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ABSTRACT there is no one-to-one correspondence in 3D points and edges

Compression of dynamic 3D geometry obtained from deptfetween neighboring frames in time. Calléthe-varying
sensors is challenging, because noise and temporal issonsineshe¢TVM)in[1, 2, 3], the authors proposed to code TVM
tency inherent in acquisition of depth data means there is n@irectly using predictive techniques similar to ones used i
one-to-one correspondence between sets of 3D points in coideo compression algorithms like H.264 [4]. This is a dif-
secutive time instants. In this paper, instead of coding 3mficult proposition, because: i) 3D meshes typically undergo
points (or meshes) directly, we propose to represent an ofo0re complicated transformations over time than the simple
ject’s 3D geometry as a collection of tile images. Specifjcal translational motion model assumed in motion prediction in
we first place a set of image tiles around an object. Then, wiideo coding; and ii) lack of one-to-one correspondencéin 3
project the object’s 3D geometry onto the tiles that arerinte points across frames means exact match at patch-level might
preted as 2D depth images, which we subsequently encodét exist at all even if more complex motion models (which
using a modified multiview image codec tuned for piecewiséntail significant computation costs) are introduced.

smooth signals. The crux of the tile image framework is the
“optimal” placement of image tiles—one that yields the best

trageoflf_ '2 Fat? {;}nd d|stort|on_a we dShﬁw tr;]at if o_nIy Iplanarrectly, we propose an alternative to compactly represent th
and cylindrical tiles are considered, then the optimal glac geometry of 3D objects using the conceptiwfage tiling

m_ent problem forK_UIes;_ can be mapped to a tractable p'_e_ce'Specifically, we first project the object’s 3D geometry as im-
wise linear approximation problem. We propose an efficientyoq ontg 5 set of carefully placed tiles surrounding the ob-
dynamic programming algorithm to find an optimal solution;qct then encode thtte imagesusing a multiview image /

to the piecewise linear approximation problem. Experimentijao codec like [5] tuned for piecewise smooth signalg{

tal results s_how that optimal tiling outperforms naiviglby incorporating tools likegraph transform(GT) [6, 7]). At the
up to _35% in rate reduction, an_d Qfaph transform can f_urthetreceiver, the decoded tile images are projected back into 3D
exploit the smoothness of the tile images for coding gain. space to reconstruct the object's geometry. The key to a com-
Index Terms— 3D geometry compression, multiview im- pact yet accurate representation in our image tiling frame-
age coding work is the appropriate selection of image tiles for a given
object. We show that by restricting the tile types considere
1. INTRODUCTION tp be planar and_ cylino!rical tiles_ onl_y, thg optimal selen_td)f
tiles—the best-fitting tile combination given a represéma

The advent of depth sensing technologies like Microsof€ross section of the object—maps to a tractable piecewise li
Kinect: means (partial) 3D geometries of objects in a dy-ear approximation problem. We propose an efficient dynamic
namic scene can now be captured with relative ease. If aprogrammingalgorithm to solve the piecewise linear approx
object’s geometrical information can be accurately and-commation problem. To the best of our knowledge, are the first
pactly represented at the sender for network transmissioi) the literature to address the optimal image tiling prafle
then at the receiver it can enable a spectrum of 3D imagingnd provide a computation-efficient solution. Experimenta
applications, such as virtual image synthesis of the objed€sults show that optimized image tiling can outperfornvea’
from any freely chosen viewpoint. Thus compact representiling by up to 35% in rate reduction, and GT can further ex-
tation of an object's 3D geometry is an important researctploit the smoothness of the tile images for coding gain.
problem; this is the focus of this paper.

Unlike computer-generated objects, dynamic 3D geome-
try periodically captured by depth sensors is subject to aGo
quisition noise and temporal inconsistencies, which meanﬁ,r

