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Abstract—In modern programming high-level data-structures
are an important foundation for most applications. With the
rise of multicores, there is a trend of supporting data-parallel
collection operations in general purpose programming languages.
These operations are highly parametric, incurring abstraction
performance penalties. Furthermore, data-parallel operations
must scale when applied to irregular workloads. Work-stealing is
a proven technique for load balancing irregular workloads, but
general purpose work-stealing also suffers abstraction penalties.

We present a generic data-parallel collections design based on
work-stealing for shared-memory architectures that overcomes
abstraction penalties through callsite specialization of data-
parallel operation instances. Moreover, we introduce work-stealing
iterators that allow fine-grained and efficient work-stealing for
particular data-structures. By eliminating abstraction penalties
and making work-stealing data-structure-aware we achieve up
to 60× better performance compared to JVM-based approaches
and 3× speedups compared to tools such as Intel TBB.

I. INTRODUCTION

While the declarative nature of data-parallel programming
makes programs easier to understand and maintain, as well as
to apply to a plethora of different problems, implementing an
efficient data-parallel framework remains a challenging task.
This task is only made harder by the fact that data-parallel
frameworks offer genericity on several levels. First, parallel
operations are generic both in the type of the data records and
the way these records are processed. Orthogonally, records
are organized into data sets in different ways depending on
how they are accessed – as arrays, hash-tables or trees. Let us
consider the example of a subroutine that computes the mean
of a set of measurements to illustrate these concepts. We show
both its imperative and data-parallel variant.
def mean(x: Array<Int>) = {1

var sum = 02

while (i < x.length)3

{ sum += x(i); i += 1 }4

return sum / x.length }5

def mean(x: Array<Int>) = {1

val sum = x.par.fold(0) {2

(acc, v) => acc + v3

}4

return sum / x.length }5

The data-parallel operation that the declarative-style mean
subroutine relies on is fold, which aggregates multiple values
into a single value. This operation is parametrized by the user-
specified aggregation operator. The data set is an array and the
data records are the array elements, in this case integers. A
naive implementation of a parallel fold method [14] might

be as follows:
def fold<T>(x: Iterable<T>, z: T, op: (T, T) => T) = {6

val subsets = x.iterator.split7

val results = subsets.inParallel { subset =>8

var sum = z9

while (subset.hasNext) sum = op(sum, subset.next())10

sum }11

return results.foldLeft(z)(op) }12

We assume collections have a method that returns an
iterator that can be efficiently split into subsets [14]
[15]. These subsets are processed in parallel – from a high-
level perspective, this is done by the inParallel call. Once
all the workers complete, their results can be aggregated
sequentially. We focus on the work done by separate workers,
namely, lines 9 through 11. Note that the while loop in
those lines resembles the imperative variant of the method
mean, with several differences. The neutral element of the
aggregation z is generic and specified as an argument. Then,
instead of comparing a local variable i against the array length,
method hasNext is called, which translates to a dynamic
dispatch. The second dynamic dispatch updates the state of the
iterator and returns the next element and another dynamic
dispatch is required to apply the summation operator to the
integer values.

These inefficiencies are referred to as the abstraction penal-
ties. We can identify several abstraction penalties in the previ-
ous example. First of all, in typical object-oriented languages
such as Java or C++ the dynamic dispatches amount to reading
the address of the virtual method table and then the address
of the appropriate method from that table. Second, and not
immediately apparent, the iterator abstraction inherently relies
on maintaining the traversal continuation. The method next
must read an integer field, check the bounds and write the new
value back to memory before returning the corresponding value
in the array. The imperative implementation of mean merely
reads the array value and updates i in the register. The third
overhead has to do with representing method parameters in a
generic way. In languages like Java, Scala and OCaml primitive
values passed to generic methods are converted to heap objects
and their references are used instead. This is known as boxing
and can severely impact peformance. While in languages like
C++ templating can specialize the fold for primitive types,
generic type parameters are a problem for many runtimes.

To achieve parallel speedups proper load balancing is
required. In the simplified fold implementation we used
the hypothetical inParallel method that assigns subsets
of work to different workers. This approach of statically
partitioning the workload has been studied extensively, but it
does not guarantee optimal speedup in all cases [9]. Consider
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the following example of naively computing a list of prime
numbers smaller than N.

(3 until N) filter { i =>13

(2 to dsqrt(i)e) forall { d => i % d != 0 } }14

For each of the numbers i between 3 and N the filter
predicate checks if any number up to the square root of
i divides i. The amount of computation for each element
depends on its value, making this data-parallel computation
irregular. If the numbers are specified as part of the program
input, then there is no way for static analysis to optimally
partition the work at compile time.

This paper focuses on runtime workload-driven load bal-
ancing. So far, work-stealing has proven an efficient runtime
load balancing technique for irregular problems [3] [5], and the
collections design we propose adopts it as well. It was shown
that making work-stealing data-parallelism aware allows better
load balancing [1]. For this reason, our design integrates
work-stealing with the shape of the data-structure, allowing
the size of the batches to adapt to the workload. As we
will show, existing approaches incur scheduling penalties by
relying only on general-purpose work-stealing and not making
work-stealing data-structure-aware [14].

The goal of this paper is to twofold. First, we show how
the aforementioned abstraction penalties can be eliminated in
a generic way for different data-structures and data-parallel
operations, achieving near optimal performance. We rely on an
abstraction called a kernel of a data-parallel operation, which
consists of the specialized code for traversing and processing
a batch of data for a specific data-parallel operation instance.
Second, we show how to minimize the scheduling penalties
by employing fine-grained work-stealing for different data-
structures in a generic, efficient and lock-free manner. We
will introduce the concept of work-stealing iterators, which
abstract over how work is divided into batches and how it
is stolen. Note that knowledge of neither kernels nor work-
stealing iterators is required for the data-parallel framework
user, but using them allows extending the framework with new
operations and data collections.

