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Correct positioning of the spindle governs placement of the

cytokinesis furrow and thus plays a crucial role in the

partitioning of fate determinants and the disposition of

daughter cells in a tissue. Converging evidence indicates that

spindle positioning is often dictated by interactions between

the plus-end of astral microtubules that emanate from the

spindle poles and an evolutionary conserved cortical

machinery that serves to pull on them. At the heart of this

machinery lies a ternary complex (LIN-5/GPR-1/2/Ga in

Caenorhabditis elegans and NuMA/LGN/Gai in Homo sapiens)

that promotes the presence of the motor protein dynein at the

cell cortex. In this review, we discuss how the above

components contribute to spindle positioning and how the

underlying mechanisms are precisely regulated to ensure the

proper execution of this crucial process in metazoan organisms
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Introduction
The mitotic spindle is a diamond-shaped microtubule-

based structure that faithfully segregates sister chroma-

tids during cell division. Several types of microtubules

emanate from the spindle poles, including astral micro-

tubules that reach out to the actin rich cortex located

beneath the plasma membrane (Figure 1a). Pulling forces

exerted on the plus-end of astral microtubules at the cell

cortex are critical for accurately positioning the spindle

with respect to cell-intrinsic or cell-extrinsic spatial cues.

In turn, correct spindle positioning dictates placement of

the cytokinesis furrow and is thus essential for determin-

ing the relative size and spatial disposition of the resulting

daughter cells [2]. Accurate spindle positioning also

ensures that cell fate determinants are appropriately
www.sciencedirect.com 
segregated into daughter cells during development and

in stem cell lineages [3].

What features of the cell cortex allow interactions with

astral microtubules to orchestrate spindle positioning?

Specialized cortical sites are key. Their importance has

been suggested for instance by elegant experiments in

Chaetopterus oocytes, in which the meiotic spindle pulled

away from its cortical attachment site using a micro-needle

returns to that location once released (Figure 1b). Such

experiments illustrate the existence of a mechanical link

between the spindle and specialized cortical regions [4,5].

Laser microsurgery experiments in Fusarium solani or

C. elegans suggested that this link corresponds to astral

microtubules connecting the spindle poles with the cell

cortex [6,7,8,9,10��]. Although not the focus of this review,

there are instances where pulling forces are exerted along

the length of astral microtubules instead of at their plus-

end located at the cell cortex [11,12,13]. Work in several

systems in recent years has increased our understanding of

the basic principles governing spindle positioning and

identified core molecular players and aspects of their

mechanism of action. In this brief review, we will focus

on cortically driven spindle positioning in one-cell

C. elegans embryos and mammalian cells in culture. In

doing so, we will discuss the nature of the ternary complex

that anchors the motor protein dynein at the cell cortex and

how dynein serves to generate pulling forces on astral

microtubules. We will then review some of the mechan-

isms that regulate such cortical force generators and men-

tion briefly the contribution of the actin cytoskeleton and

of phosphatidylinositol lipids in spindle positioning. We

will conclude by covering some of the exciting challenges

that await the field.

The ternary complex: common players of an
intricate game
Proteins governing spindle positioning in metazoan

organisms have been identified notably through studies

in the one-cell C. elegans embryo and in mammalian

cells. In one-cell C. elegans embryos, the spindle assem-

bles in the cell center, but is displaced under the

influence of intrinsic anterior–posterior (A–P) polarity

cues toward the posterior during metaphase and ana-

phase, resulting in unequal division (Figure 2a) [14].

Genetic and RNAi-based functional genomic screens

have led to the identification of two partially redundant

Ga subunits, GOA-1 and GPA-16 (collectively referred

to as Ga hereafter), of two essentially identical TPR/

GoLoco-domain  proteins, GPR-1 and GPR-2 (hereafter
Current Opinion in Cell Biology 2013, 25:741–748
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(a) Schematic of the first mitosis in the Ascaris megalocephala embryo. Note astral microtubules that emanate from the spindle poles and abut the cell

cortex (from Theodor Boveri, adapted from Wilson [1]). (b) Images from time-lapse recording using polarized optics to follow the first meiotic spindle in