In this paper, instead of coding 3D points (or meshes) di-

The outline of the paper is as follows. We discuss related
rksin Section 2. We then formulate the image tile selectio
oblemin Section 3. Finally, we present experimentalltssu
Lhitp://www.microsoft.com/en-us/kinectforwindows/ and conclusion in Section 4 and 5, respectively.
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2. RELATED WORK object using multiple depth images that are projectionsef t
object’'s 3D geometry on selected tiles. The actual proecte
Previous work on compression sfatic 3D geometry is ex- images on tiles can be coded using either DCT-based or GT-
tensive. [8] proposed to compress triangular meshes Hirectbased multiview image codec.
through prediction of vertices and connectivity. [9] prepd Given the geometry of an objectin 3D mesh, we first place
a progressive coding scheme based on over-complete expapset of K tiles surrounding the object, onto which the ob-
sions by first projecting a 3D object onto a 3D sphere. Howject's 3D geometry is projected as 2D images. By projection,
ever, as discussed in the Introduction, the time-varyipgess we mean that for each pixel location on the tile, we trace an
of TVM brings new challenges that are not addressed in thesgrthogonal line from the tile surface until we hit the sugac
works. of the object, upon which we record the distance (depth) as
In [1, 2, 3], TVM in each frame is first divided into the pixel value. Each resulting depth image on a tile is a 2D
patches, then a patch-based matching procedure is usedif@pression of the 3D geometry; the goal is to identify the op-
exploit inter-frame correlation. The residual informatis  timal set of 2D impressions for a given object.
coded using scalar or vector quantization. In contrast, we |ntuitively, the best placements of tiles—in terms of accu-
pursue arimage-base@pproach, where 3D geometry is first racy in representing the object’s geometry—are the onéds tha
projected to tiles before the tile images are coded using &re parallel to the surface of the object. As simple examples
multiview image codec. An image-based approach meansonsider only theross sectionsf two 3D objects in Fig. 1,
motion compensation well understood in video coding can b@hich are triangle and circle in (a) and (b), respectivelyr F
directly applied to reduce temporal redundahcy Fig. 1(a), if we place three tiles parallel to the three sidies
Depth map compression has been studied in the context @e triangle, regularly sampled voxels on each side of the ob
texture-plus-deptiepresentation of a 3D scene [10], whereject can potentially be captured by the same number of evenly
texture maps (color images) and depth maps (per-pixel disspaced pixels on the corresponding tile. (Evenly spaced pix
tance between objects in the 3D scene and capturing cants in a 2D grid on the tile becomes an image for coding.) If
era) from multiple closely spaced viewpoints are capturetl a the three tile pixel lines are then losslessly coded, thersh
encoded at the sender for virtual view synthesisdéth-  act same triangle cross section (in terms of the originaélox
image-based renderin@IBR) [11] at the receiver. Because samples) can be reproduced at the decoder, resulting in zero
depth maps have unique signal characteristics such as shaftortion. Similarly, in Fig. 1(b) we see a circular tileattis
edges and smooth interior surface, coding tools sugiegsh  ideal for an object’s circular cross section. Given thisalev
transform (GT) [6, 7] (for coding of smooth surfaces) and oped intuition, we next describe how we fihdtiles that best
arithmetic edge codingAEC) [12] (for lossless coding of match the object’s surface.
sharp object boundaries) have been proposed. In our codec
implementation for coding of multiple tile images, we incor 3 5 cross Section Selection
porated both GT and AEC for optimal coding performance,
albeit the focus of this paper is the formulation and algit  To simplify the tile selection problem, we first selectep-

development for the optimal image tile selection problem. resentative 2D cross sectidrom the object’s 3D geometry,
on which we perform a best-fitting procedure givintiles.

We identify the representative cross section as follows. Fo
a given 3D geometric object, we first identify an axis in 3D
space where the objectis longes;, if the object’s 3D points

are projected onto this dimension, the range from maximum
value to minimum is the largest. As an example, if the 3D
object is a person standing up, the longest dimension would

be the vertical axis (range will be his height). We denots thi
axis as therincipal axisor simply z-axis
Given the chosen principal axis, we next identify a 2D
tile 3 tie 2 plane of the object orthogonal to the axis that haddingest
cross section. In the previous example, this could be a cross

(@) linear tile (b) circular tile section of the person’s belly. We perform our 2D optimizatio
for tiling on this representative cross section, as desdrib
the next section.

3. IMAGE TILES SELECTION

3.1. System Overview

tile 1 tile 1

Fig. 1. Examples of linear and circular tiles.

