So w (6)

+ →−eO Rw w (7)

Indeed, upon oxidation, the sensitizer transfers back to the
aqueous phase, resetting the reactants for further reactions.

Scheme 1. Charge Separation at a Solid Semiconductor
Junction As in a Photovoltaic Solar Cell (Top) and at a
Liquid−Liquid Junction As in a Photo-Ionic Solar Cell
(Bottom)a

aμ̃e− is the electrochemical potential of the electron and μ̃̃S the
electrochemical potential of the reduced dye.
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The coupling of the photoionic cell with a flow cell forms a
photoredox battery, as illustrated in Scheme 2, for the Th+/

cobalt-EDTA system originally proposed by Rabinowitch et
al.16,17 The formal redox potential of the [Co(II)EDTA]2−/
[Co(III)EDTA]− couple is 0.37−0.38 V vs SHE,28,29 and the
formal redox potential of Th+ is ca. 0.056 V vs SHE29 at pH 7 (or
0.057 V vs SHE at pH 7.2, vide infra). Thus, the expected cell
voltage of the photoredox battery would be ca. 0.32 V. As the
transfer energy of Th+ into the oil phase is close to zero (vide
infra), the redox potential of Th+ in DCE vs aqueous SHE does
not significantly differ from the value in water.
A photoredox battery has the unique ability to convert solar

energy into “redox fuels” that need only be consumed when
required to generate electricity to meet specific demand. This is a
major advantage compared to solar energy conversion by
classical photovoltaic systems that are coupled to, and reliant
on, an electric grid to immediately distribute the produced
electricity, irrespective of demand.
Another major advantage of a photoionic cell is its ease of

coupling with classical low or medium temperature solar thermal
panels. The energy loss of a photoionic cell is mainly heat that is
thus available for exploitation. In addition, passive thermosiphon
pumping can be envisaged.

3. EXPERIMENTAL SECTION
3.1. Chemicals. All chemicals were used as received. All

aqueous solutions were prepared with ultrapure water (Millipore
Milli-Q, specific resistivity 18.2 MΩ·cm). Thionine chloride
(ThCl) was purchased from Roth AG. Tetrabutylammonium
chloride (TBACl), tetrabutlammonium hexafluorophosphate

(TBAPF6), tetramethylammonium chloride (TMACl), sodium
hydrogen phosphate, sodium dihydrogenphosphate, and 1,2-
dichloroethane (DCE, >99.8%) were ordered from Fluka.
Potassium cobalt(III) EDTA (K[Co(III)(EDTA)]) was synthe-
sized according to the literature procedures.30 K2[Co(II)-
(EDTA)] was prepared by a modification of the method used
by Dwyer et al.30 for the synthesis of K[Co(III)(EDTA)]. Solid
K2[Co(II)(EDTA)] was precipitated out of the solution by
addition of ethanol.
Lithium tetrakis(pentafluorophenyl)borate (LiTB) n-etherate

( B o u l d e r S c i e n t i fi c C o m p a n y ) a n d b i s -
(triphenylphosphoranylidene) ammonium chloride (BACl,
9 7 % , A l d r i c h ) w e r e u s e d t o p r e p a r e b i s -
(tr iphenylphosphoranylidene) ammonium tetrakis-
(pentafluorophenyl)borate (BATB) by metathesis of aqueous
equimolar solutions of BACl and LiTB. The resulting
precipitates were filtered, washed, and recrystallized from an
acetone:ethanol (1:1) mixture.31

Leucothionine (HTh) was synthesized via a potential-
controlled electrolysis at −0.45 V vs Ag/AgCl at pH 7.2 in an
H-cell with two high surface area vitreous carbon electrodes from
a saturated Th+ solution in a phosphate buffer.

3.2. Electrochemical Measurements. Ion-transfer voltam-
metry experiments at the water−DCE interface in a four-
electrode configuration and classical voltammetry with a three-
electrode configuration were all performed using a PGSTAT 30
potentiostat (Metrohm, CH). For ion-transfer voltammetry, two
platinum counter electrodes were positioned in the aqueous and
organic phases, respectively, to supply the current flow. Silver/
silver chloride (Ag/AgCl) reference electrodes were connected
to the aqueous and organic phases, respectively, via Luggin
capillaries. The Galvani potential difference across the interface
(Δo

wϕ) was estimated by taking the standard ion transfer
potential of tetramethylammonium cation (TMA+) as 0.160 V.32

The half-wave potential of TMA+ transfer was estimated as 0.13
V based on the correction of ionic activities by Debye−Hückel
theory as described in ref 32. No iR compensation was applied to
the cell. The area of the liquid−liquid interface was 1.53 cm2. The
electrochemical cell configuration for ion transfer voltammetry
experiments is shown in Scheme 3A.