the Chaetopterus oocyte in response to micromanipulation with a glass microneedle (visible in the second image from the left). Note that the spindle

returns to its original cortical position after release from the microneedle. Adapted from The Cell: An Image Library CIL-11961 and [5].
jointly referred to as GPR-1/2) and of the large coiled-

coil protein LIN-5 as being essential for proper spindle

positioning in the nematode [15,16,17,18,19]. Depletion

of Ga, GPR-1/2 or LIN-5 results in the near absence of

pulling forces on astral microtubules; as a consequence,

the spindle remains centrally located and the first

division is equal [16,17,15]. The distribution of cell fate

determinants is not affected upon depletion of ternary

complex components, indicating that polarity cues

regulate spindle positioning and fate acquisition in a

coordinated but partially independent manner [20]. Impor-

tantly, related components guide spindle positioning in

non-polarized human cells, which undergo equal division.

Such cells plated on uniform fibronectin or on fibronectin-

based micropatterns position their spindle in a predictable

manner in response to these extrinsic cues (Figure 2b)

[21�,22�]. Mammalian homologs of Ga (Gai1–3), GPR-1/2

(LGN and AGS3) and LIN-5 (NuMA) are likewise essen-

tial for correct spindle positioning, suggesting that these

proteins are at the core of this process across metazoan

organisms [23,24,25].

What is the relationship between these three components?

The Ga proteins are tethered to the plasma membrane

through N-terminal myristoylation, and when bound to

GDP, associate with the GoLoco domain of GPR-1/2/
Current Opinion in Cell Biology 2013, 25:741–748 
LGN, which in turn interacts with LIN-5/NuMA, thus

forming a ternary complex [17,19,24,26,27] (Figure 3). By

virtue of these molecular interactions, the entire ternary

complex is anchored at the cell cortex below the plasma

membrane. Although the related ternary complex com-

ponents Gai, Pins and Mud are essential for proper spindle

positioning in Drosophila, a parallel pathway consisting of

Pins/Dlg/Khc73 is also important in that system [28,29].

Whether Dlg/Khc73 relatives similarly contribute to spin-

dle positioning in C. elegans and mammalian cells remains to

be addressed. How does the cortical localization of the

ternary complex enable positioning of the mitotic spindle?

The answer lies in the ability of this complex to interact

with the minus-end directed motor protein dynein, as

discussed next.

Cortical dynein: a force-generating motor
Dynein is a multisubunit motor protein complex critical

for many basic cellular processes [30,31]. In C. elegans
embryos and human cells, co-immunoprecipitation

experiments showed that LIN-5/NuMA associates with

dynein [25,32�,33,34]. The region mediating this associ-

ation has been mapped to an N-terminal region of NuMA

[25], but the molecular nature of the partner protein on

the side of the dynein complex is not known. The

presence of dynein at the cell cortex is compromised
www.sciencedirect.com
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Figure 2
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Spindle positioning in C. elegans embyos and human cells. (a) Images from time-lapse recording using spinning disc microscopy of C. elegans

embryos expressing GFP-a-tubulin to mark microtubules and GFP-PH to mark the cell membrane (both pseudocolored in red); one-cell stage mitosis

(left) and early two-cell stage (right) are shown. Note asymmetric spindle position along the anterior–posterior axis (a) leading to the unequal division

into a larger anterior blastomere and a smaller posterior one (b). Scale bar: 10 mm. (b) Human HeLa cells in interphase (left), mitosis (middle) and post

mitosis (right) on L-shaped fibronectin micropattern coated coverslips, fixed and stained with antibodies against microtubules (red); DNA is visualized

in blue. Note spindle position imparted by the micropattern. Scale bar: 10 mm.
upon depletion of ternary complex components in C.
elegans embryos and human cells [23–25,32�]. Conversely,

increasing the levels of Ga or TPR/GoLoco proteins

results in increased cortical dynein enrichment and con-

comitant augmentation of dynein-dependent spindle

movements [25,35,36].