The rest of the paper is organized as follows. Section II
describes work-stealing iterators and kernel abstractions for
different data-structures and data-parallel operations. In Sec-
tion III we evaluate the performance of data-parallel collection
operations on a range of microbenchmarks and on larger
benchmark applications. Section IV presents the related work.

Finally, Section V concludes.

II. DESIGN AND IMPLEMENTATION

It is common that tasks recursively spawn subtasks in task
parallel programming, potentially generating additional work
to be stolen. This fact drives the design of many runtimes
based on work-stealing [5] [10] – only a single, oldest task
is stolen at a time, the execution of which hopefully creates
more subtasks. Conversely, parallelism units in data parallel
programming are not tasks but individual collection elements
that do not generate more work. Thus, stealing must proceed
in batches to reduce the scheduling penalty.

The work-stealing tree scheduler [1] exploits this obser-
vation by dividing the remaining workload equally between
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Fig. 1. (A) Stealing in the work-stealing tree scheduler; (B) Scheduling
irregular and uniform workloads

the stealer and the victim when a steal occurs. This lock-free
scheduling algorithm is based on the CAS instruction. CAS
is a robust synchronization primitive preferable to mutexes,
semaphores and critical sections due to being encoded as a
single CPU instruction that does not lead to context switches.
The advantages of CAS-based lock-free algorithms are well
known [6], and lock-free algorithms and data-structures are
still an active area of research today [12]. Lock-freedom is
important for work-stealing data-parallel workloads – a stealer
should not have to wait for the worker to allow stealing, as the
worker may work on an unknown workload indefinitely long.

Workstealing-tree scheduler works by having each worker
keep the loop iteration index and atomically increment it to
inform potential stealers of its progress. The iteration index is
kept in the work-stealing node structure belonging to a specific
processor π. Each work-stealing node traverses a specific
subset of the parallel loop. This is shown in Figure 1A in the
AVAILABLE state – the 0 and the u denote the bounds of the
parallel loop, and x denotes the current value of the iteration
index. A stealing process ψ invalidates this index to prevent the
victim from further increments and, importantly, at the same
time captures the information about its progress. This is shown
in the STOLEN state in Figure 1A. Subsequent updates to the
iteration index are disallowed and the work-stealing node is
split into two child nodes, each of which holds roughly half
of the remaining elements of the original node.

This approach to scheduling data-parallel operations is
particularly efficient in load-balancing irregular data-parallel
operations, as well as uniform ones. Two different data-parallel
workloads and the typical states of the work-stealing tree data-
structure at the end of the data-parallel operation are shown
in Figure 1B for illustration purposes. The uniform workload
like the fold mentioned in the introduction yields a balanced
work-stealing tree in which every worker processes roughly
the same number of elements and works in isolation most of
the time without communicating other workers. The irregular
workload (Figure 1B) like the prime number computation
mentioned earlier yields an unbalanced work-stealing tree in
which the worker 1 processes the smaller numbers earlier
than the worker 4 completes the computation on the bigger
ones. Instead of remaining idle, worker 1 steals some of
the expensive elements. In general, the unbalancing factor
in a work-stealing subtree is proportional to the workload
irregularity in the corresponding part of the parallel loop. When
the irregularity is high, there is enough work per each element



to amortize the scheduling penalties of creating new work-
stealing tree nodes. Conversely, when irregularity is low, work
per element may be low too, but there are less nodes being
created. The scheduling is thus fully adaptive and occurs at
runtime – we say that it is workload-driven.

We omit the details of how the scheduler uses the work-
stealing tree, i.e. expands it or assigns workers to specific nodes
– this was already discussed in detail in related work [1].
We instead focus on the code that the workers and stealers
execute. The pseudocode we show closely resembles Scala,
but relies on language features available in modern general-
purpose programming languages.

Lets start by showing the pseudocode for a worker ex-
ecuting a parallel loop. We assume that the worker is as-
signed a batch determined by the integers start≥ 0 and
until≥start. It also maintains a globally visible integer
progress which it updates atomically with a CAS. This
value denotes the first loop element within 〈start, until〉
that the worker is not obliged to process. We use pseudo-
code resembling Python, with the def keyword for method
definitions, and the addition of val and var for single
and multiple assignment variable declaration, respectively. We
annotate values with types by prefixing them with a : sign.
Indentation is used to delimit blocks for conciseness.

def work() =1

var loop = true2

var step = 03

while (loop)4

step = update(step)5

val p = READ(progress)6

if (p ≥ until ∨ p < 0) loop = false else7

if (CAS(progress, p, min(until, p + step)))8

apply(p, min(until, p + step))9

The algorithm uses a value step to decide how many loop
elements to commit to in each iteration. Updating step in
line 5 and its effect on scheduling was studied elsewhere
[8] [13] [1], but it suffices to say that this value has to be
varied to achieve the best speedup. In each loop iteration the
worker reads the value of progress and tries to atomically
increment it with a CAS. If it succeeds, it is committed to
process all elements smaller than the last value written to
progress. It does so by calling apply in line 9, which
executes a user-specified operation on each element within the
specified range. Section II-B shows how apply corresponds
to a specific operation instance. The stealer invalidates the
progress by executing the following.