3.3. Spectroscopic Measurements. A quartz cell with an
optical path length of 1 cm was used. An Ocean Optics
spectrophotometer was used together with halogen and
deuterium lamps as light sources. All spectroscopic measure-
ments were performed in a nitrogen-filled glovebox. For
spectroelectrochemical measurements, spectral monitoring of
the electrochemical reduction of Th+ using a thin platinum mesh
electrode placed into a 1 mm optical path quartz cuvette was
performed. UV−visible spectra were acquired as a function of
potential from 0 to−0.27 V vs Ag/AgCl for a solution 0.022 mM
in ThCl in 50 mM phosphate buffer (pH = 7.2) in potential steps
of 30 mV.

3.4. Photoextraction Experiments and Discharge
Experiments. Solutions of ThCl (filtered saturated solutions)
were prepared with carefully deoxygenated 50 mM phosphate
buffer (pH 7.2) in a nitrogen filled glovebox. Then 15 mL of
ThCl solution was introduced into the photoreaction cell and the
cell was filled with carefully deoxygenated DCE (20 to 25 mL) in
the glovebox. The contents of the cell were emulsified with a
magnetic stirrer, and the cell was illuminated through an optical
window from above with a 532 nm LED light (power of 55 mW,
Thorlabs). The phases were separated in the glovebox and
analyzed before and after illumination by UV−vis. The cell

Scheme 2. Biphasic Photo-Redox Batterya

aThe aqueous and the organic phases are mixed in the photoionic cell,
then separated and stored. The stored electrochemical energy is
subsequently converted to electricity in a flow battery.
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configuration of the biphasic photoionic cell prior to photo-
extraction and charging is illustrated in Scheme 3B.
The two immiscible phases, collected under an inert

atmosphere from an operational photoionic cell, were introduced
into an electrochemical cell and a platinum wire (ca. 1 cm) was
placed in each phase. The cell configuration of the biphasic
photoionic cell after photoextraction and charging, and thus
ready for discharge, is illustrated in Scheme 3C. For comparison,
the discharge behavior of a fully charged cell was studied in an
aqueous phosphate buffer solution (pH = 7.2) containing
chemically prepared 10 mM [Co(III)EDTA]− and 100 mM
TBACl and an organic phase containing HTh (produced by bulk
electrolysis from a saturated Th+ solution and extracted to DCE)
and 100 mMTBAPF6. The cell configuration for the discharge of
the latter cell is illustrated in Scheme 3D. The platinum wires had
to be very carefully cleaned to avoid any contamination from
adsorbed species or polythionine from previous experiments.
During the discharge experiments, the oil phase was gently
stirred to favor mass transport across the interface. However, the
stirring rate was always kept low enough in such a way that the
upper aqueous phase did not come into contact with the
electrode immersed in the bottom organic phase.

4. RESULTS AND DISCUSSION
4.1. Finite Element Simulation. The model used to study

the efficiency of the photoionic cell and extraction of the reduced
dye is based on the work of Albery et al.8 Th+ absorbs light and is
excited, as described by eq 1. The excited state reacts with
electron donors to give colorless leucodye (eq 2). The governing
equations for the system are presented in the Supporting
Information (SI). The suggested mechanism for the Th+−
quencher system is actually more complicated than described in
eqs 1−3: in the case of the Th+−iron system, the photoreaction
with Th+ and Fe(II) first produces semithionine and Fe(III).
Semithionine quickly disproportionates to form Th+ and HTh.33

The reactions with [Co(II)(EDTA)]2− are expected to happen
similarly. However, as the system has not been studied in
nonacidic media, the simulations of the more complicated

mechanism would include multiple unknown parameters. Hence
a simplified model was chosen for this study.
The model was validated by first reproducing the calculations

for a 1D-thin layer photogalvanic concentration cell (see the SI
for further details).34 To simulate a photoionic cell, the organic
phase was added to the model as a second layer and the partition
of the neutral species was introduced as a flux boundary
condition as shown in Scheme 4. The effect of the flow parallel to

the interface on the extraction efficiency was studied by
extending the model to 2D. The effects of the flow were studied
by adding a parabolic flow at the inlet. Results of the 2D model
without the flow were identical to the 1D simulations. When the
flow was introduced into the model, validation was carried out by
refining the mesh until the results were repeatable.

4.1.1. Static Biphasic System. To gain a physical insight into
the characteristics of photoionic cells, we decided not to simulate
emulsions, as studied experimentally herein, but to use a model
system made of two layers of solvent. The thickness of both
phases was set at 1mm. TheDCE phase was at the negative x-axis
and water at the positive x-axis. The initial parameters for the rate
constants (kq = 6.7 × 109 M−1 s−1 and krec = 3× 105 M−1 s−1) and
for the lifetime of the triplet state (16 μs) were taken from the
paper of Harriman et al. for the iron−Th+ system.33 There was no
available data for the Th+ system in neutral pH, or with
[Co(II)EDTA]2−. Hence the experimental conditions of ref 17
(Th+ concentration of 19.65 μM, [Co(II)EDTA]2‑ concen-
tration of 1.018 mM, pH 7.2), where the partition coefficient
(Kp) of HTh between ether and water was determined as 1.63,
were used to estimate the rates of kq and krec. The rates of the
photoreactions were adjusted to kq = 1 × 107 M−1 s−1 and krec = 3
× 104 M−1 s−1 in the simulations to obtain the experimental value
of 54.4%.17 The extraction efficiency is defined as the steady state
concentration of reduced dye in the organic phase divided by the
initial concentration of the dye in the aqueous solution. The
phase volume ratio was 1:1.
The effect of different parameters, primarily (i) those that