How does cortical dynein result in pulling forces on astral

microtubules? The dynamicity of astral microtubules is

part of the answer [32�]. In C. elegans, astral microtubules

grow toward the cell cortex, where their plus-end resides

for only �1 second before undergoing catastrophe [37]. In
vitro, shrinking microtubules can generate considerably

more force (�50 pN) than that deployed by a single

dynein motor (�7 pN) [38,39,37]. Because it has been

estimated that a force in the order of �50 pN pulls on

individual astral microtubules during spindle positioning

in C. elegans embryo [10��], it has been suggested that

dynein may only serve to anchor depolymerizing micro-

tubules to the cell cortex, with microtubule depolymer-

ization generating the actual pulling force [37]. A

variation on this theme is suggested by in vitro exper-

iments in which a purified fragment of yeast dynein

coated on the edges of microfabricated chambers interacts
www.sciencedirect.com 
with the plus-end of microtubules and triggers their

catastrophes, allowing positioning of a microtubule aster

[40��]. Thus, the presence of dynein at the cell cortex may

impact on the dynamics of astral microtubules and

indirectly promote pulling forces in this manner. Alterna-

tively, cortical dynein may exert pulling forces during

spindle positioning directly through its motor activity. In

this scenario, additional factors could enhance the force

deployed by dynein in vivo or the motor protein may

function in a cooperative manner to generate large collec-

tive forces as for phagosome motility [41�]. Regardless of

the actual mechanism, given that the presence of cortical

dynein is sufficient to generate pulling forces, what is the

significance of having an intricate ternary complex to

govern dynein localization? Emerging evidence suggests

that cortical dynein must be tightly regulated, and that this

is achieved in part by modulating ternary complex com-

ponents, as described in the next section.

Balanced levels of cortical dynein are critical
for proper spindle positioning
Alterations in ternary complex components have pro-

found effects on cortical dynein levels and thus spindle

positioning [25,35]. As mentioned earlier, GDP-bound
Current Opinion in Cell Biology 2013, 25:741–748
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Figure 3
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Membrane bound ternary complex anchors dynein to the cell cortex and thus mediates spindle positioning. (a) Schematic representation of Gai1, LGN

and NuMA proteins (functional homologs of C. elegans, Ga, GPR-1/2 and LIN-5, respectively), with an indication of their size in amino acids. Gai1
harbors an N-terminal myristoylation signal important for membrane targeting (white diamond); the same holds for the partially redundant Gai2 and

Gai3, which are not represented here for simplicity. LGN harbors N-terminal TPR motifs (dark brown oval) and C-terminal GoLoco domains (green

rectangles), mediating interaction with NuMA and Gai1–3, respectively. NuMA is shown with its coil-coiled domain and the regions within the C-terminal

part mediating interaction with LGN and microtubules (MT); the nuclear localization signal is also indicated (NLS), as is the domain needed for

interaction with dynein. (b) Working model of spindle positioning in human cells. The ternary complex (Gai1–3/LGN/NuMA) is anchored below the

plasma membrane and recruits the dynein motor complex. One possibility is that cortically anchored dynein attempts to move on astral microtubules

by virtue of its minus end directed motility (green arrow), but instead pulls on the astral microtubule, resulting in the generation of a pulling force (black

arrow). Alternatively, dynein may serve merely as an anchor to maintain a connection with the depolymerizing microtubule, which may be producing

force in the context of spindle positioning. See text for additional details.
Ga is the relevant Ga species in the context of spindle

positioning [42]. In line with this, work in C. elegans
indicates that the Ga guanine nucleotide exchange factor

(GEF) RIC-8 is important for generating pulling forces

[43,44]. Moreover, the Ga guanine nucleotide activating

protein (GAP) RGS-7 also contributes to some extent,

compatible with the Ga nucleotide cycle being important

in spindle positioning [45]. Ric8 is also required for proper

spindle positioning in non-polarized human cells [23]. In

C. elegans, Ga�GDP levels are also modulated by Gbg,
Current Opinion in Cell Biology 2013, 25:741–748 
since depletion of Gbg results in excess pulling forces,

presumably because excess Ga�GDP is available for

interaction with GPR-1/2 [44,46]. Intriguingly, intracellu-

lar trafficking of the Gb protein GPB-1 is modulated in

time and space in C. elegans embryos in a manner con-

sistent with it dictating cortical GPR-1/2 localization [47].