We first describe the overall framework to represent ar?3 3. Tile Selection

2For brevity, in this paper we demonstrate the efficacy of intiing . . . . .
only for static 3D objects. Nonetheless, we expect the siderof ourimage ~ G1VeN @ 2D representative cross section, we first defsuea

tiling approach to TVM to be relatively straight-forward. face normal functioiSNF), which is the degree (in radian) of



le clockwi _— :
A 2A3 % ?rﬁfnev‘;?.iaﬂ”fs FO 3.3.1. Objective Function
A5 ”””””” \;:Zcewise linear Mathematically, giveri{ we can define our objective function
2~ approximation ~ as follows. First, let the representative cross sectioNE Be
dgistance from £ (), and the voxel sampling period on its surfacetbéwith
A 20 3A 48 58 satprarcs v total samples). Let the circular tile be represented as a
(a) cross section (b) surface normal function n€arfunctionin SN domain as; () = myt-+ /i, wheremy,

andh,, are the slope ang-intercept, respectively. For linear

Fig. 2. Example of cross section and surface normal functiortile, its representation in SN domain is simply.(¢) = hy.
Let the boundary between neighboring piekemdk + 1 be

+A. The distortion function--norm betweerf’( ) and its

the surface normal, computed clockwise from the vertical uﬂ. Con L ;
iecewise linear approximation—can then be written as:

direction, as one moves clockwise around the represeetati\P

cross section. An example of a cross section and its corre- K -

sponding SNF() is shown in Fig. 2. D= Z |F(iA) — apCr(iA) — (1 — ak)Lk(iA)|2
As discussed earlier, our goal is to select tiles to approx- ;= j—, _,+1
imate the representative cross section as closely as pamssib 3)

However, if too many tiles or tiles of too complicated shapesvhereyq = 0 andvx = N — 1 is the last voxel sample on
are deployed, then the descriptions of the tiles themselvehe cross section, andy is a binary variable to denote if a
would require too many coding bits, leading to large repre<ircular or linear tile is used for thieth piece.

sentation sizeThus the goal is to select a limited number of

tiles,_ each of which requ_ired few bits for description, toap 335 problem Constraints

proximate the cross section as closely as possible.

Given the above considerations, we will use only twoWe consider the following constraints for our optimization
kinds of 2D tiles to approximate the representative cross se problem. First, the right bounday, A for thekth piece must
tion in this paper: iJinear tiles ii) circular tiles. When con- come before the next boundayy;1 A in the approximation
sidering 3D space, linear and circular tiles extendglémar  function, hence
andcylindrical tiles respectively along the-axis. Assuming

a change of coordinate is performed so thandy are axes Yo < Yet1, 1<k<K-1 (4)
orthogonal to the principal axis, the location of these two ) )
kinds of tiles can be described using simple equations: Second, though in theory any radiusan be used to de-
scribe the circular tile in (2), a very large radius will crea
ar+y = b (1) numerical instability when mapping tile pixels to the oltjec
(x—z0)>+ (y —yo)? = 12 (2) surface. Thus, we will lower-bound the choice of slopg

. ) i for a circular tile as follows:
In particular, each tile can be described by at most three

parameters{a, b) for a planar tile, andzy, yo, r) for a cylin- mMe > Main, 1<k <K (5)
drical tile. Thus, the cost of describing each tile is neblig

Further, one can map the pixels in each tile image easily onto Finally, as described earliety. is constrained to be a bi-
a 2D grid for conventional image / video coding. Note thatnary variable and can take on only one of two values:
though in general a tile can be located any distance from the

object’s surface, for simplicity we will assume in this pape ai € {0,1} (6)
that a tile is at average distan€¢@way from the surface it is
approximating, for suitably chosén 3.3.3. Dynamic Programming Algorithm

When a linear or circular 2D tile is mapped to the sur-
face normal (SN) domain, they becomeanstantor linear ~ The optimization is now well defined:
function, respectively. Given only linear or circular slare
used for approximating the representative cross sectiemn, t min D )
tile selection problem becomes essentiallpiacewise lin- {okmi e}
ear approximatiorproblem in the SN domain, where we con- such that constraints (4), (5) and (6) are satisfied.
strain the number of pieces used tokeWe assume that the The optimization problem (7) can be solved optimally and
value K—i.e. the number of tiles we used—affects directly efficiently usingdynamic programmingDP). LetD(:, k) be
the overall rate of the coding system. Hence, for a gillgn the minimum distortion for voxel sampléso N, if k constant
we find the best possible piecewise linear function to approx linear pieces can be used for approximating SNF. If a
imate the cross section's SNF—a proxy for distortion. Bysingle piece is used to approximate samplg j (resulting
adjustingK’ we can induce a rate-distortion (RD) tradeoff. in distortiond(i, 7)), then there will be one fewer piecks- 1



