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Musical training intensity yields opposite effects on grey matter
density in cognitive versus sensorimotor networks
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Abstract Using optimized voxel-based morphometry, we
performed grey matter density analyses on 59 age-, sex-

and intelligence-matched young adults with three distinct,

progressive levels of musical training intensity or expertise.
Structural brain adaptations in musicians have been

repeatedly demonstrated in areas involved in auditory

perception and motor skills. However, musical activities
are not confined to auditory perception and motor perfor-

mance, but are entangled with higher-order cognitive pro-

cesses. In consequence, neuronal systems involved in such
higher-order processing may also be shaped by experience-

driven plasticity. We modelled expertise as a three-level
regressor to study possible linear relationships of expertise

with grey matter density. The key finding of this study

resides in a functional dissimilarity between areas exhib-
iting increase versus decrease of grey matter as a function

of musical expertise. Grey matter density increased with

expertise in areas known for their involvement in higher-
order cognitive processing: right fusiform gyrus (visual

pattern recognition), right mid orbital gyrus (tonal sensi-

tivity), left inferior frontal gyrus (syntactic processing,
executive function, working memory), left intraparietal

sulcus (visuo-motor coordination) and bilateral posterior

cerebellar Crus II (executive function, working memory)
and in auditory processing: left Heschl’s gyrus. Con-

versely, grey matter density decreased with expertise in

bilateral perirolandic and striatal areas that are related to
sensorimotor function, possibly reflecting high automation

of motor skills. Moreover, a multiple regression analysis

evidenced that grey matter density in the right mid orbital
area and the inferior frontal gyrus predicted accuracy in

detecting fine-grained incongruities in tonal music.

Keywords Musical training ! Voxel-based morphometry !
Grey matter density ! Plasticity ! Cognition ! Sensorimotor
function

Introduction

Plasticity of the brain, its ability to structurally and func-

tionally adapt in response to environmental demands, relies

importantly on the nature and intensity of its use (Blake-
more and Frith 2005).

Musical expertise is a rising star amongst topics inves-

tigating experience-driven brain plasticity (Pantev and
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Herholz 2011; Wan and Schlaug 2010; Jancke 2009) for

two reasons. First because mastering a musical instrument
fosters a panoply of intricately linked sensorimotor

(Zatorre et al. 2007; Schneider et al. 2002) and higher-

order cognitive functions (Oechslin et al. 2012; Schulze
et al. 2011; Sluming et al. 2007). Second because musical

expertise levels vary continuously from people solely

exposed passively to musical stimuli in their environment,
to highly trained expert performers.

The latter aspect has not been investigated extensively
in neuroscience research on musicians’ brain plasticity.

Hence, the major interest of the present study resides in the

fact that we studied whole-head grey matter differences as
a function of three strictly controlled, distinct and pro-

gressive levels of musical expertise. In contrast to musi-

cians versus non-musicians comparisons, including an
intermediate level of proficiency allows identifying brain

regions that are susceptible to progressive experience-dri-

ven neural adaptations.
Grey matter structural differences between the brains of

musicians and non-musicians are known to manifest inter

alia in the cerebellum (Hutchinson et al. 2003; Schlaug
et al. 1995), primary auditory cortex (Schneider et al. 2002,

2005; Bermudez and Zatorre 2005), and primary and

associative motor areas (Gaser and Schlaug 2003; Schlaug
2001; Hyde et al. 2009). Such structural adaptations appear

to be intimately related to functional adaptations (Schnei-

der et al. 2002; Zatorre et al. 2012).
As already stated, musical perception and execution are

not limited to auditory processing and sensorimotor func-

tion, but also involve higher-order cognitive, mnemonic and
attentional mechanisms (Janata et al. 2002b; Oechslin et al.

2012). Processing of musical syntax requires profound

knowledge and comprehension of musical structure as well
as keeping track of the short- and long-term musical context

(Oechslin et al. 2012). Expert musicians encode, manipu-

late, and retrieve information differently compared to non-
experts (Williamon et al. 2002). Musicians demonstrated

faster updating of auditory and visual working memory

representations compared to non-musicians (George and
Coch 2011). Instrumental performance also relies strongly

on attentional focus (Janata et al. 2002b; Williamon et al.

2002). Therefore, experience-driven brain plasticity may
not only modulate central auditory and motor processing

but also neuronal systems involved in higher-order pro-

cessing. Advantages with respect to higher-order cognitive
functioning as a consequence of musical expertise have

been shown previously for verbal working memory (Chan

et al. 1998), executive control (Bialystok and Depape
2009), linguistic perception abilities (Moreno et al. 2009)

and spatio-temporal reasoning (Rauscher et al. 1997).

Structural neuroplasticity seems to follow the law ‘‘more
skill, more grey matter’’ (Gaser and Schlaug 2003; Sluming

et al. 2002; Draganski et al. 2004; Hyde et al. 2009).

However, new evidence exists that training and ensuing
expertise sometimes induce local decrease of cortical vol-

ume (Granert et al. 2011; Hanggi et al. 2010). Skill

acquisition provokes synaptic enhancement in frequently
used connections that are strengthened whereas infre-

quently used connections are eliminated through pruning

(Kanai and Rees 2011; Zatorre et al. 2012). In ballet
dancers (Hanggi et al. 2010) as well as skilled pianists

(Granert et al. 2011), striatal volume decreased with
increasing motor function efficiency.

Given this background, we searched here for both

positive and negative structural neural correlates reflecting
stepwise increase in musical expertise. We performed

regression analyses on whole-head grey matter density as a

function of musical training intensity in three groups of
young adults (non-musicians, amateur and professional

‘‘expert’’ pianists) matched for sex, age, age of training

onset and fluid intelligence. We could verify the progres-
sive increase in musical expertise of the groups by means

of behavioural data from a recent functional MRI study

(Oechslin et al. 2012) in which the same groups of subjects
participated. The in-scanner task consisted in detection of

refined multi-level musical transgressions.

According to the above-mentioned findings, we expec-
ted to observe progressive changes in grey matter density

as a consequence of musical training in auditory and motor

function related brain areas as well as in regions hosting
universal functions of working memory and attention. We

merely anticipated increases, but expected to possibly

replicate findings reporting reduction of grey matter den-
sity with increasing musical skill in striatal areas. Because

both musician groups were classically schooled pianists,

we also anticipated some instrument-specific adaptations.
We could also establish relationships between grey

matter density data from the current study, and behavioural

in-scanner and fMRI results from the same group of par-
ticipants (Oechslin et al. 2012). Zatorre et al. (2012)

recently emphasized that brain function and structure are

dynamically linked and advocated that searching for net-
work-level patterns in anatomical structures is plausible.

