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ABSTRACT

Compression of dynamic 3D geometry obtained from depth
sensors is challenging, because noise and temporal inconsis-
tency inherent in acquisition of depth data means there is no
one-to-one correspondence between sets of 3D points in con-
secutive time instants. In this paper, instead of coding 3D
points (or meshes) directly, we propose to represent an ob-
ject’s 3D geometry as a collection of tile images. Specifically,
we first place a set of image tiles around an object. Then, we
project the object’s 3D geometry onto the tiles that are inter-
preted as 2D depth images, which we subsequently encode
using a modified multiview image codec tuned for piecewise
smooth signals. The crux of the tile image framework is the
“optimal” placement of image tiles—one that yields the best
tradeoff in rate and distortion. We show that if only planar
and cylindrical tiles are considered, then the optimal place-
ment problem forK tiles can be mapped to a tractable piece-
wise linear approximation problem. We propose an efficient
dynamic programming algorithm to find an optimal solution
to the piecewise linear approximation problem. Experimen-
tal results show that optimal tiling outperforms naı̈ve tiling by
up to 35% in rate reduction, and graph transform can further
exploit the smoothness of the tile images for coding gain.

Index Terms— 3D geometry compression, multiview im-
age coding

1. INTRODUCTION

The advent of depth sensing technologies like Microsoft
Kinect1 means (partial) 3D geometries of objects in a dy-
namic scene can now be captured with relative ease. If an
object’s geometrical information can be accurately and com-
pactly represented at the sender for network transmission,
then at the receiver it can enable a spectrum of 3D imaging
applications, such as virtual image synthesis of the object
from any freely chosen viewpoint. Thus compact represen-
tation of an object’s 3D geometry is an important research
problem; this is the focus of this paper.

Unlike computer-generated objects, dynamic 3D geome-
try periodically captured by depth sensors is subject to ac-
quisition noise and temporal inconsistencies, which means

1http://www.microsoft.com/en-us/kinectforwindows/

there is no one-to-one correspondence in 3D points and edges
between neighboring frames in time. Calledtime-varying
meshes(TVM) in [1, 2, 3], the authors proposed to code TVM
directly using predictive techniques similar to ones used in
video compression algorithms like H.264 [4]. This is a dif-
ficult proposition, because: i) 3D meshes typically undergo
more complicated transformations over time than the simple
translational motion model assumed in motion prediction in
video coding; and ii) lack of one-to-one correspondence in 3D
points across frames means exact match at patch-level might
not exist at all even if more complex motion models (which
entail significant computation costs) are introduced.

In this paper, instead of coding 3D points (or meshes) di-
rectly, we propose an alternative to compactly represent the
geometry of 3D objects using the concept ofimage tiling.
Specifically, we first project the object’s 3D geometry as im-
ages onto a set of carefully placed tiles surrounding the ob-
ject, then encode thetile imagesusing a multiview image /
video codec like [5] tuned for piecewise smooth signals (e.g.,
incorporating tools likegraph transform(GT) [6, 7]). At the
receiver, the decoded tile images are projected back into 3D
space to reconstruct the object’s geometry. The key to a com-
pact yet accurate representation in our image tiling frame-
work is the appropriate selection of image tiles for a given
object. We show that by restricting the tile types considered
to be planar and cylindrical tiles only, the optimal selection of
tiles—the best-fitting tile combination given a representative
cross section of the object—maps to a tractable piecewise lin-
ear approximation problem. We propose an efficient dynamic
programming algorithm to solve the piecewise linear approxi-
mation problem. To the best of our knowledge,we are the first
in the literature to address the optimal image tiling problem
and provide a computation-efficient solution. Experimental
results show that optimized image tiling can outperform na¨ıve
tiling by up to 35% in rate reduction, and GT can further ex-
ploit the smoothness of the tile images for coding gain.

The outline of the paper is as follows. We discuss related
works in Section 2. We then formulate the image tile selection
problem in Section 3. Finally, we present experimental results
and conclusion in Section 4 and 5, respectively.
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2. RELATED WORK

Previous work on compression ofstatic 3D geometry is ex-
tensive. [8] proposed to compress triangular meshes directly
through prediction of vertices and connectivity. [9] proposed
a progressive coding scheme based on over-complete expan-
sions by first projecting a 3D object onto a 3D sphere. How-
ever, as discussed in the Introduction, the time-varying aspect
of TVM brings new challenges that are not addressed in these
works.

In [1, 2, 3], TVM in each frame is first divided into
patches, then a patch-based matching procedure is used to
exploit inter-frame correlation. The residual information is
coded using scalar or vector quantization. In contrast, we
pursue animage-basedapproach, where 3D geometry is first
projected to tiles before the tile images are coded using a
multiview image codec. An image-based approach means
motion compensation well understood in video coding can be
directly applied to reduce temporal redundancy2.