influence the kinetics, i.e., the quenching rate, kq, and the
recombination rate, krec, (ii) the concentrations of the oxidized
sensitizer (S+, i.e., Th+) and the reduced quencher (R, i.e.,
[Co(II)EDTA]2−) initially present in the aqueous phase, (iii) the
efficiency with which the reduced neutral sensitizer (S, i.e., HTh)
can partition to the oil phase (Kp), (iv) the intensity of the light
incident on the photoionic cell (I0), and (v) the lifetime of the
sensitizer excited state, on the steady state extraction efficiency

Scheme 3. Cell Configurations for (A) Ion-Transfer
Voltammetry, (B) Light Activated Charging of the Photo-
Ionic Cell, (C) Discharge of the Cell Presented in (B) after
Irradiation, and (D) Discharge of the Chemically Prepared
Photo-Products

Scheme 4. SchematicModel System to Evaluate the Extraction
Efficiency of S in the Organic Phasa

aPhases are separated at the outlet. The arrows illustrate the flowing
biphasic system.
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were investigated (for a summary of the different permutations of
the different parameters see Table 1).

If the ratio between the quenching rate kq (initial value 1 × 107

M−1 s−1) and the recombination rate krec (initial value 3 × 104

M−1 s−1) remained the same (Kphoto = kq/krec = 333) but the
reaction rates were decreased by 1 order of magnitude, then the
extraction slightly increased to 55.1% from 54.4%. Further
decreasing the reaction rates only increased the extraction
efficiency slightly to 55.2%. Conversely, an increase of 1 or 2
orders of magnitude causes the extraction efficiency to decrease
to 48.4 and 29.5%, respectively
Increasing the concentration of [Co(II)EDTA]2− from 1 mM

to 10 or 100 mM increased the extraction efficiency to 59.9% and
60.6%, respectively. If the concentration of Th+ was increased to
0.1 mM (initial value 19.6 μM) and the concentration of
[Co(II)EDTA]2− was kept 1000 times higher, the extraction
efficiency decreased from 60.6% to 56.0%. Further increasing the
Th+ concentration to 1 mM (with 5 M [Co(II)EDTA]2−)
decreased the extraction efficiency to 39.4%, due to the small

partition coefficient of the leucodye. The presence of a larger
concentration of sensitizer meant that all the light was absorbed
very close to the interface and, thus, at equilibrium the oil phase
could no longer extract the neutral dye at a rate in excess of that
with which the recombination reaction was consuming it.
However, if the partition coefficient was increased to 100, 96.3%
extraction was achieved. Additionally, if the intensity of light was
increased 10-fold, the extraction increased to 56.4% from 39.4%
(1 mM Th, 5 M [Co(II)EDTA]2−, K = 1.63). Also, as expected,
an increase in Kphoto values also induces a significant increase in
the extraction efficiency.
If the partition coefficient of the neutral dye was increased

from 1.63 (0.1 mM Th+, 100 mM [Co(II)EDTA]2−) to 2, 10,
100, and 1000, the resulting extraction efficiencies increased
stepwise from 56.0% to 60.9% to 88.5%, respectively, and then
plateaued at 99.9%. If the lifetime of the triplet state was
decreased from 16 to 1 μs, the extraction efficiency decreased
from 54.4% to 29.7%. However, if the partition coefficient was
increased to 10 (initial value of 1.63), 65.3% extraction efficiency
was observed and further increasing the partition coefficient to
100 increased the extraction efficiency to 93.7%. Hence, we can
conclude that the partition coefficient of the neutral dye is one of
the most important parameters and should be preferably greater
than 10 and optimally greater than 100. Also, the lifetime of the
excited state should be on the order of microseconds. Finally, the
concentration of [Co(II)EDTA]2− should be high enough to
allow a high rate of quenching, although this parameter is not as
influential as the others on the extraction efficiencies.
Figure 1 shows the transient equilibration of the system where

light is passing through a layer of DCE phase to impact an
aqueous layer, with the model parameters shown in Table 2. The
simulation reproduced our experimental conditions, where the
volume ratio between the oil and aqueous phase was 20 mL:15
mL. The light intensity was set as 1.57 mmol of photons per
square meter per second (mmol m−2 s−1), corresponding to the
number of photons of wavelengths less than 700 nm in AM2
solar radiance.8 Nonzero values were used for initial concen-
trations for numerical stability.
The simulations show that the dye is converted to the leucodye