We hypothesized that grey matter density in areas involved

in higher-order cognitive processing may predict behav-
ioural results of music syntactic processing.

Methods

Participants

Fifty-nine volunteers gave written informed consent to take

part in this experiment and received financial compensa-
tion. All participants were right-handed according to the
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Edinburgh Inventory (Oldfield 1971), reported normal

hearing and presented no history of neurological illnesses.
The protocol was approved by the local ethics committee.

Groups consisted of 20 professional pianists (experts;

24.5 ± 4.5 years; 10 women), 20 amateur pianists (ama-
teurs; 22.2 ± 3.1 years; 11 women) and 19 non-musicians

(non-musicians; 24.0 ± 4.5 years; 9 women). The groups

were matched for gender and age (one-way ANOVA on
age F2,56 = 2.2, p = 0.12). No significant group differ-

ences existed for fluid intelligence (Raven’s Advanced
Progressive Matrices Set II; Raven et al. 2003; F2,58 = 1.2,

p = 0.31). One supplementary non-musician was removed

from the analysis, because of a data acquisition artefact.
Experts were mainly advanced conservatory students but

also established artists or teachers, who received their

training at the Conservatoires of Geneva, Lausanne, Paris
and Zurich. Almost all non-musicians and amateurs were

students at the Universities of Geneva and Lausanne. Two

exceptions occurred, one non-musician was a young uni-
versity professor, and the youngest amateur was still in

secondary education (final year). Inclusion/exclusion cri-

teria were the following: non-musicians should not have
received any extracurricular musical education and never

have practised a musical instrument; piano practice of

amateurs should never have exceeded 10 h training per
week and their musical practice should have been contin-

uous from childhood until the moment of testing; the latter

condition of course also applied to the experts.
Musicians (amateurs and experts) should have started

their piano practice at the age of ten at the latest. Amateurs

started studying the piano at 7.0 ± 1.4 years, experts at
6.2 ± 1.9 years; age at beginning of practice was not sig-

nificantly different between the two musician groups

(t38 = 1.5, p = 0.19). By means of a questionnaire we
assessed individual training intensity in different age

brackets (in years: 6–8, 8–10, 10–12, 12–14, 14–16, 16–18,

18–25). For the first two periods (6–8, 8–10) we found no
significant differences in reported training intensity

between amateurs and experts, whereas the subsequent

periods revealed a pattern of consistently increasing train-
ing lag of amateurs compared to experts (Table 1).

All subjects also participated in an fMRI study reported

in Oechslin et al. (2012). This in-scanner behavioural task
is described at the end of this Methods session in

‘‘Behavioural measures’’. The results from this task

allowed verifying the progressive increase in musical
expertise of the groups.

Data acquisition and analysis

We recorded a T1-weighted 3-D gradient-echo structural

image for each individual (MPRAGE, TE = 2.27 ms,
TR = 1900 ms, flip angle = 9", FOV = 256 9 256 mm,

slice thickness = 1 mm, inversion time (TI) = 900 ms,
voxel size = 1 9 1 9 1 mm, intensity correction with

Prescan Normalize) on a 3-tesla MRI scanner (Siemens

TIM-TRIO, Erlangen, Germany). Data analysis was per-
formed with statistical parametric mapping software

(SPM8, Welcome Department of Imaging Neuroscience,

London, UK).
The pre-processing pipeline for the voxel-based mor-

phometry (VBM) analyses comprised the following steps.

Brain tissue was segmented into grey matter (GM), white
matter (WM) and cerebrospinal fluid (CSF) using the new

segment procedure of SPM8. This tool represents an

improved version of the default unified segmentation
method (Ashburner and Friston 2005). Images were

transformed nonlinearly to standard MNI space using the

diffeomorphic registration algorithm (DARTEL) imple-
mented in SPM8 (Ashburner 2007). GM probability maps

were then ‘‘modulated’’ by the Jacobian determinants of
the deformations to account for local compression and

expansion due to linear and non-linear transformations

(Good et al. 2001). In a final step, modulated GM proba-
bility maps were smoothed with an isotropic Gaussian

kernel of 8-mm full width at half maximum (FWHM).

Based on behavioural results from exactly the same
participants in a musical expectation violation detection

test (Oechslin et al. 2012) in which amateurs demonstrated

an intermediate level of performance between experts and
non-musicians, we modelled musical expertise as a three-

level regressor (non-musicians = 1; amateurs = 2;

experts = 3) to study possible linear relationships between
musical expertise and grey matter density (GMD). We

corrected for differences in total intra cranial volume (sum

of GM, WM and CSF, computed with the SPM extension
easy volume) and age, integrating covariate vectors for

these two variables into the regression model (Ridgway

Table 1 Training intensities of amateur and expert pianists reported
in mean (±SD) number of hours/week (h/w) within consecutive age
brackets

Training intensity

Age bracket A (h/w) E (h/w) t values

6–8 3.0 (±1.9) 3.1 (±1.7) t26: 1.1

8–10 3.5 (±0.5) 4.2 (±0.5) t38: 1.1

10–12 4.0 (±2.3) 6.5 (±4.3) t38: 2.7*

12–14 4.7 (±2.6) 9.0 (±5.3) t38: 3.3**

14–16 5.3 (±3.2) 14.8 (±7.7) t38: 5.1***

16–18 4.7 (±2.2) 19.9 (±9.3) t38: 7.1***

18–25 4.8 (±2.6) 30.7 (±8.5) t38: 12.4***

Groups were not yet complete in the first age bracket

Differences were assessed by t tests (two-tailed) for each bracket,
asterisks indicate level of significance: * p\ 0.05, ** p\ 0.01,
*** p\ 0.001
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et al. 2008). In order to include only relatively homoge-

neous voxels, and to exclude possible edge effects around
the grey and white matter borders, we excluded all voxels

with GMD values below 0.2 of the maximum value. We

then performed a linear regression analysis (Analysis I) on
GMD with the expertise vector as predictor and studied

positive (GMD increase) and negative (GMD decrease)

effects of expertise.
Subsequently, we extracted mean first eigenvariates

(EVs) for all brain clusters exhibiting significant positive or
negative effects of expertise (outcome of Analysis I) for

each individual. The extraction of these EVs from the

GMD values of the significant clusters was computed
independently, and not adjusted to the linear regression

model of Analysis I. EVs were extracted with SPM8 by

means of singular value decomposition; they provide one
GMD value for each cluster for each individual. SPM

extracts the EVs for a cluster, rather than the mean values,

because the former are more robust and resistant to heter-
ogeneity of response distribution within all voxels of a

cluster. We used these EVs to determine, which of these

brain clusters were the best predictors for two different
behavioural measures, via multiple linear regression

analyses (Analysis II) separately for positive and negative

effects of expertise. The behavioural task that yielded
both behavioural measures is described below. A multiple

regression analysis determines which predictors among

several best predict a certain variable and thus enables the
ranking of predictors according to their relative predictive

influence on that variable.