This raises the possibility that intracellular trafficking is

crucial for proper spindle positioning, as is the case for

other aspects of asymmetric cell division, for instance in

Drosophila sensory organ precursor cells [48,49].
www.sciencedirect.com
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Other components, including kinases and phosphatases,

can influence the availability of the ternary complex for

interaction with cortical dynein. This is exemplified by

the regulation of LIN-5 by the atypical protein kinase C

PKC-3, which is part of the anterior PAR complex that

establishes A-P polarity in C. elegans embryos. Using a

quantitative mass-spectrometry approach as a starting

point, LIN-5 was found to be phosphorylated by PKC-

3; such phosphorylation negatively regulates LIN-5 func-

tion and thus contributes to lowering pulling forces on the

embryo anterior [50]. In mammalian cells, atypical

protein kinase C phosphorylates LGN, causing its loss

from the apical cortex in polarized MDCK cells, thereby

perturbing spindle positioning [51,52]. Studies in human

cells have led to the identification of two other kinases

involved in spindle positioning, ABL1 (Abelson kinase1)

and PLK1 (Polo-like kinase1). ABL1 was identified in an

RNAi-based screen in human cells grown on a uniform

fibronectin substrate and then shown to phosphorylate

NuMA and thus maintains its cortical localization [53�].
Intriguingly, ABL1 also enhances the presence of LGN at

the cell cortex, suggestive of a positive feedback between

NuMA and LGN. By contrast to ABL1, PLK1 negatively

regulates cortical dynein, without impacting on the tern-

ary complex [24]. PLK1 is enriched at the spindle poles,

and it was proposed that there is a gradient of its kinase

activity, being lowest at the cortical regions furthest from

spindle poles, which thus escape this negative regulation,

enabling cortical dynein accumulation. The molecular

nature of PLK1 substrates involved in spindle positioning

remains to be identified.

Other than the role of kinases, the contribution of phos-

phatases in spindle positioning has also begun to be

unveiled. Thus, in C. elegans, the protein phosphatase 6

family member PPH-6 and its associated subunit SAPS-1

contribute to pulling forces by regulating the levels of

GPR-1/2/LIN-5 [54]. The relevant target of PPH-6/

SAPS-1 is also not known and it is furthermore unclear

whether the related phosphatase contributes to spindle

positioning in other systems. Interestingly, dynein can

also negatively regulate cortical localization of the ternary

complex by transporting LGN from the cortex to the

spindle poles during metaphase in mammalian cells [35].

In summary, multiple regulatory steps can act on ternary

complex components or perhaps directly on the dynein

complex to fine-tune the localization and activity of

cortical dynein during spindle positioning.

Beyond the ternary complex
The role of the actin cytoskeleton and of associated motor

proteins in spindle positioning has been extensively

investigated. Here, we discuss only briefly the contri-

bution of the actomyosin network in this process and refer

readers to other recent reviews that offer a more extensive

coverage of this aspect [55,56]. In human cells, the

importance of actin is illustrated for instance by the fact
www.sciencedirect.com 
that actin depolymerizing drugs or RNAi-mediated

depletion of the actin-associated protein Moesin lead

to spindle positioning defects [21�,22�,57]. Interestingly,

experiments with fibronectin micro-patterns revealed

that cells utilize focal adhesions and actin fibers estab-

lished during interphase to impart spindle positioning

during mitosis [21�]. Furthermore, laser ablation exper-

iments reveal that such actin fibers are important also

during mitosis [58�]. How does the actin cytoskeleton

interface with the ternary complex and dynein? One

possibility is that the actomyosin network modulates

the cortical levels of these components and thereby

influences spindle positioning. However, recent exper-

iments in C. elegans speak against this hypothesis, as

cortical localization of ternary complex components is

not altered upon impairment of cortical actin [59]. An

alternative hypothesis is that actin-associated proteins

interact with the plus-end of astral microtubules and thus

stabilize their interaction with the cell cortex [60]. Com-

patible with this view, depletion of the actin-associated

protein MISP results in shorter astral microtubules and

spindle positioning defects [61,62].