def markStolen() =10

val p = READ(progress)11

if (p < until ∧ p ≥ 0)12

if (¬CAS(progress, p, -p - 1)) markStolen()13

This pushes the tree node into the STOLEN state from Figure
1A. Note that replacing the current value of progress with
a negative value allows decoding the previous state uniquely.
Also, neither the worker nor any of the stealers write to
progress after it becomes negative. We do not show how the
remaining work is split after markStolen completes – at this
point there is sufficient information to reach a consensus on
that in a lock-free way. Note that while this kind of execution
of arbitrary parallel loops is not itself lock-free because a
specific worker commits to processing specific elements, the
work-stealing process is, as stealers proceed without the help
of the victim as long as there are elements left in progress.

def work(it: StealIterator<T>) =1

var step = 02

var res = zero3

while (it.state() == A)4

step = update(step)5

val batch = it.nextBatch(step)6

if (batch >= 0)7

res = combine(res, apply(it, batch))8

it.result = res9

Fig. 2. The generalized loop scheduling algorithm

A. Work-stealing iterators

This section augments the iterator abstraction with the
facilities that support work-stealing. The previously shown
progress value served this purpose for parallel loops.

There are several parts of the presented work-stealing
scheduler that we can generalize. We read the value of
progress in line 6 to see if it is negative (indicating a steal)
or greater than or equal to until (indicating that the loop is
completed) in line 7. Here the value of progress indicates
the state the iterator is in – either available (A), stolen (S)
or completed (C). In line 8 we atomically update progress,
consequently deciding on the number of elements that can
be processed. This can be abstracted away with a method
nextBatch taking a desired number of elements to traverse
and returning an estimated number of elements to be traversed,
or −1 if there are none left. Figure 2 shows an updated version
of the loop scheduling algorithm that relies on these methods.
Iterators should also abstract the method markStolen shown
earlier. We show the complete work-stealing iterator interface
in Figure 3. The additional method owner returns the index
of the worker owning the iterator. The method next can be
called as long as the method hasNext returns true, just as
with the ordinary iterators. Method hasNext returns true if
next can be called before the next nextBatch call. Finally,
the method split can only be called on S iterators and it
returns a pair of iterators such that the disjoint union of their
elements are the remaining elements of the original iterator.
This implies that markStolen must internally encode the
iterator state immediately when it gets stolen.

The contracts of these methods are formally expressed
below. We implicitly assume termination and a specific iterator
instance. Unless specified otherwise, we assume linearizability.
When we say that a method M is owner-specific (π-specific),
it means that every invocation by a worker π is preceeded by a
call to owner returning π. For non-owner-specific M owner
returns ψ 6= π.

Contract owner. If an invocation returns π at time t0,
then ∀t1 ≥ t0 invocations return π.

Contract state. If an invocation returns s ∈ {S,C} at
time t0, then all invocations at t ≥ t0 return s, where C and
S denote completed and stolen states, respectively.

Contract nextBatch. If an invocation exists at some
time t0 then it is π-specific and the parameter step ≥ 0. If
the return value c is −1 then a call to state at ∀t1 > t0
returns s ∈ {S,C}. Otherwise, a call to state at ∀t−1 < t0
returns s = A, where A is the available state.

Contract markStolen. Any invocations at t0 is non-
owner-specific and every call to state at t1 > t0 returning
s ∈ {S,C}.



StealIterator<T>10

def owner(): Int11

def state(): A ∨ S ∨ C12

def nextBatch(step: Int): Int13

def markStolen(): Void14

def hasNext: Boolean15

def next(): T16

def split(): (StealIterator<T>, StealIterator<T>)17

Fig. 3. The StealIterator interface

Contract next. A non-linearizable π-specific invocation
is linearized at t1 if there is a hasNext invocation returning
true at t0 < t1 and there are no nextBatch and next
invocations in the interval 〈t0, t1〉.

Contract hasNext. If a non-linearizable π-specific invo-
cation returns false at t0 then all hasNext invocations in
〈t0, t1〉 return false, where there are no nextBatch calls
in 〈t0, t1〉.

Contract split. If an invocation returns a pair (n1, n2)
at time t0 then the call to state returned S at some time
t−1 < t0.

Traversal contract. Define X = x1x2 . . . xm as the
sequence of return values of next invocations at times t′1 <
t′2 < . . . < t′m. If a call to state at t > t′m returns C
then e(i) = X . Otherwise, let an invocation of split on an
iterator i return (i1, i2). Then e(i) = X · e(i1) · e(i2), where ·
is concatenation. There exists a fixed E such that E = e(i) for
all valid sequences of nextBatch and next invocations.

The last contract states that an iterator always traverses the
same elements in the same order. Having formalized the work-
stealing iterators, we show several concrete implementations.

IndexIterator. This is a simple iterator implementa-
tion following from refactorings in Figure 2. It is applicable
to parallel ranges, arrays, vectors and data-structures where
indexing is fast. The implementation for ranges in Figure 4
uses the private keyword for the fields nextProgress
and nextUntil used in next and hasNext. Since their
contracts ensure that only the owner calls them, their writes
need not be globally visible. The field progress is marked
with the keyword atomic, and is modified by the CAS
in the line 34, ensuring that its modifications are globally
visible through a memory barrier. All method contracts are
straightforward to verify and follow from the linearizability
of CAS. For example, if state returns S or C at time t0,
then the progress was either negative or equal to until
at t0. All the writes to progress are CAS instructions that
check that progress is neither negative nor equal to until.
Therefore, progress has the same value ∀t > t0 and state
returns the same value ∀t > t0 (contract state).