very quickly, in less than 1 s, and the diffusion of the neutral dye
into the oil phase is the rate-limiting step of the overall process.
Thus, as it can be seen from Figure 1B, appreciable
concentrations of the neutral dye in the organic phase start
being observed at times beyond 1 s, even if the photoconversion
process in the aqueous phase has proceeded almost to
completion within the same time scale. The normalized HTh
concentration in the oil phase reaches 0.71, so by taking into
account the phase ratio an extraction of 86.9% is reached. This
value is higher than the experimental value of 76%, probably
because our model does not include the formation of
semithionine followed by its disproportionation into Th+ and
HTh.
On the basis of these results, a simple batch photoionic cell for

storing solar energy could be envisaged: a large tank placed under
sunlight slowly converts aqueous Th+ into HTh, which partitions
to the oil phase. Although the efficiency of the system will not be
very high, the system would be a simple way of generating
electricity and heat from sunlight. When electricity is needed, the
cell can be discharged electrochemically. To optimize the
electricity production in a non-emulsified system, the interface
must be irradiated from the oil side by ensuring sunlight goes
through the oil phase to avoid considerable loss of the
photogenerated dye through recombination. Additionally, a

Table 1. Effects of Different Parameters for the Extraction
Efficiency for the Rabinowitch System17 (Amount of
Extracted HTh Divided by the Initial Amount of the Dye) in
the Static Photo-Ionic Cella

effect of krec

krec (M
−1 s−1) Kphoto Kq (M

−1 s−1) cR/cTh extraction efficiency (%)

3 × 104 333 107 51.8 54.4
3 × 103 106 55.1
3 × 105 108 48.4
3 × 106 109 29.5

2 × 106 33.4
1 × 106 40.9
5 × 105 47.7
2 × 105 54.5

effect of the concentrations of R and Th+

cR
(mM)

cTh
(mM) Kphoto

Kq
(M−1 s−1) cR/cTh extraction efficiency (%)

1.02 0.02 333 107 51.8 54.4
10 0.02 509 59.9
50 0.02 2544 60.5
100 0.02 5090 60.6
100 0.1 1000 56
500 0.1 5000 56.2
5000 1 5000 39.4

effect of Kp for HTh

Kp Kphoto Kq (M
−1 s−1) cR/cTh extraction efficiency (%)

1.63 333 107 51.8 54.4
5 1000 79.4
10 88.5
100 98.7
1000 99.9

effect of the excited state lifetime

τ (μs) Kphoto Kq (M
−1 s−1) cR/cTh extraction efficiency (%)

1 333 107 50 29.7
5 46.2
16 54.4
50 58.4

aParameter values in bold represent the initial conditions for the
simulation.
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system based on mixed dyes could be used to take advantage of
the full spectrum of sunlight.
4.1.2. Flowing Biphasic System. To investigate how the

system would behave in a flow cell, a laminar flow through a thin
layer cell under illumination through the oil phase was
investigated, as shown in Scheme 4. The cell was 1 mm thick
and 1 cm long. Both phases were immediately separated after
exiting the cell. Themodel parameters were the same as shown in
Table 2, with the exceptions that ε = 7.15 × 104 M−1 cm−1, cR =
100 mM, kq = 1 × 106 M−1 s−1, and krec = 1000 M−1 s−1. Also, a
diffusion coefficient of 1 × 10−9 m2 s−1 was used for all species.
The simulated steady state concentrations and light flux in the
cell are shown in Figure 2. The inlet concentration of Th+ in the
aqueous phase was 1 mM, and the light flux through the oil phase
was 1 mmol m−2 s−1. Both the DCE and aqueous phases move
through the cell with the flow profile shown by the arrows and
with an average flow rate of 0.01 m s−1. The sensitivity of the ratio
of the flux of the neutral dye in the oil phase at the outlet and the
flux of photons to different parameters was simulated, and the
results are shown in Table 3.
The simulation results show that neutral dye does not have

time to diffuse deep into the oil phase. In the simulations the

incoming light from the left passes through the DCE phase and is
absorbed by Th+ at the top of the cell. However, due to the low
Th+ concentration (1 mM), the aqueous phase bleaches and
allows for more than 40% of the incident light to go through at
the bottom of the cell. At the inlet, 76.4% of the Th+ is converted
to the colorless leucoform of the dye, but only 8.5% of it is
extracted into the oil phase. Hence, most of the light energy is not
stored, either leaving the cell undisturbed or being converted to
heat in the recombination reaction 5 at the outlet of the cell.
The results show that at low dye concentrations almost all the