Depth map compression has been studied in the context of
texture-plus-depthrepresentation of a 3D scene [10], where
texture maps (color images) and depth maps (per-pixel dis-
tance between objects in the 3D scene and capturing cam-
era) from multiple closely spaced viewpoints are captured and
encoded at the sender for virtual view synthesis viadepth-
image-based rendering(DIBR) [11] at the receiver. Because
depth maps have unique signal characteristics such as sharp
edges and smooth interior surface, coding tools such asgraph
transform (GT) [6, 7] (for coding of smooth surfaces) and
arithmetic edge coding(AEC) [12] (for lossless coding of
sharp object boundaries) have been proposed. In our codec
implementation for coding of multiple tile images, we incor-
porated both GT and AEC for optimal coding performance,
albeit the focus of this paper is the formulation and algorithm
development for the optimal image tile selection problem.

3. IMAGE TILES SELECTION

3.1. System Overview
tile 1

tile 2tile 3

(a) linear tile

tile 1

(b) circular tile

Fig. 1. Examples of linear and circular tiles.

We first describe the overall framework to represent an

2For brevity, in this paper we demonstrate the efficacy of image tiling
only for static 3D objects. Nonetheless, we expect the extension of our image
tiling approach to TVM to be relatively straight-forward.

object using multiple depth images that are projections of the
object’s 3D geometry on selected tiles. The actual projected
images on tiles can be coded using either DCT-based or GT-
based multiview image codec.

Given the geometry of an object in 3D mesh, we first place
a set ofK tiles surrounding the object, onto which the ob-
ject’s 3D geometry is projected as 2D images. By projection,
we mean that for each pixel location on the tile, we trace an
orthogonal line from the tile surface until we hit the surface
of the object, upon which we record the distance (depth) as
the pixel value. Each resulting depth image on a tile is a 2D
impression of the 3D geometry; the goal is to identify the op-
timal set of 2D impressions for a given object.

Intuitively, the best placements of tiles—in terms of accu-
racy in representing the object’s geometry—are the ones that
are parallel to the surface of the object. As simple examples,
consider only thecross sectionsof two 3D objects in Fig. 1,
which are triangle and circle in (a) and (b), respectively. For
Fig. 1(a), if we place three tiles parallel to the three sidesof
the triangle, regularly sampled voxels on each side of the ob-
ject can potentially be captured by the same number of evenly
spaced pixels on the corresponding tile. (Evenly spaced pix-
els in a 2D grid on the tile becomes an image for coding.) If
the three tile pixel lines are then losslessly coded, then the ex-
act same triangle cross section (in terms of the original voxel
samples) can be reproduced at the decoder, resulting in zero
distortion. Similarly, in Fig. 1(b) we see a circular tile that is
ideal for an object’s circular cross section. Given this devel-
oped intuition, we next describe how we findK tiles that best
match the object’s surface.

3.2. Cross Section Selection

To simplify the tile selection problem, we first select arep-
resentative 2D cross sectionfrom the object’s 3D geometry,
on which we perform a best-fitting procedure givenK tiles.
We identify the representative cross section as follows. For
a given 3D geometric object, we first identify an axis in 3D
space where the object is longest;i.e., if the object’s 3D points
are projected onto this dimension, the range from maximum
value to minimum is the largest. As an example, if the 3D
object is a person standing up, the longest dimension would
be the vertical axis (range will be his height). We denote this
axis as theprincipal axisor simplyz-axis.

Given the chosen principal axis, we next identify a 2D
plane of the object orthogonal to the axis that has thelargest
cross section. In the previous example, this could be a cross
section of the person’s belly. We perform our 2D optimization
for tiling on this representative cross section, as described in
the next section.

3.3. Tile Selection

Given a 2D representative cross section, we first define asur-
face normal function(SNF), which is the degree (in radian) of
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Fig. 2. Example of cross section and surface normal function.

the surface normal, computed clockwise from the vertical up
direction, as one moves clockwise around the representative
cross section. An example of a cross section and its corre-
sponding SNFF ( ) is shown in Fig. 2.

As discussed earlier, our goal is to select tiles to approx-
imate the representative cross section as closely as possible.
However, if too many tiles or tiles of too complicated shapes
are deployed, then the descriptions of the tiles themselves
would require too many coding bits, leading to large repre-
sentation size.Thus the goal is to select a limited number of
tiles, each of which required few bits for description, to ap-
proximate the cross section as closely as possible.