HashIterator. Hash tables are a ubiquitous data struc-
ture in programming languages and in a variety of applications
that rely on efficient set membership or key-based lookup op-
erations. The implementation of work-stealing iterators for flat
hash-tables we show in this section is similar to the iterators
for data-structures with fast indexing. Thus, the iteration state
can still be represented with a single integer field progress,
and invalidated with markStolen in the same way as with
IndexIterator. The nextBatch has to compute the
expected number of elements between to array entries using

RangeIterator implements StealIterator<Int>18

private var nextProgress = -119

private var nextUntil = -120

atomic var progress: Int21

val owner: Int22

val until: Int23

def state() =24

val p = READ(progress)25

if (p ≥ until) return C26

else if (p < 0) return S27

else return A28

def nextBatch(s: Int): Int =29

if (state() 6= A) return -130

else31

val p = READ(progress)32

val np = math.min(p + s, until)33

if (¬CAS(progress, p, np)) return nextBatch(s)34

else35

nextProgress = p36

nextUntil = np37

return np - p38

def markStolen() =39

val p = READ(progress)40

if (p < until ∧ p ≥ 0)41

if (¬CAS(progress, p, -p - 1)) markStolen()42

def hasNext = return nextProgress < nextUntil43

def next() =44

nextProgress += 145

return nextProgress - 146

Fig. 4. The IndexIterator implementation

the load factor lf as follows:
def nextBatch(step: Int): Int =47

val p = READ(progress)48

val np = math.min(p + (step / lf).toInt, until)49

if (¬CAS(progress, p, np)) return nextBatch(step)50

else51

nextProgress = p; nextUntil = np; return np - p52

We change the next and hasNext implementations so
that they traverse the range between nextProgress and
nextUntil as a regular single-threaded hash-table iterator
implementation. This implementation relies on the hashing
function to achieve good load-balancing, which is common
with hash-table operations.

TreeIterator. A considerable number of applications
use the tree representation for their data. Text editing appli-
cations often represent text via ropes, and HTML document
object model is based on an n-ary tree. Ordered sets are
usually implemented as balanced search trees, and most prior-
ity queues are balanced trees under the hood. Persistent hash
tables present in many functional languages are based on hash
tries. Parallelizing operations on trees is thus a desirable goal.

Stealers for flat data structures were relatively simple, but
efficient lock-free tree stealers are somewhat more involved.
In this section we do not consider unbalanced binary trees
since they cannot be efficiently parallelized – a completely
unbalanced tree degrades to a linked list. We do not consider
n-ary trees either, but note that n-ary tree stealers are a
straightforward extension to the stealers presented in this
section. We note that stealers for trees in which every node
contains the size of its subtree can be implemented similarly
to IndexIterators presented earlier, since their iteration
state can be encoded as a single integer. Finally, iteration state
for trees with pointers to parent nodes can be encoded as a
memory address of the current node, so their stealers are trivial.

Therefore, in this section we show a stealer for balanced
binary search trees in which nodes do not have parent pointers
and do not maintain size of their corresponding subtrees. In



TreeIterator<T> implements StealIterator<T>53

private val localstack: Array<Tree>54

private var depth: Int55

atomic var stack: Bitset56

57

def state() =58

val s = READ(stack)59

return s & 0x360

61

def markStolen() =62

val s = READ(stack)63

if (s & 0x3 = A)64

val ns = (ns & ~0x3) | S65

if (¬CAS(stack, s, ns)) markStolen()66

67

def topBitset(s: Bitset) =68

val d = 2 * depth69

return (s & (0x3 << d)) >> d70

71

def top() = localstack[depth - 1]72

73

def pop(s: Bitset) =74

depth = depth - 175

localstack(depth) = null76

return s & ~(0x3 << (2 + 2 * depth))77

78

def push(s: Bitset, v: Bitset, t: Tree)79

localstack(depth) = t80

depth = depth + 181

return s | (v << (2 * depth))82

83

def switch(s: Bitset, v: Bitset) =84

val d = 2 * depth85

return (s & ~(0x3 << d)) | (v << d)86

87

def nextBatch(step: Int): Int =88

val s = READ(stack)89

var ns = s90

var batchSize = -191

if (s & 0x3 6= A) return -1 else92

val tm = topBitset(s)93

if (tm = B ∨ (tm = T ∧ top().right.isLeaf))94

ns = pop(ns)95

while (topBitset(ns) = R ∧ depth > 0)96

ns = pop(ns)97

if (depth = 0) ns = (ns & ~0x3) | C98

else99

ns = switch(ns, T)100

batchSize = 1101

setNextValue(top().value)102

else if (tm = T)103

ns = switch(ns, R)104

val n = top().right105

while (¬r.left.isLeaf ∧ bound(depth) ≥ step)106

ns = push(ns, L, n)107

n = n.left108

if (bound(depth) < step)109

ns = push(ns, B, n)110

batchSize = bound111

setNextSubtree(n)112

else113

ns = push(ns, T, n)114

batchSize = 1115

setNextValue(n.value)116

while (¬CAS(stack, s, ns))117

val ss = READ(stack)118

if (ss ∈ { S, C }) return -1119

return batchSize120

Fig. 5. The TreeIterator data type and helper methods

this representation each node is either an inner node containing
a single data value and pointers to the left and the right
child, or it is a leaf node (isLeaf), in which case it does not
contain data elements. AVL trees, red-black trees and binary
hash tries fit precisely this description.

The trees we examine have two important properties. First,
given a node T at the depth d and the total number of keys
N in the entire tree, we can always compute a bound on the
depth of the subtree rooted at T from d and N . Similarly, we

can compute a bound on the number of keys in the subtree of
T . These properties follow from the fact that the depth of a
balanced tree is bounded by its number of elements. Red-black
trees, for example, have the property that their depth d is less
than or equal to 2 logN where N is the total number of keys.