dye is converted into the neutral form and the aqueous phase
bleaches. Under such conditions, most of the incoming light goes
through the cell, leading to very low photon-to-product
conversion. At the same time, because the photoreaction occurs
in the whole volume of the aqueous phase, the extraction
efficiency dramatically decreases, as most of the neutral dye has
no time to diffuse into the organic phase, and exits the cell with
the aqueous flow. After the separation of the phases in the cell
outlet all the remaining neutral dye in the aqueous phase is
converted back to Th+ by the recombination reaction (eq 4). For
these two reasons, the conversion of photons to neutral dye in
the oil phase becomes very inefficient. Increasing the dye
concentration also increases the concentration of the neutral dye
in the oil phase, the extraction efficiency, and the conversion of
photons to product. This latter effect arises as all of the incoming
light is absorbed very close to the liquid−liquid interface, and so
the majority of the dye molecules, present away from the
interface in the bulk, are unaware of the incoming photons and,
thus, not photoactivated. However, all of the photoproduced
neutral dye is generated close to the interface, being able to
diffuse and transfer into the oil phase before either the
recombination reaction or the separation of both phases at the
outlet of the cell take place. This leads to higher extraction
efficiencies and higher conversion of photons to products.
Importantly, we can also conclude that the partition coefficient

Kp is proportional to all of the efficiency values reported in Table
2. However, its effect reaches saturation for Kp values beyond 10

3

and indicates that at Kp values larger than 100 the transfer of
neutral dye becomes diffusion controlled. Additional studies on
the effect of flow rate with less refined mesh indicate that an
increase of the flow rate increases the conversion of photons to
product but decreases the neutral dye concentration at the outlet.
Hence for an efficient conversion of photons to product, the

photoreaction should preferably take place very close to the

Figure 1. (A)Normalized concentration profiles of the neutral dye (S) in the oil phase (dashed black lines), of S in the aqueous phase (full colored lines)
and the cationic dye (S+) in the aqueous phase (dashed colored lines) at different times. (B) More detailed concentration profiles in the aqueous phase.
The concentrations were normalized by the initial thionine (Th+) concentration in the aqueous phase. DCE phase at negative x values, aqueous phase at
positive side. The parameters for the different constants used in the simulation are given in the Table 2

Table 2. Parameters Used in the Simulations in Figure 1

name expression description

ε (M−1 cm−1) 6.5 × 104 extinction coefficient of the dye35

I0 (mol m
−2 s−1) 1.57 × 103 light intensity from AM2 solar radiation

(<700 nm)8

S+0 (M) 3.5 × 10−5 initial dye concentration in the aqueous
phase

S0 (nM) 1 initial reduced dye concentration in the
aqueous phase

R0 (mM) 75 concentration of reduced quencher species
O0 (nM) 1 concentration of oxidized quencher species
τ (s) 16 × 10−6 lifetime of the excited state of the dye33

K 14.6 experimental partition coefficient of the dye
(vide infra)

kf kb × K rate of transfer to oil
kb (m s−1) 1 rate of transfer to water
krec (M

−1 s−1) 3 × 104 recombination rate
kq (M

−1 s−1) 1 × 107 quenching rate
DCoEDTA
(cm2 s−1)

5.35 × 10−6 diffusion coefficient of [Co(II)EDTA]2− at
pH 736

DTh (cm
2 s−1) 5.73 × 10−7 diffusion coefficient of Th+ at pH 7 (value in

D2O)
37
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liquid−liquid interface, to avoid recombination reactions, and
maximize extraction of the neutral dye. Taking these theoretical
observations into account, all of the experiments outlined below
were carried out in emulsified biphasic systems achieved through
vigorous stirring.
An additional parameter not considered in this study is the

relative flow rates of the two solutions. This parameter could also
be adjusted to optimize the extraction process, and also counter-
current flow could be investigated. Our study indicates that
higher concentrations of neutral dye in the organic phase could
be achieved by slowing down the flow of the organic phase, with
only slight changes of the conversion of photons to product, as
the extraction is already diffusion controlled.

All in all, it is very interesting to see that large photon to
product efficiencies can be achieved and that photoionic cells can
be highly effective toward the production of “redox fuels”.

4.2. Polarized Liquid−Liquid Interfaces. The use of a
polarizable soft interface allows us to control the distribution of
ions between both phases. Indeed, the concentration ratio is
linked to the Galvani potential difference between the two phases
(Δo

wϕ = ϕw − ϕo) by the Nernst equation:21

ϕ ϕΔ = Δ +⊖
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which allows definition of the distribution of ions as a function of
potential as:
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If the Galvani potential difference between the aqueous and oil
phase is more negative than the standard transfer potential of the
cations, i, most of the cations are in the aqueous phase.
The Nernst equation also has another interpretation: the