for the remaining samples+ 1 to N. Mathematically, we the cylinder tile by two orthogonal planar tileise., the four

can write: tiles face North, East, South and West direction, respelgtiv
) o ) . From both experiments, we found that our proposed tile se-
D(i,k) = { j:i)vlfl’Nd(“J) +DG+1Lk=1) if k>2 lection scheme outperforms the naive tile placements. The
’ d(i,N) O.W. gain is most pronounced at low rate, where up to 35% bit rate

(8)  reduction can be observed. We observe also that more gain

d(i,7) is the distortion if a piecé: is used to approxi- is achieved by using GT, where piecewise smooth signals can
mate voxel samplesto j. We can solve for the optimal tile be represented more sparsely compared to DCT.

variablesy, my andhy, usinglinear regressiorj13]. Specif-

ically, we first solve for the best-fit:; andh;: ° o e ey
0.024 Y —©—proposed + GT
Orty — ékfk [
my = = -2 € oo °
tr — (tx) § oo Y
M= Ok mmi— © g
_ _ 0.01 b'o‘ - 06 o 'Q
wheret;, andd,, are the average surface distance and surface B W e G mw e e o
—_— rate (Dits,
normal angle respectively; is the average of the square dis- .
9 P y’% 9 d (a) selected tiles (b) RD performance

tance, and),t, is the average of the product of distance and
angle, for voxel sampleisto j. Fig. 3. Result for the first 3D mesh.

If the best-fit slopem; is smaller thanmmyi,, we then
compare the solutions when slopenis,;,, (circular tile) and
when slope i9) (linear tile). The solution with the smaller
square error with respect #( ) will be chosen.

The complexity of the DP algorithm (8), with initial call
D(1, K), can be analyzed as follows. The size of of the DP
table to contain solutions to sub-problem§;, k) is O(NK).

To compute each entry in the DP table, the operation in (8) is
O(N). Hence the complexity of the algorithm@& N2 K).
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4. EXPERIMENTATION

To demonstrate the value of optimizing tile placement, we Fig. 4. Result for the second 3D mesh.
conducted the following experiment. To find the optimal tile

placement for a given static geometry, we use our proposed

DP algorithm discussed in Section 3.3.3 for a given budget of 5 CONCLUSION

tiles K. Fig. 3(a) illustrates the optimal tile placement for the

3D mesh wherk = 4, while a naive scheme uses four planarywe presented an image tiling framework for representation
tiles. The prediction structure is IPPP and the quantingi®>  of g object’s dynamic 3D geometry, where the object’s 3D
rameters are 5, 10, 15, 20, and 25. The generated depth mapgsh is first projected as 2D images to a set of carefully
are coded using either DCT based encoder (HEVC) or Gplaced image tiles, before a multiview image codec tuned for
based encodér Fig. 3(b) shows the RD performance of the piecewise smooth signals is deployed for coding of tile im-
two schemes, where maximum root mean square (RMS) Q{ges. The key to a compact yet accurate representation is the
the metro distance [14] is used to measure 3D reconstructiafg|ection and placement of image tiles. We showed that if
distortion. The performance curve of our proposed method ignly planar and cylindrical tiles are considered, the optim
the convex hull of operational points obtained by varying QRjle placement problem (a finite tile set that best matches th
and the number piecés used for approximation of SNF. We gpject’s representative 2D cross section) can be mapped to
see that our proposed method outperformed the naive meth@%iecewise linear approximation problem. The approxima-
at all bitrates. tion problem can be subsequently solved efficiently using a
Fig. 4 shows the performance of another 3D mesh. Th@ynamic programming algorithm. Experimental results show

3-tile competing scheme is obtained by replacing cyliralric that optimal tile placements can outperform naive tilepta
tile with a planar tile. The 4-tile competing scheme reptace ments by up to 35% in rate reduction.

SImplementation of GT used was found here:
http://biron.usc.edutkumarsun/Codes/GraphTransfaivatlab.zip
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