Given a tree root, the iteration state can be encoded as
a stack of decisions L and R that denote turning left or
right at a given node. The top of the stack contains a terminal
symbol T, meaning that the corresponding node is currently
being traversed, or a symbol B indicating an entire subtree as
a batch of elements that the stealer last committed to process.
Examples of tree iteration states are shown in Figure 6, where
a worker first traverses a node C, proceeds by traversing a
single node B and then commits to the entire subtree D.

We represent stack with a bitset, using 2 bits to store
single stack entry. The first 2 bits of this bitset have a special
role – they encode one of the three stealer states A, S and C.
The stealers and workers update the stealer state atomically by
replacing the stack bitset with CAS instructions as shown
in Figure 5. Stealers invoke markStolen that atomically
changes the stealer state bits in line 66, making sure that
any subsequent nextBatch calls fail by invalidating their
next CAS in line 117, which in turn requires the state bits to
be equal to A. Workers invoke nextBatch that atomically
changes the currently traversed node or a subtree. A worker
owning a particular stealer additionally maintains the actual
stack of tree nodes on the current traversal path in its local
array localstack, whose size is bounded by the depth d of
the corresponding tree. For convenience, it also maintains the
current depth depth. Calling nextBatch starts by checking
to see if the node is in the available state A, and returning
−1 if it is not. Part of the code between lines 93 and 116
is identical to that of a regular sequential tree iterator – it
identifies the currently traversed node and replaces it, updating
localstack and depth in the process. At each point it
updates the tentative new state of the stack ns by adding and
removing the symbols L, R, B and T using the helper push,
pop and switch methods. Note that in line 106 the worker
relies on the bound value at a given depth to estimate
the number of elements in particular subtrees, and potentially
decide on batching the elements. Calls to setNextValue
and setNextSubtree set the next value or subtree to be
traversed – they update the stealer state so that the subsequent
next and hasNext calls work correctly.

Once all the updates of the worker-local state are done, the
worker attempts to atomically change the state of the stack
with the new value ns in line 117, failing only if a concurrent
steal has occurred, in which case it returns −1.

We do not show the pseudocode for splitting the stealer
after it has been marked stolen, but show the important classes
of different states the stealer can be in, in Figure 7. We encode
the state of the stack with a regular expression of stack symbols
– for example, the expression R∗LT means that the stack
contains a sequence of right turns followed by a single left turn
and then the decision T to traverse a single node. A stealer
in such a state should be split into two stealers with states L∗
and R∗LB, as shown in Figure 7. The remaining states R∗B
and R∗T are omitted for brevity.
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B. Kernel callsite specialization

We saw in Figure 2 that the worker uses the work-stealing
iterator to commit to processing batches of elements. The
apply call in line 8 conceals the details of how elements are
processed. In this section we show that the apply implemen-
tation depends on a specific data-parallel operation instance.
We focus our attention on the previously mentioned kernel
abstraction.

Each data-parallel operation invocation site creates a
kernel object, which describes how a batch of elements is
processed and what the resulting value is, how to combine
values computed by different workers and what the neutral
element for the result is. The kernel interface is shown in
Figure 8. The method apply takes the iterator and the
number of elements estimate returned by nextBatch. It
uses the iterator to traverse those elements and compute the
result of type R. The method combine is used to merge two
different results and zero returns the neutral element.
How these methods work is best shown through an example
of a concrete data-parallel operation. The foreach operation
takes a user-specified function object f and applies it in
parallel to every element of the collection. Assume we have
a collection xs of integers and we want to assert that each
integer is positive:

xs.foreach(x => assert(x > 0))125

The generic foreach implementation is as follows:
def foreach(f: Int => Void) =126

val k = new Kernel<Int, Void>127

def zero =128

def combine(a: Void, b: Void): Void =129

def apply(it: StealIterator<T>, batch: Int) =130

while (it.hasNext) f(it.next())131

invokeParallel(k)132

The Void type indicates no return value – the foreach
function is executed merely for its side-effect, in this case
a potential assertion. Methods zero and combine always
return the Void value () for this reason. Most of the
processing time is spent in the apply method, so its
efficiency drives the running time of the operation. We use

Kernel<T, R>121

def zero: R122

def combine(a: R, b: R): R123

def apply(it: StealIterator<T>, batch: Int): R124

Fig. 8. The Kernel interface

the Scala Macro system [2] to inline the body of the function
f into the Kernel at the callsite:

def apply(it: StealIterator<T>, batch: Int) =133

while (it.hasNext) assert(it.next() > 0)134

Another example is the fold operation from the introduction
and computing the sum of a sequence of numbers xs:

xs.fold(0)((acc, x) => acc + x)135

In general, whenever we have a function literal directly
applied to its arguments, we inline it:

inline[(x => body)(v)] ⇒ inline[body[x := v]]
inline[x => body] ⇒ x => inline[body]
inline[v] ⇒ v

Operation fold computes a resulting value, which has the
integer type in this case. Results computed by different workers
have to be added together using combine before returning
the final result. After inlining the code for the neutral element
and the body of the folding operator, we obtain the following
kernel:

new Kernel<Int, Int>136

def zero = return 0137

def combine(a: Int, b: Int) = return a + b138

def apply(it: StealIterator<T>, batch: Int) =139

var sum = 0140

while (it.hasNext) sum = sum + it.next()141

return sum142

Where fold returns a scalar value, some operations like
map, flatMap and filter return collections. They use
data-structure-specific combiners [14] to build these resulting
collections. Combiners define methods += for adding elements
and combine to efficiently merge the elements of two com-
biners into a new one.
While the inlining shown in the previous examples avoids
a dynamic dispatch to a function object, the while loop
still contains two virtual calls to the work-stealing iterator.
Maintaining the iterator requires writes to memory instead of
registers. It also prevents optimizations like loop-invariant code
motion, e.g. hoisting the array bounds check necessary when
the iterator traverses an array. For these reasons, we would
like to inline the iteration into the apply method itself. This,
however, requires knowing the specifics of the data layout in
the underlying data-structure. Within this paper we rely on the
macro system to apply these transformations at compile-time
– we will require that the collection type is known statically
to eliminate the next and hasNext calls.