Galvani potential dif ference across the liquid−liquid interface is
controlled by the distribution of all the species across the interface. By
adding equal amounts of a common ion into both phases, in
excess compared to other ionic species (for example 100 mM
TBACl in the aqueous phase and 100 mM TBAPF6 in the oil
phase), the Galvani potential difference is governed by this
common ion and is equal to the formal potential of the ion. Of
course, the Nernst equation for all the ions has to be satisfied as
well as the electroneutrality of both phases. For the case of 100
mMTBACl in the aqueous phase and 100mMTBAPF6 in the oil
phase, the equilibrium concentrations for equal volumes of the
aqueous and DCE phases is given in Table 4, and the calculated
Galvani potential difference was −0.225 V, exactly the standard
potential for TBA+ transfer reported in ref 32. The calculation

Figure 2. (Top) Steady-state concentration distribution of thionine
(Th+) in the aqueous phase and leucothionine (HTh) in the oil phase
during operation of the photoionic cell. The inlet concentration of Th+

in the aqueous phase was set at 1 mM. The aqueous phase is shown on
the right (thickness of 0.5 mm), and the DCE phase is shown on the left
(same thickness). (Bottom) Photon flux through the cell (initial photon
flux through the DCE phase was set at 1 mmolm−2 s−1) coming from the
left and shows that no light passes through the cell at the top but ca. 40%
goes though at the bottom. The length of the cell was 1 cm.

Table 3. Effects of the Initial Concentration of the Dye in the
Aqueous Phase and the Partition Coefficient for the
Extraction Efficiency of HTh (Flux of HTh at the Outlet of the
Organic Phase/Total Flux of HTh at the Outlet) and the
Efficiency for the Conversion of Photons into HTh in the Oil
Phase (Flux of HTh at theOutlet of theOrganic Phase/Flux of
Photons)

extraction efficiency (%) photon to product (%)

cTh+/mM (Kp = 10)
1 8.5 3.2
10 50.2 20.5
30 78.8 34.4
50 85.7 39.5
100 90.6 44.5
500 93.7 53.1

Kp (cTh+ = 30 mM)
1 45.8 15.0
2 59.7 21.7

10 78.8 34.4
100 84.9 39.9
1000 85.6 40.6
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details are given in the SI and have been described in detail by
Hung.38

In an ideal photoionic cell, Th+, [Co(II)EDTA]2−, and
[Co(III)EDTA]− should all remain in the aqueous phase.
Hence, the transfer of Th+ into the DCE phase was investigated
by ion transfer voltammetry in a custom-made four-electrode
cell, see Figure 3. In the absence of ThCl, the potential window is

limited by the transfer of sodium at the positive end of the
polarizable potential window and of phosphate species (either
PO4

3−, HPO4
2−, or H2PO4

−) at the negative end. When Th+ is
added, a reversible ion transfer at −0.02 V, corresponding to
transfer of Th+, is observed. Similar results have been obtained
earlier.39

When either [Co(II)EDTA]2− or [Co(III)EDTA]− were
added, no additional waves were observed within the potential
window as these complexes are highly hydrophilic, and hence
their transfer takes place beyond or close to potentials of
phosphate anion transfer. As previously mentioned, in the
current system it is desirable to keep Th+ and both cobalt
complexes in the aqueous phase. On the basis of the information
extracted from the ion transfer voltammograms, this can be
accomplished by polarizing the liquid−liquid interface negatively
at an intermediate potential between those for the transfer of Th+

and of both anionic Co complexes. An ideal species that fulfills
this constraint are tetrabutylammonium cations (TBA+). Thus,
addition of TBACl to the aqueous phase and TBAPF6 to the
DCE phase will set the potential at the interface close to the
standard ion-transfer potential of TBA+ at −0.225 V.
4.3. Spectroelectrochemistry. To better characterize the

system under study, we revisited some additional aspects of the
redox reactions, such as the reduction of Th+ at neutral pH.
Cyclic voltammograms showed only one reversible wave for the
reduction of Th+ at ca. −0.14 V vs Ag/AgCl. As shown in Figure
4, spectral monitoring of the electrochemical reduction of Th+

using an optically transparent thin layer electrode (OTTLE)

confirmed that under these experimental conditions, HTh is
directly produced as evidenced by the presence of an isosbestic
point at 265 nm accompanied by the increase in absorbance
below 260 nm and the disappearance of the band at 597 nm.
These results are in agreement with the previously reported fast
disproportionation mechanism of the one-electron reduction
product, semithionine, to give HTh and Th+.33

As evidenced by the theoretical analysis above, a crucial
parameter for the operation of a photoionic cell is the partition
coefficientKp of the reduced neutral dye between the two phases.
To determine this equilibrium constant, HTh was produced via a
potential-controlled electrolysis at −0.45 V vs Ag/AgCl (satd.
KCl) at pH 7.2 and extracted into DCE. The spectrum obtained
after the controlled potential electrolysis was consistent with that
observed in spectroelectrochemical measurements. Using the
data in Figure 5, the partition coefficient between water and DCE
for HTh (KP

W/DCE) is calculated from the differences in
absorbance at 249 nm of the aqueous phase before
(A249 nm(t0)) and after (A249 nm(tfinal)) extraction with DCE.
Taking into account that the water/DCE volume ratio (Vw/
VDCE) is equal to 2, KP