Behavioural measures

We used two behavioural measures as dependent variables
for Analysis II collected from the same participant group

(Oechslin et al. 2012) during an event-related sparse tem-

poral sampling (‘‘silent’’) fMRI protocol, optimal for the
presentation of auditory stimuli (Hall et al. 1999). Thirty

original polyphone expressive musical stimuli1 were pre-

sented in pseudo-randomized order at three levels of syn-
tactical transgression at musical closure: regular, subtly

transgressed and apparently transgressed endings. An

example of a stimulus at all transgression levels is provided
in the supplementary material, as well as musical scores

and corresponding sound files.

Participant’s appraisals consisted in expressing whether
end formulas (cadences) were correct, yes or no, by means

of button presses. From these binary results we computed

d-prime values (Macmillan and Creelman 1997) for,
respectively, the appraisals of subtly (Tsub) and apparently

(Tapp) transgressed musical end formulas (see ‘‘Results’’;

Table 2). The d-prime index is a statistic derived from signal
detection theory (Macmillan and Creelman 1997) and pro-

vides an index of rater sensitivity: higher d-prime values

indicate that the transgressed ending was better detected.
For details on the experimental task and materials, and

for details on the fMRI study as well as complete results
please see Oechslin et al. (2012).

Results

Behavioural results (Oechslin et al. 2012)

An ANOVA on d-prime values (see Table 2) with the

factors expertise (3, between) and transgression (2, within)
yielded significant main effects for expertise and trans-

gression, as well as significant interaction between the two

factors: expertise: F56.2 = 51.4, p\ 0.001; transgression:
F56.1 = 210, p\ 0.001; expertise 9 transgression F56.2 =

13.6, p\ 0.001 (data from Oechslin et al. 2012; cf. ‘‘In

scanner behavioural results’’).
In order to verify the intermediate position of the amateurs

for these behavioural results, a test consistingof twocombined

difference contrasts (non-musicians = -1, amateurs = 1,
experts = 0 and non-musicians = -0, amateurs = -1,

experts = 1) confirmed the intermediate position of the

amateurs both for Tsub (F56,2 = 51.9, p\ 0.001) and Tapp

(F56,2 = 39.2, p\ 0.001). Figure 1 illustrates the intermedi-

ate position of the amateurs for d-prime for Tsub, Tapp and for

mean d-prime of both transgressions.

VBM results

Anatomical labels were assigned according to cytoarchi-

tectonic probabilities using the SPM anatomy toolbox

(Eickhoff et al. 2007).

Table 2 Mean d-prime values (±SD) or rater sensitivity of non-
musicians (N), amateurs (A) and experts (E) for subtle transgressions
(Tsub) and apparent transgressions (Tapp) of end-formulas in expres-
sive music

Rater sensitivity Expertise

N
(n = 19)

A
(n = 20)

E
(n = 20)

d-prime Tsub (mean ± SD) 0.4 ± 0.7 1.2 ± 0.8 3.0 ± 0.9

d-prime Tapp (mean ± SD) 1.4 ± 1.2 3.5 ± 1.2 4.2 ± 0.6

Mean d-prime Tsub - Tapp

(mean ± SD)
0.9 ± 0.9 2.3 ± 0.9 3.6 ± 0.7

1 The compositions were electronic versions of specifically com-
posed string quartets with a duration of approximately 10 s. The
musical pieces were prepared with the ‘‘Sibelius’’ software (Avid
Technology, Inc.) and ‘‘Logic Pro’’ (Apple Inc.); instrumental timbres
were implemented using the ‘‘Garritan Personal Orchestra’’
(Garritan).
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Analysis I

The linear regression analysis (Analysis I) on GMD with
expertise (non-musicians = 1; amateurs = 2; experts = 3)

as predictor, corrected for age and total intracranial volume,

executed with SPM8 yielded the following results (Fig. 2).

Positive effects of expertise

A positive effect of expertise implies here a stepwise

increase in GMD as a function of the three degrees of

expertise and thus that GMD was highest in professional
musicians or experts, intermediate in amateur musicians,

and lowest in non-musicians (red clusters in Fig. 2). All

brain clusters with such significant stepwise increase are
summarized in Table 3. Statistical significance was

threshold at p\ 0.001 (unc.) and only clusters with a

minimum of 30 voxels were retained.
At the initial threshold of p\ 0.001 (unc.), there was no

evidence of enhanced GMD in the primary auditory cortex/

Heschl’s gyrus. However, many important studies dem-
onstrated grey matter volumetric increases in this area

(Bermudez et al. 2009; Bermudez and Zatorre 2005; Gaser
and Schlaug 2003; Schneider et al. 2002, 2005). In order to

verify whether our regression model could show stepwise

increase in GMD in auditory cortices as a function of
expertise, we executed supplementary regression analyses,

using the same three-level regressor, in two regions of

interest: the left and right superior temporal gyri, now with
a more liberal threshold of p\ 0.005 (unc.) and again a

minimum cluster size of 30 voxels. The regions of interest

were extracted using the AAL atlas (automated anatomical
labelling (Tzourio-Mazoyer et al. 2002), via the Pickatlas

toolbox implemented in SPM8.

Positive effects (Table 3) in cortical areas exhibited,
respectively, in a small cluster in the medial posterior part

of the right fusiform gyrus (peak effect), in the right mid

(medial) orbital gyrus, in the left inferior frontal gyrus (this
cluster extends from the pars triangularis into more medial

regions in the anterior insula; see Fig. 2d.4.) and in the left

inferior parietal lobule, more precisely in the grey matter of
the anterior intraparietal sulcus.