IndexKernel. Data-structures with fast indexing such
as arrays and ranges can be traversed efficiently by using a
local variable p as iteration index. Figure 9 shows range and
array kernel implementations for the fold example discussed
earlier. Array bounds checks inside a while loop are visible
to the compiler or a runtime like the JVM and can be hoisted
out. On platforms like the JVM potential boxing of primitive
objects resulting from typical functional object abstractions is
eliminated. Finally, the dynamic dispatch is eliminated from
the loop. The loop thus obtained has optimal performance as
shown in the evaluation in Section III.

TreeKernel. The work-stealing iterator for trees in-
troduced in Section II-A assumed that any subtree can be



def apply(143

i: RangeIterator,144

batch: Int) =145

var sum = 0146

var p = i.nextProgress147

val u = i.nextUntil148

while (p < u)149

sum = sum + p150

p += 1151

return sum152

def apply(153

i: ArrayIterator<T>,154

batch: Int) =155

var sum = 0156

var p = i.nextProgress157

val u = i.nextUntil158

while (p < u)159

sum = sum + array(p)160

p += 1161

return sum162

Fig. 9. Specialized indexed kernel apply methods for the fold operation

def apply(i: TreeIterator<T>, batch: Int) =163

def traverse(t: Tree): Int =164

if (t.isLeaf) t.element165

else traverse(t.left) + traverse(t.right)166

val root = i.nextStack(0)167

return traverse(root)168

Fig. 10. Specialized Tree kernel apply method for the fold operation

traversed with the next and hasNext calls by using a private
stack, much like the linearizable nextBatch that relies on
an atomic stack. Pushing and popping on this private stack can
be avoided by traversing the subtree directly. Figure 10 shows
a kernel in which the root of the subtree is traversed with a
nested recursive method traverse. In Section III we show
that this kind of traversal improves running time several times
when compared with the iterator approach.

HashKernel. The hash-table kernel is based on an ef-
ficient while loop like the array and range kernels, but
must account for empty array entries. Assuming flat hash-
tables with linear collision resolution, the while loop in the
kernel implementation of the previously mentioned fold is
as follows:

while (p < u)169

val elem = array(p)170

if (elem 6= null) sum = sum + elem171

p += 1172

Work-stealing iterator implementations for hash-tables based
on closed addressing are similar.

III. PERFORMANCE EVALUATION

The goals of our design were to reduce abstraction and
scheduling penalties to negligible levels. In this section we
present a performance improvement breakdown that validates
these goals by identifying each of the penalties separately and
showing that they are overcome. We then introduce a range of
different workloads to evaluate our load-balancing approach.
We compare against imperative sequential programs written
in Java, against existing Scala Parallel Collections, a cor-
responding imperative C version and the Intel TBB library
wherever a comparison is feasible. In the first part we show
microbenchmarks addressing specific abstraction penalties. We
proceed by introducing a range of irregular workloads to assess
scheduling efficiency, and conclude by showing larger data-
parallel applications.

We perform the evaluation on the Intel i7-3930K hex-core
3.4 GHz processor with hyperthreading and an 8-core 1.2 GHz
UltraSPARC T2 with 64 hardware threads. Aside from the dif-
ferent number of cores and processor clock, another important
difference between them is in the memory throughput - i7 has a
single dual-channel memory controller, while the UltraSPARC
T2 has four dual-channel memory controllers.

0 2 4 6 8

10

20

30

40

50

A (i7) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Range.foreach, N=150M
Specialized kernel

Generic kernel
Parallel Collections

Sequential Java

100 101

100

101

A (T2) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Range.foreach, N=50M
Specialized kernel

Generic kernel
Parallel Collections

Sequential Java

0 2 4 6 8

0

50

100

150

B (i7) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Range.fold, N=150M
Intel TBB

Specialized kernel
Generic kernel

Parallel Collections
Sequential Java

Sequential C

100 101

10−1

100

101

102

B (T2) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Range.fold, N=150M
Specialized kernel

Generic kernel
Parallel Collections

Sequential Java
Sequential C

Fig. 11. Uniform workload microbenchmarks I on Intel i7 and UltraSPARC
T2; A - ParRange.foreach, B - ParRange.fold

A. Abstraction penalties

The microbenchmarks in Figures 11 and 12 have a min-
imum cost uniform workload – the amount of computation
per each element is fixed and the least possible. Those tests
are targeted at detecting abstraction penalties discussed earlier.
The microbenchmark in Figure 11A consists of a data-parallel
foreach loop that occasionally sets a volatile flag (without a
potential side-effect the compiler may optimize away the loop
in the kernel).

par_for (i <- 0 until N)173

if ((i * i) & 0xffffff == 0) flag = true174

Figure 11A shows a comparison between Parallel Collections,
a generic work-stealing kernel and a work-stealing kernel spe-
cialized for ranges from Figure 9. In this benchmark Parallel
Collections do not instantiate primitive types and hence do
not incur the costs of boxing, but still suffer from iterator
and function object abstraction penalties. Inlining the function
object into the while loop for the generic kernel shows
a considerable performance gain. Furthermore, the range-
specialized kernel outperforms the generic kernel by 25% on
the i7 and 15% on the UltraSPARC (note the log scale).