The lipid composition of the plasma membrane also plays

a role in proper spindle positioning, as exemplified by the

analysis of the casein kinase 1 CSNK-1 in nematodes

[63�]. C. elegans embryos depleted of CSNK-1 exhibit

excess cortical GPR-1/2 and LIN-5, as well as pulling

forces. On the basis of an analogous relationship in bud-

ding yeast, CSNK-1 was proposed to negatively regulate

the phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]

(PIP2)-kinase PPK-1 and thereby keep PIP2 levels low

[63�]. Whether PIP2 directly influences cortical GPR-1/2/

LIN-5/dynein cortical distribution is unclear at this stage.

Intriguingly, a related lipid, phosphatidylinositol-3,4,5-

triphosphate [PI(3,4,5)P3] (PIP3) functions in human cells

downstream of b1-integrin signaling and is essential for

proper cortical dynein distribution and thus spindle posi-

tioning [64]. Inhibition of PI3K, a principal enzyme

involved in PIP3 biosynthesis, leads to randomization

of dynein distribution at the cortex. Whether this PIP3-

mediated dynein localization pathway acts independently

of the ternary complex is an important open question.

Future perspectives
Studies in a number of systems, including C. elegans
embryos and human cells, have provided an initial un-

derstanding of the mechanisms governing spindle posi-

tioning. Exciting challenges lie ahead and novel insights

are expected from several directions. Biophysical and

structural analysis of proteins central to the force gen-

erating machinery is anticipated to be important. An

illustration of such work is given by the recent atomic

level characterization of the interaction between parts

of LGN and NuMA [65,66]. Coupled with modeling

and computer simulations of spindle positioning, this

should yield an in depth molecular understanding of
Current Opinion in Cell Biology 2013, 25:741–748
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the underlying mechanisms. Novel insights are also

expected from analyzing the spatial and temporal regu-

lation of the force generation machinery. For instance, it

has been proposed that a chromosome-derived gradient

of Ran�GTP prevents NuMA/LGN from localizing to the

lateral cortex in metaphase human cells [24]. It will be

interesting to expand on these findings, including in

other systems. Moreover, dynein has been reported to

transiently increase at the cell cortex during anaphase

[67], and it will be important to investigate how ternary

complex components are modulated as cells progress

through mitosis. Another promising line of work entails

the analysis of closely related species to explore how

evolution may have acted on spindle positioning. For

instance, differences in aster and spindle positioning

between C. elegans and Caenorhabditis briggsae can be

explained by alterations in the cortical distribution of

ternary complex components between the two species

[68�]. Further understanding is also expected from ana-

lyzing more complex instances of spindle positioning in

developing organisms and in tissues, where extrinsic cues

and geometrical constraints are bound to play an import-

ant role. For instance, Wnt signaling is important for

proper spindle positioning at later stages during C. elegans
embryogenesis [69], and the impact of Wnt signaling on

spindle positioning has been recently reconstituted in a

mammalian embryonic stem cell system [70�], suggestive

of important progress to come in this area. In conclusion,

because defective spindle positioning can result in

tumorigenesis [71,72], it is anticipated that discoveries

made regarding the fundamental mechanisms governing

spindle positioning may also lead to the development of

novel therapeutic tools.

Note added in proof
Two recent publications shed further light on the mech-

anisms of spindle positioning in human cells. One study

revealed the role of cortical dynein and asymmetric

membrane elongation in positioning the anaphase spindle

[73], whereas the other one focused on the interplay

between CDK1 kinase and PPP2CA phosphatase in

dictating levels of cortical dynein during mitosis [74].
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14. Gönczy P, Rose LS: Asymmetric cell division and axis
formation in the embryo. WormBook 2005:1-20.

15. Lorson MA, Horvitz HR, van den Heuvel S: LIN-5 is a novel
component of the spindle apparatus required for
chromosome segregation and cleavage plane specification in
Caenorhabditis elegans. J Cell Biol 2000, 148:73-86.

16. Gotta M, Ahringer J: Distinct roles for Galpha and Gbetagamma
in regulating spindle position and orientation in
Caenorhabditis elegans embryos. Nat Cell Biol 2001, 3:
297-300.

17. Colombo K, Grill SW, Kimple RJ, Willard FS, Siderovski DP,
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