Fig. 1 Mean d-prime values for responses to end-formulas in
expressive music of non-musicians (N), amateurs (A) and experts
(E) for subtle transgressions (Tsub) in dark grey, apparent transgres-
sions (Tapp) in light grey and mean d-prime for both transgressions in
intermediate grey

Fig. 2 Brain clusters with significant positive (red) and negative
(blue) effects of expertise on GMD (p\ 0.001, unc., k = 30; only for
l_Heschl p\ 0.005, unc., k = 30). a Positive peak effect in r_FFG,
a.1., detailed view of r_FFG in coronal orientation. b Negative peak
effect in r_PCG. b.1., detailed view of r_PCG in sagittal orientation.
c All other positive and negative effects of expertise shown on axial
slides at seven different z levels. d.1.–8. Detailed views of all other
areas showing positive and negative effects of expertise. MRI

coordinates and orientations are provided vertically. Orientations:
cor. coronal, sag. sagittal. Positive effects: r_FFG, right fusiform
gyrus; r_mid_Orb, right mid orbital gyrus; r_Cb_CrusII, right
cerebellum Crus II; l_IFG, left inferior frontal gyrus; l_IPL, left
inferior parietal lobule; l_Cb_CrusII, left cerebellum Crus II;
l_Heschl, left Heschl’s gyrus. Negative effects: r_PCG, right
postcentral gyrus; l_PCL, left paracentral lobule; r_Stri, right
striatum; l_IOG, left inferior occipital gyrus; l_Stri, left striatum
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Positive effects in cerebellar areas manifested in large

bilateral clusters in theposterior lobe, inCrus II ofLobuleVIIa.
The supplementary region of interest analysis in the left

and right superior temporal gyrus yielded significant results

in the left primary auditory cortex, namely in the anterior
lateral area of Heschl’s gyrus or Te 1.2 (Morosan et al. 2001).

Negative effects of expertise

A negative effect of expertise implies here a stepwise

decrease in GMD following the three degrees of musical
expertise and thus that GMD was lowest in experts, inter-

mediate in amateur musicians, and highest in non-musi-

cians (blue clusters in Fig. 2). All brain clusters with such
significant stepwise decrease are summarized in Table 4.

Negative effects manifested, respectively, in the right

postcentral gyrus (peak effect), in bilateral precuneus/par-
acentral lobule, left inferior occipital gyrus and bilateral

striatal areas.
The peak voxel was found in the right postcentral gyrus

(assigned to sensory area 1 according to Eickhoff et al.

2007). The bilateral paracentral clusters reached, in their
most rostral and medial extents, the borders of the precu-

neus, and more anteriorly the paracentral lobules (assigned

to area M1-4a according to Eickhoff et al. 2007). These
regions are situated on the junction between the most

anterior part of the precuneus and the primary motor cortex

(M1). The precuneus and M1 are adjacent (on both sides of
the central sulcus) in the most medial part of the brain.

The bilateral striatal clusters encompassed parts of the

caudate nucleus, the borders of the putamen, as well as

grey matter tissue stripes within white matter regions in
between those two nuclei (see Fig. 2c, d.5.). These grey

matter strands, at the origin of the name of this region,

cannot be appreciated on MRI templates, but can be clearly
visualized in sections of the human brain at the level of a

coronal plane passing through the anterior commissure

(Duvernoy 1991, pp. 226–227). All brain areas that showed
positive and negative effects of expertise are depicted

encompassing their peak voxels in Fig. 2c, more extensive
representation of significant voxels is provided in

Fig. 2d.1.–8. for all brain clusters.

Analysis II

For each participant, we extracted one mean first eigen-
variate (EV) for each brain cluster that gave rise to sig-

nificant increase or decrease of GMD as a function of

expertise in Analysis I. These EVs were implemented in
multiple regressions analyses as predictors for behavioural

results, respectively, for d-prime of Tsub (subtle syntactic

transgression) and Tapp (apparent syntactic transgression;
see ‘‘Methods’’ section), separately for positive and nega-

tive effects of expertise.

Residuals were normally distributed for all regression
equations. One outlier in the expert group was excluded

from the analyses. The results from both multiple regression

analyses for Tsub and Tapp for areas manifesting positive
effects of expertise are provided in Table 5. Both multiple

regression equations were highly significant (top lines of

Table 5), so all brain clusters together predicted the
behavioural outcomes (d-prime for Tsup and Tapp, respec-

tively) very well. For Tsub, two individual brain clusters

within the model predicted the behavioural outcome

Table 3 Significant clusters with increased GMD as a function of
expertise, identified by a regression analysis (Analysis I) corrected for
intracranial volume and age

Regions Voxels Tmax Zmax MNI coord. peak voxel

r_FFG 35 4.05 3.77 30 -62 -5

r_mid_Orb 74 3.87 3.62 14 48 -8

r_Cb_CrusII 537 3.83 3.59 17 -83 -44

l_IFG 83 3.82 3.58 -38 23 8

l_IPL 49 3.66 3.45 -44 -39 41

l_Cb_CrusII 388 3.66 3.44 -35 -68 -47

l_Heschl 81 3.03 2.90 -53 -9 3

Anatomical labels (MNI coordinates of peak voxels) are provided.
Expertise was defined as a 3-level regressor (non-musicians = 1,
amateurs = 2; experts = 3). Only clusters with a minimum of 30
voxels were retained

Statistical significance was threshold at p\ 0.001 (unc.). The last
cluster in Heschl’s gyrus was threshold at p\ 0.005 (unc.)

r_FFG right fusiform gyrus, r_mid_Orb right mid orbital gyrus,
r_Cb_CrusII right cerebellum Crus II, l_IFG left inferior frontal
gyrus, l_IPL left Inferior parietal lobule, l_Cb_CrusII left cerebellum
Crus II, l_Heschl left Heschl’s gyrus

Table 4 Significant clusters with decreased GMD as a function of
expertise, identified by a regression analysis (Analysis I) corrected for
intracranial volume and age