Figure 11B shows the same comparison for parallel ranges
and the fold operation shown in the introduction:

(0 until N).par.fold(_ + _)175

Scala Parallel Collections abstract over the data type in this
benchmark, which leads to boxing. The speed gain for a range-
specialized work-stealing kernel is 20× to 60× compared to
Parallel Collections and 2.5× compared to the generic kernel.
Figure 12C shows the same fold microbenchmark applied
to parallel arrays. While Parallel Collections again incur the
costs of boxing, the generic and specialized kernel have a much
more comparable performance here. Furthermore, due to the
low amount of computation per element, this microbenchmark
spends a considerable percentage of time fetching the data
from the main memory. This is particularly noticeable on the i7
– its dual-channel memory architecture becomes a bottleneck
in this microbenchmark, limiting the potential speedup to 2×.
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Fig. 13. Irregular workload microbenchmarks on Intel i7 and UltraSPARC
T2; A - step workload, B - exponential workload

UltraSPARC, on the other hand, shows a much better scaling
here due to its eight-channel memory architecture and a lower
computational throughput.

The performance of the fold operation on balanced binary
trees is shown in Figure 12D. Here we compare the generic and
specialized fold kernels against a manually written recursive
traversal subroutine. In the same benchmark we compare
against the fold on functional lists from the Scala standard
library, used in sequential functional programming. While the
memory-bandwidth is the bottleneck on the i7, we witness
linear scaling on the UltraSPARC. The performance difference
between the generic and the specialized kernel is 2× to 3×.

The linear scaling with respect to the sequential baseline
of specialized kernels in Figures 11 and 12 indicates that our
approach has negligible abstraction penalties. Having shown
that abstraction penalties were eliminated, we turn to irregular
workloads to compare our scheduling approach against the
existing Scala Parallel Collections, as well as pure Java and C
implementations that provide a baseline.

B. Scheduling penalties

Figure 13 shows improved performance compared to Par-
allel Collections not only due to overcoming abstraction
penalties, but also due to improved scheduling. The Parallel
Collections rely on a Splitter abstraction that divides an
iterator into subsets before the parallel traversal begins. Their
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Fig. 14. Standard deviation on Intel i7 and UltraSPARC T2
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Fig. 15. Mandelbrot set computation on Intel i7 and UltraSPARC T2

scheduler chooses a batching schedule such that the batch sizes
increase exponentially [14]. This scheduler is adaptive – when
a worker steals a batch it divides it again. However, due to
scheduling penalties of creating splitters and task objects, and
then submitting them to a thread pool, this subdivision only
proceeds up to a fixed threshold N

8P , where N is the number of
elements and P is the number of processors. Concentrating the
workload in a sequence of elements smaller than the threshold
yields a suboptimal speedup. Work-stealing iterators allow
smaller batches and potentially single element granularity.

In Figure 13A we run a parallel fold method on a
step workload χ(0.97, nN ) – the first 97% of elements have
little associated with them, while the rest of the elements
require a high amount of computation. Intel TBB exhibits a
sublinear scaling in this microbenchmark, being about 25%
slower compared to the work-stealing tree scheduling. Due to
a predetermined work scheduling scheme where the minimum
allowed batch size depends on the number of threads existing
Parallel Collections scheduler [14] only yields a speedup on
UltraSPARC with more than 16 threads.

As shown in Figure 13B, Intel TBB is up to 2× slower
compared to work-stealing tree scheduling for an exponential
workload where the amount of work assigned to the n-th
element grows with the function 2

n
100 , while the existing Scala

Parallel Collections do not cope with it well. In Figure 14
we show performance results for an application computing a
standard deviation of a set of measurements. The relevant part
of it is as follows:

val mean = measurements.sum / measurements.size176

val variance = measurements.aggregate(0.0)(_ + _) {177

(acc, x) => acc + (x - mean) * (x - mean) }178

As in the previous experiments, Parallel Collections scale but
have a large constant penalty due to boxing. We show several
larger benchmark applications as well. We start by showing
an application that renders an image of the Mandelbrot set
in parallel. The Mandelbrot set is irregular in the sense that
points outside the circle x2 + y2 = 4 are not in the set, but
all the points within it require some amount of computation
to determine their set membership. An image containing the
Mandelbrot set thus represents an irregular workload.
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Fig. 16. Raytracing on Intel i7 and UltraSPARC T2
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Fig. 17. (A) Barnes-Hut simulation; (B) PageRank on Intel i7

We show the running times of rendering a Mandelbrot set
in Figure 15. The aforementioned computationally demanding
circle is in the lower left part of the image. We can see a
similar effect as in the Figure 13A – with a fixed threshold
there is only a 50% to 2× speedup until P exceeds 16. In
Figure 16 we show the performance of a parallel raytracer,
implemented using existing Parallel Collections and work-
stealing tree scheduling. Raytracing renderers project a ray
from each pixel of the image being rendered, and compute
the intersection between the ray and the objects in the scene.
The ray is then reflected several times up until a certain thresh-
old. This application is inherently data-parallel – computation
can proceed independently for different pixels. The workload
characteristics depend on the placement of the objects in the
scene. If the objects are distributed uniformly throughout the
scene, the workload will be uniform. The particular scene we
choose contains a large number of objects concentrated in one
part of the image, making the workload highly irregular.