W/DCE was estimated to be:

=

=
−

=

K

A t A t
A t

V
V

[HTh]
[HTh]

( ) ( )
( )

14.6

P
W/DCE DCE

W

249nm 0 249nm final

249nm final

W

DCE

(10)

4.4. Photoionic Cell. In the case of photoionic cells, the
separation efficiency of the photoproducts can be easily
determined by monitoring the absorbance of the aqueous
phase at 597 nm before (A597 nm(t0)) and after (A597 nm(tfinal))
irradiation:

=
−

×
A t A t

A t
separation efficiency

( ) ( )
( )

100597nm 0 597nm final

597nm 0
(11)

The decrease of Th+ in the aqueous phase after irradiation with
a high power LED at 536 nm gives a separation efficiency of 76%
(Figure 6a). The spectrum for the DCE phase after irradiation is
presented in 6b. The peak at ca. 480 nm corresponds to
[Co(II)EDTA]2−. When the same experiment was repeated with
100 mM TBAPF6 in DCE phase and 100 mM TBACl in the
aqueous phase to prevent the transfer of Th+ or CoEDTA species

Table 4. Calculated Equilibrium Concentrations (mM)
between 100 mM TBAPF6 in DCE and 100 mM TBACl in
Water

concentration in water (mM) concentration in DCE (mM)

TBA+ 100.24 99.76
PF6

− 0.24 99.76
Cl− 100.00 7.10 × 10−4

Figure 3. Ion transfer voltammograms in the absence (black line) and
presence (red line) of saturated ThCl in the aqueous phase. See Scheme
3A for the composition of the biphasic electrochemical cell. The scan
rate was 50 mV s−1.

Figure 4. UV−visible spectra acquired as a function of potential from 0
to −0.27 V vs Ag/AgCl (3 M KCl) (red to green spectra) for a solution
of 0.022 mM ThCl in 50 mM phosphate buffer (pH = 7.2). The
potential step was 30 mV. The working, counter, and reference
electrodes were Pt mesh, Pt wire, and Ag/AgCl (3 M KCl), respectively.

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp500427t | J. Phys. Chem. C 2014, 118, 16872−1688316879



into the DCE phase, as discussed in Section 4.2, an improved
extraction efficiency of 85% was obtained, as shown by the UV−
vis spectra in Figure 7.
Besides the improvement in the separation efficiency observed

when TBA+ is present as a common ion in both phases, the band
at 516 nm does not appear when the interface is polarized. The
importance of this is that [Co(III)EDTA]− is not extracted into

the organic phase and therefore, higher separation efficiencies
can be obtained because the back-reaction is prevented in the
organic phase. Also, addition of TBACl into the aqueous phase
increased the solubility of Th+ into the aqueous phase from 0.035
to 0.051 mM.
Initial attempts to determine the efficiency of the reaction with

respect to the number of photons in an emulsified system were

Figure 5.Determination of the partition coefficient (KP
W/DCE) of the neutral dye (HTh) between the water andDCE phases. UV−visible spectra of (a) 5-

fold diluted aqueous phases containing 0.078 mM ThCl before (black) and after (violet) bulk electrolysis at −0.45 V vs Ag/AgCl and after (blue)
extraction of HTh into DCE. A spectrum of the organic phase (diluted 2-fold) taken after extraction of HTh is presented in (b).

Figure 6.Monitoring the separation efficiency of the photoproducts (HTh and [Co(III)EDTA]−) after irradiating the biphasic cell initially containing
aqueous solubilized Th+ and [Co(II)EDTA]2− at 536 nm for 120min. The electrochemical cell configuration for the biphasic system before illumination
is illustrated in Scheme 3B (x = 0, y = 0, z = 0.035). (a) UV−visible spectra of a 5-fold diluted aqueous phase before (blue) and after (violet) irradiation.
The peaks at 480 and 597 nm in the aqueous phase correspond to [Co(II)EDTA]2− and Th+, respectively. (b) The spectrum for the DCE phase after
irradiation is presented. The peaks at 255 and 316 nm correspond to HTh, and that at 519 nm corresponds to [Co(III)EDTA]−.