Regions Voxels Tmax Zmax MNI coord. peak voxel

r_PCG 120 4.92 4.46 48 -33 66

l_Prec/l_PCL 432 4.35 4.02 -5 -41 66

r_Prec/r_PCL 5 -38 66

r_Stri 235 3.92 3.66 18 5 9

l_IOG 40 3.79 3.56 -30 -89 -8

l_Stri 237 3.52 3.33 -15 5 11

Anatomical labels (MNI coordinates of peak voxels) are provided.
Expertise was defined as a 3-level regressor (non-musicians = 1,
amateurs = 2; experts = 3). Only clusters with a minimum of 30
voxels were retained

Statistical significance was threshold at p\ 0.001 (unc.)

r_PCG right postcentral gyrus, l_Prec left precuneus/l_PCL left
paracentral lobule, r_Stri right striatum, l_IOG left inferior occipital
gyrus, l_Stri left striatum
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significantly: the right mid orbital gyrus and left inferior

frontal gyrus (i.e. pars triangularis and anterior insula).
In these areas, increased GMD resulted in significantly

better detection of Tsub. For Tapp not one individual cluster

predicted behaviour significantly; however, the right mid
orbital gyrus reached marginal significance. Results from

both multiple regression analyses for, respectively, Tsub and

Tapp for areas manifesting negative effects of expertise are
provided in Table 6. Again both equations were highly

significant (top lines of Table 6). At the level of individual
regions, only the left inferior occipital gyrus predicted the

behavioural outcome of both Tsub and Tapp. For this area,

less GMD resulted in better performance.

Discussion

The key finding of this study resides in the observed

functional dissimilarity between areas showing increase

versus decrease of grey matter density (GMD) as a function

of musical expertise. Progressive increase of GMD as a
consequence of expertise manifested in several cortical

areas known to be involved in higher-order cognitive

processing, primary auditory processing and in bilateral
posterior cerebellar areas also implicated in cognitive

behaviour. Increase in GMD as a function of musical

expertise in the fusiform gyrus and in posterior cerebellar
areas has not been evidenced before.

In contrast, decreases were found principally in senso-
rimotor function related areas. Reduction of GMD exhib-

ited in perirolandic cortical areas and subcortical areas in

the striatum, possibly induced by ruling out of non-perti-
nent movement and proprioceptive feedback relative to

piano performance, resulting in greater efficiency and

automation, thus increasing virtuosity. Such cortical and
subcortical sensorimotor function related GMD reduction

adds a new perspective on cerebral reorganisation with

increasing motor skill.
We suggest that these findings are the consequence of

our well-defined group categorizations that allowed

observing progressive changes of GMD with stepwise
increasing expertise as a consequence of specific training.

Table 5 Results of two multiple regression analyses with as pre-
dictors all significant brain clusters with positive effect of expertise
(outcome Analysis I, cf. Table 3) for (a) dependent variable d-prime
Tsub (subtle transgression) and (b) dependent variable d-prime of Tapp

(apparent transgression)

Predictor Beta SEM (beta) t (50)

(a) Regression summary for dependent variable Tsub;
F7,50 = 5.12***; R2 = 0.42

r_FFG 0.24 0.12 1.94

r_mid_Orb 0.28 0.11 2.46*

r_Cb_CrusII 0.18 0.17 1.05

l_IFG 0.28 0.12 2.32*

l_IPL 0.14 0.12 1.19

l_Cb_CrusII -0.07 0.18 -0.39

l_Heschl 0.16 0.12 1.34

(b) Regression summary for dependent variable Tapp; F7,50 = 3.80**;
R2 = 0.35

r_FFG 0.16 0.13 1.27

r_mid_Orb 0.23 0.12 1.91o

r_Cb_CrusII 0.22 0.18 1.20

l_IFG 0.17 0.13 1.34

l_IPL 0.18 0.12 1.41

l_Cb_CrusII 0.03 0.19 0.16

l_Heschl 0.11 0.13 0.85

In the top panels the results for the full regression equations are
reported. Below beta coefficients, standard error of mean (SEM) for
beta coefficients and corresponding t values for the individual pre-
dictors are reported

Dependent variable Tsub d-prime subtle transgression; SEM standard
error of mean

Significant results are plotted in bold font

Asterisks indicate level of significance: * p\ 0.05; ** p\ 0.01; ***
p\ 0.001, o p\ 0.07

Table 6 Results of two multiple regression analyses with as pre-
dictors all significant brain clusters with negative effect of expertise
(outcome Analysis I, cf. Table 4) for (a) dependent variable d-prime
Tsub (subtle transgression) and (b) dependent variable d-prime of Tapp

(apparent transgression)

Predictor Beta SEM (beta) t (53)

(a) Regression summary for dependent variable Tsub;
F5,52 = 6.61***; R2 = 0.39

r_PCG -0.16 0.13 -1.23

lr_Prec/PCL -0.10 0.13 -0.72

r_Stri -0.19 0.21 -0.90

l_OG 20.37 0.12 23.17**

l_Stri -0.13 0.22 -0.62

(b) Regression summary for dependent variable Tapp;
F5,52 = 8.14***; R2 = 0.44

r_PCG -0.19 0.13 -1.52

lr_Prec -0.16 0.13 -1.30

rStri -0.07 0.21 -0.35

l_IOG 20.45 0.11 24.00***

l_Stri -0.13 0.21 -0.63

In the top panels the results for the full regression equations are
reported. Below beta coefficients, standard error of mean (SEM) for
beta coefficients and corresponding t values for the individual pre-
dictors are reported

Dependent variable Tsub d-prime subtle transgression, SEM standard
error of mean

Significant results are plotted in bold font

Asterisks indicate level of significance: * p\ 0.05, ** p\ 0.01, ***
p\ 0.001
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The homogeneity of all groups used here and more spe-

cifically the similarity of training experiences shared by the
two pianist groups may have induced the revelation of

more refined differences. Diverse training experiences

might have masked these findings.

Analysis I

Positive effects of expertise

The peak effect was found in the right fusiform gyrus

(FFG), known for its implication in symbolic processing
through visual form recognition (Koutstaal et al. 2001).