The fixed threshold on the batch sizes causes the region
of the image containing most of the objects to end up in a
single batch, thus eliminating most of the potential parallelism.
On the i7 Parallel Collections barely manage to achieve the
speedup of 2×, while the data structure aware work-stealing
easily achieves up to 4× speedups. For higher parallelism
levels the batch size becomes small enough to divide the com-
putationally expensive part of the image between processors,
so the plateau ends at P = 32 on UltraSPARC. The speedup
gap still exists at P = 64 – existing Parallel Collections
scheduler is 3× slower than the work-stealer tree scheduler. We
have parallelized the Barnes-Hut n-body simulation algorithm.
This simulation starts by finding the bounding box of all
the particles, and then dividing them into a fixed number of
rectangular sectors within that bounding box, both in parallel.
Quadtrees are then constructed in parallel for the particles
within each sector and merged into a singular quadtree. Finally,
the positions and speeds of all the particles are updated in
parallel using the quad tree to approximate the net force
from the distant particles. We simulated the movement of two
stellar bodies composed of 25k stars. We recorded the average
simulation step length across a number of simulation iterations.
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Fig. 18. Triangular matrix multiplication on Intel i7 and UltraSPARC T2

Although this turned out to be a relatively uniformly distributed
workload with most of the stars situated in the sectors in
the middle of the scene, we still observed a consistent 10%
increase in speed with respect to preemptive scheduling in
Scala Parallel Collections, as shown in Figure 17A.

The PageRank benchmark in Figure 17B shows how
fusing the operations such as map, reduce, groupBy
and aggregate leads to significant speedups. The single-
threaded work-stealing tree version is already 35% faster
compared to the standard sequential Scala collections.

The last application we choose is triangular matrix mul-
tiplication, in which a triangular N ×N matrix is multiplied
with a vector of size N . Both the matrix and the vector contain
arbitrary precision values. This application has a less irregular
workload shown in Figure 1B – the amount of work to compute
the n-th element in the resulting vector is w(n) = n. We call
this workload triangular. Figure 18 shows a comparison of the
existing Parallel Collections scheduler and data structure aware
work-stealing. The performance gap is smaller but still exists,
work-stealing tree being 18% faster on the i7 and 20% faster
on the UltraSPARC. The downsides of fixed size threshold and
preemptive batching are thus noticeable even for less irregular
workloads, although less pronounced.

IV. RELATED WORK

Data-parallelism is a well-established concept in parallel
programming languages dating back to APL in 1962, subse-
quently adopted by many languages and frameworks.

The fixed-size batching [8] was an early technique that
allowed a more fine-grained load-balancing for scheduling
data-parallel loops. It divides the loop into batches and workers
synchronize to obtain them from a central queue. This tech-
nique fails to load balance irregular workloads well. Other
variable size batching approaches were proposed like guided
self-scheduling [13], factoring [7] and TSS [17], but their static
partitioning decisions have proven detrimental.

Work-stealing is a load balancing technique first used in the
Cilk programming language [5] to support task parallelism. In
work-stealing each worker maintains its own work queue and
steals work from other workers when its queue is empty. Work-
stealing is works well in problems with irregular workloads
[3]. It was traditionally used as the load balancing technique
for task parallelism [10] [11], but can be applied to data
parallelism too [1] [16]. Work-stealing tree scheduling [1] is a
load balancing technique in which work is kept in a tree rather
than a work queue. Each node in the tree contains a subset
of the data-parallel loop and is owned by a single worker. A
stealer notifies the owner of the desired leaf node that the node
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is invalidated and replaces it with two leaf nodes, dividing the
remaining work. Due to a work-stealing mechanism closely
tied to data-parallel loops and its tendency to keep the worker
in isolation as long as possible this technique can efficiently
schedule highly irregular workloads that traditional approaches
[8] [13] [14] cannot cope with.

Intel TBB is a data-parallel programming C++ library
based on work-stealing. TBB previously used a partitioner that
required tuning by manually finding a split threshold optimal
for a specific combination of a workload and a machine.
Recently they have introduced the auto-partitioner that does not
require this. In auto-partitioner mode every thread splits tasks
in its own work queue when it detects stealing. The largest
difference with respect to our approach is that the TBB auto-
partitioner only allows the worker to split the work, whereas
in our approach stealers are also allowed to split in a lock-free
manner. Intel TBB relies on C++ templates to generate highly
efficient code in a similar way that we use Scala Macros. Intel
TBB also aims to be a general purpose data-parallel library
and is currently an industry standard.

Figure 19 shows the comparison of our library with Intel
TBB on a 6-core Intel Core i7-3930K with hyperthreading,
focusing on irregular workloads such as Mandelbrot set com-
putation, step and exponential, discussed in section III. These
tests are particularly challenging to data-parallel schedulers.

In the context of the JVM compilation techniques were
proposed to eliminate boxing selectively, like the generic type
specialization transformation used in Scala [4]. While generic
type specialization can be used to eliminate boxing, it does not
eliminate other abstraction penalties. For this reason we rely
on the Scala macro system [2], but note that our technique
can be applied to languages with a templating mechanism like
C++ or as a separate preprocessing step.

V. CONCLUSION

Whereas in traditional work-stealing basic units of paral-
lelism are parallel function calls, this article proposes a rich
set of specialized representations taking advantage of data-
structure specifics to allow more efficient scheduling. The
key idea is that, on one hand, such specialized parallel work
representations can be processed serially with overheads that
nearly match those of the sequential elision and, orthogonally,
those representations allow more fine-grained work-stealing
than traditional methods. This work-stealing proceeds in a
completely lock-free manner allowing the idle worker threads
to steal work from busy workers without waiting for them to
participate in the stealing.

Comparing against already existing data-parallel frame-
works shows that this approach eliminates abstraction penalties
in that it parallelizes baseline workloads optimally, while
overcoming scheduling penalties and achieving superior per-
formance on highly irregular workloads. These results go a
long way in showing that overcoming these penalties should
and can be done automatically by the framework without the
manual tuning by the data-parallel library user.
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