Figure 7.Observing the effect of polarizing the interface, with TBA+ as a common ion in both phases, on the separation efficiency of the photoproducts
(HTh and [Co(III)EDTA]−) after irradiating the biphasic cell at 536 nm for 70 min. The electrochemical cell configuration for the biphasic system
before illumination is illustrated in Scheme 3B (x = 100, y = 100, z = 0.051). (a) UV−visible spectra of a 5-fold diluted aqueous phase before (green) and
after (violet) irradiation. (b) The spectrum for the DCE phase after irradiation is presented, note the absence of the [Co(III)EDTA]− (present at 519
nm in Figure 6). All other peaks in the aqueous and organic phases are as described in Figure 6
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carried out with a laser at 543.5 nm at different time lapses.
Nonetheless, complications arising from significant light
scattering and light absorption by [Co(II)EDTA]2− at 543 nm
did not allow for an accurate determination of the number of
absorbed photons by Th+ (see SI).
4.5. Electrochemical Discharge. Although in this work we

do not address the intricacies of a biphasic redox flow cell, we
performed discharge experiments to demonstrate the capability
of photoionic cells to store charge and produce electricity on
demand as required. For this purpose, we simply put the two
immiscible phases collected under an inert atmosphere from an
operational photoionic cell in contact with one another and
placed a platinum wire in each phase. Specifically, the short
circuit discharge of a photoionic cell, the cell configuration of
which is illustrated in Scheme 3C, where both phases were
obtained after 70 min of irradiation at 536 nm is shown in Figure
8. For comparison, the discharge behavior of a fully charged cell

prepared chemically, the cell configuration of which is illustrated
in Scheme 3D, is presented in red in Figure 8. Again, this
discharge experiment was performed in a cell with two Pt wires.
Both cells displayed an open circuit potential of ca. 180−220mV.
Control experiments of blank cells with only supporting

electrolytes in both phases gave closed circuit currents of 8 nA,

and a blank cell with Th+ and [Co(II)EDTA]2− in the aqueous
phase gave currents of 6 nA. Hence, we conclude that the
currents shown in Figure 8 stem from the discharge of the
photoionic cell. When a fully charged cell, prepared chemically
rather than in the photoionic cell, was left to discharge
completely in a closed circuit over a two-day time lapse, all the
HTh was converted back into Th+ in the aqueous phase, as seen
from Figure 9. The characteristic peak of HTh at 320 nm
disappeared completely after discharge, and the peak at 597 nm
for Th+ was distinguished more easily after discharge by
subtracting the spectra of 10 mM [Co(III)EDTA]−. This
background correction was justified, as the concentration of
Co(III) only slightly changed during discharge. Additionally, a
broad peak at ca. 480 nm was observed in the organic phase,
corresponding to [Co(II)EDTA]2−.

5. CONCLUSION
The goal of this study was to quantify the conversion efficiency of
photoionic cells using the original Th+−cobalt EDTA system
introduced by Rabinowitch et al.17

Finite element simulations were carried out to evaluate the
influence of the different parameters. They clearly show that for a
photoionic cell to be efficient the following criteria should be
fulfilled:

• large excited state lifetime
• large partition coefficient of leucothionine (Kp)
• large surface to volume ratio
• reasonable dye concentration
• large redox potential difference

For the current Th+−[Co(II)EDTA]2− system, the large
excited state lifetime is achieved, and a partition coefficient of ca.
15 is reasonably high. Among the main challenges to improve the
efficiency are the solubility of Th+ in the aqueous phase and the
potential difference of only ca. 0.32 V between the redox couples.
The solubility of Th+ can be increased up to 30 mM for example
by introducing sulfonated groups into Th+.40 Alternatively, a
suspension of Th+ aggregates could be used. Kamat et al. showed
that Th+ aggregates absorbing light at lower wavelengths could
transfer energy to the Th+ monomers in solution.41 Hence the
use of aggregates should increase the light harvesting capability
and the efficiency of the photoionic cells. To increase the cell
voltage, redox species with higher redox potential than CoEDTA
should be used, and there are many promising candidates
available. However, increasing the redox potential also increases

Figure 8. Discharge curves at the liquid−liquid interface for a
photoionic cell charged by an LED light (λmax = 536 nm, see Scheme
3C for the electrochemical cell configuration) and, for comparison, the
discharge of a cell prepared chemically (see Scheme 3D for the
electrochemical cell configuration). In Scheme 3D, HTh was obtained
by bulk electrolysis followed by extraction and [Co(III)EDTA]− was
synthesized chemically and dissolved in the aqueous phase.

Figure 9.A cell prepared with [Co(III)EDTA]− initially present in the aqueous phase andHTh present in DCE (see Scheme 3D for the electrochemical
cell configuration) was exhaustively discharged. (a) UV−vis spectra of the aqueous phase before (dark blue) and after (dashed blue) complete discharge.
Background correction of the aqueous phase after discharge was performed as outlined in the text (black). The aqueous phase was diluted five times. (b)
The corresponding spectra of the DCE phase before (red) and after (dashed red) discharge.
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the driving force of the recombination reaction, so compromises
will have to be made.
Experiments were also carried out, and we have shown that by

controlling the electrochemical aspects of the liquid−liquid
interfaces 86% of the reduced dye could be extracted in a biphasic
system under stirring. The next step of this work is to test the
extraction efficiency under flow conditions.
A very preliminary study of the electrochemical discharge of

the redox fuels has validated the concept, and the next step is to
design a biphasic flow cell to generate electricity with an
efficiency approaching that of classical redox flow batteries, i.e.,
70−80%.
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