Lesion studies (Leff et al. 2001) as well as functional

imaging (Price and Mechelli 2005) evidenced that the left
posterior FFG plays an important role in reading. Prime-

target pairs of orthographically related words produced a

neural priming effect in the left FFG that decreased if the
prime-target pairs were semantically related (Price and

Mechelli 2005). This result suggests that the FFG not just

stores visual word forms but rather acts as an interface
between visual form information and higher-order stimulus

characteristics such as associated sound and meaning

(Devlin et al. 2006). This function is not specific to text
reading, but may be engaged in the processing of any

meaningful visual stimulus (Devlin et al. 2006), and prone

to plastic changes. Musically untrained adults who learned
to read music and play the piano over a period of 3 months

showed learning-related functional changes in the fusiform

gyrus (Stewart 2005). Musicians trained from early child-
hood relied more on the left posterior fusiform gyrus for

mathematical processing (addition and subtraction of

fractions) than non-musicians (Schmithorst and Holland
2004). The fact that we found right-sided increase in GMD

can be explained by the fact that the right cerebral hemi-

sphere may retain more specific visual form information
than the left, which may store more abstract lexical-

semantic representations (Koutstaal et al. 2001). A music

expert directly links music notation to sound (Behmer and
Jantzen 2011). In conclusion, we suggest that the increase

in GMD in the right fusiform area with increasing expertise

may reflect the acquisition of abstract musical score
representations and their sound associations through pro-

gressive training. Among instrumentalists’ scores, those of

pianists are among the most complex.
The second cortical effect manifested in an area in the

right mid orbital gyrus. No consensus seems to exist con-

cerning the specific functions of this area. It is reported to
be involved in self-referential judgement (Denny et al.

2012), in cognitive control of emotion (Ochsner et al.

2009), in metamemory (prediction of memory success, Do
Lam et al. 2012) and in tracking of tonality in western tonal

music (Janata et al. 2002a). It is also presumed to be part of

the default network (Kim 2012) that is active during most
internally oriented mental activities. We would like to

adopt the interpretation by Petr Janata (Janata et al. 2002a;

Janata 2005) concerning the function of this area as a
‘‘nexus of cognitive, affective and mnesic processing’’,

with a specific sensitivity for the tracking of changes in

tonality in western tonal music. That such an area develops
its GMD with intensive musical training seems plausible,

specifically in pianists that play polyphonic music all the
time. Analysis II underpinned this presumption, as GMD in

this area best predicted the detection of syntactical trans-

gressions in tonal music.
Another important cortical effect was increased GMD in

the left inferior frontal gyrus in a cluster extending from the

pars triangularis into the anterior insula. Possible expla-
nations for GMD enhancement in this area are twofold. In

the first place both pars triangularis and anterior insula are

well known for their role in syntactic processing of lan-
guage and music (Friederici 2002; Koelsch et al. 2001; Nan

and Friederici 2012; Tillmann et al. 2006). In analogy, grey

matter volume increase in Broca’s area (pars opercularis)
could be evidenced via VBM in professional male

orchestra musicians (Sluming et al. 2002). Secondly,

increase of grey matter volume in these regions could also
reflect enhanced general cognitive function in musicians,

encompassing processes such as top-down attention and

working memory (Janata et al. 2002b; Schulze et al. 2011).
In conjunction with this, anterior insula activation can

express stimulus driven perceptual demand (Sterzer and

Kleinschmidt 2010). In a visual 3-back working memory
task with letters (Oechslin et al. 2012), in which the same

participant group as in the current experiment participated,

the expert musicians outperformed the two other groups.
This is not surprising, as attentional and working memory

loads are high during musical performance. To summarize,

increased GMD in the inferior frontal cortex with expertise
may thus represent experience-driven brain adaptation

allowing musicians to optimally retain and interpret com-

plex auditory stimuli, in highly demanding attentional
contexts such as on stage musical performance.

Moreover, in our associated fMRI study, (Oechslin et al.

2012) bilateral anterior insulae (ant_INS) were activated
differentially as a function of expertise and degree of

syntactical transgression (interaction effect expertise x

transgression). In Fig. 3, the overlap of these functional
and the here analyzed structural results in the left hemi-

sphere are shown. In the fMRI study, subtle transgressions

(Tsub) activated the ant_INS more strongly with increasing
expertise; apparent transgressions (Tapp) induced the

opposite effect. For details on the contrasts used in this

fMRI study we refer to the original communication
(Oechslin et al. 2012). This result suggests that local
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structure of grey matter as assessed by voxel-based mor-

phometry is intimately linked to cognitive behaviour as
shown before (Kanai and Rees 2011; Schneider et al.

2002).

Then, increased cortical density was observed in the left
anterior intraparietal sulcus (IPS), whose functions are

related to perceptual motor coordination (Simon et al.

2002). An increase in grey matter density in the left pos-
terior IPS could be demonstrated using VBM in a longi-

tudinal study on the plastic effects of juggling training

(Draganski et al. 2004). Accordingly, although inferior
parietal areas were activated during both real and imagined

piano performance, the IPS exhibited significantly stronger

BOLD responses during music performance compared to
imagined musical behaviour (Meister et al. 2004). Fur-

thermore, the IPS has been identified as a critical structure

for note reading (Schön et al. 2002; Stewart et al. 2003).
Therefore, both visuo-motor coordination (hand-keyboard)

during performance and music score reading or ‘‘translat-

ing’’ music notation into sound may have contributed to the
gradual expansion of GMD with expertise in this area.

The supplementary regression analyses in left and right
superior temporal lobes demonstrated increase of GMD

with expertise in the left primary auditory cortex, more

precisely in the anterior lateral area of Heschl’s gyrus or
Te1.2 (temporal cortical area 1.2; Morosan et al. 2001;

Eickhoff et al. 2007). The observation that GMD increases

with musical aptitude in the primary auditory cortex con-
firms the literature on enhanced grey matter volume in the

primary auditory cortices of musicians (Bermudez et al.

2009; Bermudez and Zatorre 2005; Gaser and Schlaug
2003; Schneider et al. 2002, 2005), and can be easily

explained by musical practice. In a population of non-

musicians, amateur musicians and professional musicians,
Schneider et al. (2002) evidenced bilateral increases in

grey matter in Heschl’s gyrus with increasing musical

aptitude that could be associated with stepwise differences
in strength of MEG responses to sinusoidal tones. Gaser

and Schlaug (2003) and the current study found exclusively

left-sided enhancement. These left-sided findings do not
tally well with the literature proposing that right auditory

cortex may subserve fine grained pitch (frequency)

processing, specifically of musical stimuli (Zatorre et al.

2002). Several studies report bilateral or right-sided
enhancement of grey matter in musicians in this area

(Bermudez et al. 2009; Bermudez and Zatorre 2005;

Schneider et al. 2002). It is possible that our regression
model comprising two groups of pianists with different

levels of expertise accounts for this left-sided observation.

Instrumentalists that play percussive instruments (piano,
trumpet, drums etc.), so-called ‘‘fundamental pitch listen-

ers’’ showed enhanced grey matter volume in left Heschl’s
gyrus (Schneider et al. 2005), which is sensitive to rapid

temporal processing (Zatorre et al. 2002). Gaser and

Schlaug (2003) also examined exclusively keyboard
players.

Bilateral cerebellar cortex exhibited massive increase of

GMD with expertise in bilateral Crus II of lobule VIIa.
Traditionally the cerebellum has been associated to motor

function (Ito 2002). This seems a plausible explanation in

the present context: increased GMD with increasing pia-
nistic virtuosity. Nevertheless, a thorough reading of recent

literature on cerebellar function rejects this point of view.

Distinct loops exist between cerebellum and cortex for,
respectively, cognitive and motor function. Functional

neuroimaging in combination with diffusion-weighted MRI

(Salmi et al. 2009) revealed that the posterior cerebellum
(Crus I and II), which is connected to lateral prefrontal

areas, was activated by cognitive load increase in a non-

verbal auditory memory task; in contrast, the anterior
cerebellum (lobules V/VI), known to be involved in sen-

sorimotor function, was not. An analysis on resting state

functional connectivity observed the same dissociation: a
primary sensorimotor zone (lobules V, VI and VIII) could

be distinguished from a supramodal zone (lobules VIIa,

Crus I, and II). The cortical connectivity of the supramodal
zone was driven by areas of frontal and parietal cortex that

are not directly involved in sensorimotor functioning

(O’Reilly et al. 2010). A meta-analysis (53 studies) on
cerebellar function concluded that language and executive

tasks activated regions of Crus I and lobule VII supposed to

be engaged in prefrontal-cerebellar loops (Stoodley and
Schmahmann 2009); these authors thus also suggest an

anterior sensorimotor versus posterior cognitive/emotional

dichotomy in the cerebellum. We conclude that the
increased GMD in bilateral Crus II observed here, thus,

reflects improved working memory and executive function.

As stated with respect to the inferior frontal cortex increase
above, attention and working memory loads are high dur-

ing musical performance.

Negative effects of expertise

We observed a decrease of GMD in sensorimotor areas, in
the right postcentral gyrus (sensory area 1; Eickhoff et al.

Fig. 3 Overlap of functional results (in green; interaction exper-
tise 9 transgression) from Oechslin et al. (2012) and structural results
of the present study (in red) in the left inferior frontal cortex. The
MRI coordinate is provided
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2007), bilateral paracentral lobule (comprising the precu-

neus and also M1-4a; Eickhoff et al. 2007) and bilateral
striatum. M1-4a represents an area of secondary motor

execution that actively participates in complex sensori-

motor processing; its activation depends thus on a feedback
system (Nakada et al. 2000). M1-4a even responds to

sensory stimulation without involving in actual motion

(Wilson et al. 2004). Conversely, M1-4p is rather involved
in initiation of movement, and does not respond to sensory

stimulation (Terumitsu et al. 2009). While learning to play
an instrument; visual, proprioceptive and auditory feed-

backs are essential, but with increasing skill, these external

cues are no longer necessary (Krings et al. 2000), and can
even become a nuisance and hamper smooth automatized

sensorimotor function. Motor skill acquisition and mastery

manifest according to principles of economy: chunking
complex behaviour into compact units diminishes the

number of degrees of freedom. With enhanced skill, fewer

neurons are recruited for the same movements, which show
a decrease in movement variability, and less effort is

necessary for their execution, allowing musicians to pro-

gressively dedicate their attention to artistic goals rather
than sensorimotor ones (Krings et al. 2000; Jancke et al.

2000). Finally, internally generated movement deriving

from a forward model gives rise to motor-induced sup-
pression of sensory cortical feedback (Aliu et al. 2009).

The striatum also follows this principle of parsimony. In

professional ballet dancers a reduction in putaminal GMD
compared with control subjects could be evidenced.

Granert et al. (2011) also observed that the basal ganglia

deviate from the rule ‘‘the more volume, the higher the
level of skill’’. Better timing of key stroke, characterising

skill level of piano playing, could be associated with less

grey matter volume in the putamen of pianists compared to
healthy non-musician controls, whereas an increase of

GMD manifested in pianists suffering from musician’s

dystonia.2 Apparently high movement skill reduces the
importance of striatal movement control. Models describ-

ing this focusing of cortico-basal ganglia-thalamo-cortical

loops that strengthen relevant cortical inputs while sup-
pressing irrelevant ones have been described in the past

(Mink 1996, 2003; Bar-Gad et al. 2003). Our study dem-

onstrates a GMD decrease in the border region of the
putamen, but more clearly in the caudate nucleus, as well

as in their connections passing through the internal capsule.

Chess experts, who also depend on quick automatized
responses like expert musicians, also manifested a reduced

volume in the caudate nucleus (Duan et al. 2012). This

phenomenon also manifested in other board games and
skills (Wan et al. 2011; Poldrack et al. 2005). In

accordance, we show for the first time a stepwise GMD

decrease in the caudate nucleus with musical aptitude.
Finally, the cluster in the left inferior occipital area that

also displayed decrease in GMD with expertise is virtually

the same that was found less activated in musicians in the
right hemisphere, during math processing relative to non-

musicians (Schmithorst and Holland 2004). Interestingly

the same study found increased activation in the fusiform
area. The authors explained the decreased activation in the

inferior occipital area as a habituation effect, a practice
effect shown before in the context of visuospatial working

memory and stimulus repetition (Garavan et al. 2000;

Koutstaal et al. 2001). We suppose that pianists, following
intensive daily practice, rely on the fusiform gyrus for

decoding complex musical scores and, therefore, recruit the

secondary visual areas less, resulting in a decrease of
GMD.

Analysis II

The first multiple regression analysis using all brain clus-

ters with positive effects of expertise as predictors for Tsub

(subtle transgression) revealed that the right mid orbital

gyrus cluster best explained sensitivity (d-prime). This

strengthens our hypothesis that this area is implicated in
tracking of tonality (Janata et al. 2002a), a faculty that

demands mnesic, cognitive and also affective processing. It

is through changes of tonality that western classical com-
posers induced affect over the centuries. This affective

processing may manifest as a form of relevance detection,

as is also suggested for the amygdala in certain contexts
(Ousdal et al. 2008). We suggest that such relevance

detectors play an important role in the dynamic context of

stage performance and allow a professional to quickly
adapt in incongruous musical situations due to individual

or contextual errors (James et al. 2008). Second best in

explaining sensitivity for Tsub was the left inferior frontal
gyrus cluster. This result stresses the importance of this

area for syntax processing, in conjunction with our func-

tional imaging results (Oechslin et al. 2012). The latter
study evidenced increase of activation with expertise in the

bilateral anterior insulae for Tsub in an area that overlaps in

the left hemisphere with positive effect of expertise of the
current study (see Fig. 3). Detection of these subtle trans-

gressions increased with expertise (see Fig. 1).

The second multiple regression analysis using all brain
clusters with positive effects of expertise as predictors for

Tapp (apparent transgression) did not reveal any significant

results for individual predictors. The right mid orbital gyrus
cluster best explained sensitivity (d-prime) again, but this

effect was only marginally significant.

The third and fourth regression analyses using all brain
clusters with negative effects of expertise as predictors for,

2 Musician’s dystonia or focal dystonia is a neurological disorder that
affects muscle control in specific often overtrained areas.
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respectively, Tsub and Tapp indicated that one area present

among the predictors, the left inferior occipital gyrus,
predicted accuracy significantly in a negative way: less

GMD in this area correlated with higher d-prime values.

This intriguing finding may be related to the increase of
GMD in the right fusiform area with expertise. Complex

score reading, essential for pianists, may progressively

induce specific pattern recognition with increasing exper-
tise in the right fusiform gyrus, consequently reducing

involvement of more basic visual areas. Therefore, the
reduction of GMD in occipital areas may indirectly reflect

enhanced pattern recognition, subserving score reading but

possibly also musical syntactical processing, operated in
the fusiform gyrus.

Comparison to the literature

A similar study also using VBM showed different, but

equally plausible results (Gaser and Schlaug 2003). These
authors also acquired rapid acquisition gradient echo scans,

with the same voxel sizes, although on a 1.5 T scanner

versus a 3T scanner here. They also applied VBM;
although not using Dartel tools, or New Segment that did

not exist at the time, and used a larger smoothing kernel

before applying statistics (12 FWHM vs. 8 FWHM here).
They also investigated non-musicians, amateur and expert

pianists, with groups of the same size, but only male par-

ticipants. Statistical analyses were similar (three level
expertise regressor), although different statistical thresh-

olds and cluster sizes were applied. First, GMD increase in

the cerebellum exhibited in anterior sensorimotor regions,
whereas we found increase in posterior cerebellar areas

linked to executive function. These differences in cere-

bellar areas may be explained by the presence of 50 % of
women in our sample. Only in men, not in women, an

increase of relative and absolute cerebellar volume has

been observed between musicians and non-musicians
(Schlaug 2001; Hutchinson et al. 2003). Therefore, the

presence of women in our sample may have masked pos-

sible effects of musicianship in motor function related
areas of the cerebellum as found in men by Gaser and

Schlaug (2003). Like in the current study, left Heschl’s

gyrus, left inferior frontal gyrus and right medial frontal
gyrus showed enhanced GMD with increased musical

expertise. However, Gaser and Schlaug (2003) found

strong GMD increase in perirolandic areas, whereas we
found decrease. The explanation resides, in our opinion, in

the choice of the participants, namely our highly controlled

and unique inclusion/exclusion criteria that shed a new
light on training-induced grey matter plasticity. We could

verify by means of behavioural results that the amateur

group was well situated between non-musicians and
experts thus legitimating a linear model. In the above-

mentioned study, the group of professional musicians

practiced at least 1 h a day; in our expert group the mean
was almost 5 h per day. Our amateurs practiced almost an

hour per day (see Table 1). Therefore, the degree of

automaticity and skill of motor performance in our musi-
cian groups was enhanced in all likelihood. Intensity of

practice can be associated with degree of automaticity and

associated with decreased activation in sensorimotor areas
(Poldrack et al. 2005). Practice strongly influences long-

term retention of motor skills (Dayan and Cohen 2011).
A longitudinal study with a group of established expert

pianists indicated that daily practice time exceeding 3.75 h

or more induced an improvement in a specific motor skill.
The authors concluded that even in established expert

pianists, maintenance of motor skills is strongly influenced

by current practice quantity (Jabusch et al. 2009). This
observation can be generalized; amount of deliberate

practice is closely related to performance level in musi-

cians (Ericsson et al. 1993; Sloboda et al. 1996), chess
players (Charness et al. 1996) and athletes (Starkes et al.

1996).

Limitations

A limitation of our study is that the macroscopic level of

our analyses prevents us from drawing any conclusions on

the nature of the underlying microscopic mechanisms.
Moreover, the cross-sectional design prevents us from

discriminating learning effects from genetic or epigenetic

factors (Zatorre et al. 2012). Only longitudinal studies
beginning in childhood can distinguish nature and nurture

in a musician population.

Finally, our findings are restricted to the population
studied here, namely classically schooled pianists.

Conclusion

The brain generates behaviour, and is in turn modified by
the behaviour it produces (Pascual-Leone 2001). The

present study yielded intriguing functional dissimilarity

between areas exhibiting increase versus decrease of grey
matter with musical expertise. A network of higher-order

cognitive-function related areas increased in volume,

whereas a network of sensorimotor function related areas
showed decrease. Apparently, more resources are available

for higher-order music processing with increasing exper-

tise; in contrast the development of motor skill is accom-
panied by progressive ruling out of non-pertinent

movement and sensory feedback relative to piano perfor-

mance, resulting in greater efficiency and automation, thus
increasing virtuosity.
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We also established links between brain structure and

function in our participants. In the first place GMD in the right
mid orbital gyrus and the left inferior frontal gyrus (pars

triangularis and anterior insula) significantly predicted accu-

racy in detecting fine-grained incongruities in tonal music.
Second, an area in the inferior frontal cortex with increased

GMD as a function of musical expertise overlapped ana-

tomically with an activation cluster of a preceding functional
study (Oechslin et al. 2012), in which the same participants

detected musical incongruities. These results suggest that
local structure of grey matter as assessed by voxel-based

morphometry is intimately linked to cognitive behaviour.
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