Given the above considerations, we will use only two
kinds of 2D tiles to approximate the representative cross sec-
tion in this paper: i)linear tiles, ii) circular tiles. When con-
sidering 3D space, linear and circular tiles extends toplanar
andcylindrical tiles respectively along thez-axis. Assuming
a change of coordinate is performed so thatx andy are axes
orthogonal to the principal axisz, the location of these two
kinds of tiles can be described using simple equations:

ax+ y = b (1)

(x− x0)
2 + (y − y0)

2 = r2 (2)

In particular, each tile can be described by at most three
parameters:(a, b) for a planar tile, and(x0, y0, r) for a cylin-
drical tile. Thus, the cost of describing each tile is negligible.
Further, one can map the pixels in each tile image easily onto
a 2D grid for conventional image / video coding. Note that
though in general a tile can be located any distance from the
object’s surface, for simplicity we will assume in this paper
that a tile is at average distanceξ away from the surface it is
approximating, for suitably chosenξ.

When a linear or circular 2D tile is mapped to the sur-
face normal (SN) domain, they become aconstantor linear
function, respectively. Given only linear or circular tiles are
used for approximating the representative cross section, the
tile selection problem becomes essentially apiecewise lin-
ear approximationproblem in the SN domain, where we con-
strain the number of pieces used to beK. We assume that the
valueK—i.e. the number of tiles we used—affects directly
the overall rate of the coding system. Hence, for a givenK,
we find the best possible piecewise linear function to approx-
imate the cross section’s SNF—a proxy for distortion. By
adjustingK we can induce a rate-distortion (RD) tradeoff.

3.3.1. Objective Function

Mathematically, givenK we can define our objective function
as follows. First, let the representative cross section’s SNF be
F ( ), and the voxel sampling period on its surface be∆ (with
N total samples). Let the circular tilek be represented as a
linear function in SN domain asCk(t) = mkt+hk, wheremk

andhk are the slope andy-intercept, respectively. For linear
tile, its representation in SN domain is simplyLk(t) = hk.
Let the boundary between neighboring piecesk andk + 1 be
γk∆. The distortion function—l2-norm betweenF ( ) and its
piecewise linear approximation—can then be written as:

D =

K
∑

k=1

γk
∑

i=γk−1+1

|F (i∆)− αkCk(i∆)− (1− αk)Lk(i∆)|
2

(3)
whereγ0 = 0 andγK = N − 1 is the last voxel sample on
the cross section, andαk is a binary variable to denote if a
circular or linear tile is used for thekth piece.

3.3.2. Problem Constraints

We consider the following constraints for our optimization
problem. First, the right boundaryγk∆ for thekth piece must
come before the next boundaryγk+1∆ in the approximation
function, hence

γk < γk+1, 1 ≤ k ≤ K − 1 (4)

Second, though in theory any radiusr can be used to de-
scribe the circular tile in (2), a very large radius will create
numerical instability when mapping tile pixels to the object
surface. Thus, we will lower-bound the choice of slopemk

for a circular tile as follows:

mk ≥ mmin, 1 ≤ k ≤ K (5)

Finally, as described earlier,αk is constrained to be a bi-
nary variable and can take on only one of two values:

αk ∈ {0, 1} (6)

3.3.3. Dynamic Programming Algorithm

The optimization is now well defined:

min
{αk,mk,hk,γk}

D (7)

such that constraints (4), (5) and (6) are satisfied.
The optimization problem (7) can be solved optimally and

efficiently usingdynamic programming(DP). LetD(i, k) be
the minimum distortion for voxel samplesi toN , if k constant
/ linear pieces can be used for approximating SNFF ( ). If a
single piece is used to approximate samplesi till j (resulting
in distortiond(i, j)), then there will be one fewer piecesk−1



for the remaining samplesj + 1 to N . Mathematically, we
can write:

D(i, k) =

{

min
j=i,...,N

d(i, j) +D(j + 1, k − 1) if k ≥ 2

d(i, N) o.w.
(8)

d(i, j) is the distortion if a piecek is used to approxi-
mate voxel samplesi to j. We can solve for the optimal tile
variablesαk, mk andhk usinglinear regression[13]. Specif-
ically, we first solve for the best-fitm∗

k andh∗
k:

m∗
k =

θktk − θ̄k t̄k

t2k − (t̄k)
2

h∗
k = θ̄k −m∗

k − t̄k (9)

wheret̄k andθ̄k are the average surface distance and surface
normal angle respectively,t2k is the average of the square dis-
tance, andθktk is the average of the product of distance and
angle, for voxel samplesi to j.

If the best-fit slopem∗
k is smaller thanmmin, we then

compare the solutions when slope ismmin (circular tile) and
when slope is0 (linear tile). The solution with the smaller
square error with respect toF ( ) will be chosen.

The complexity of the DP algorithm (8), with initial call
D(1,K), can be analyzed as follows. The size of of the DP
table to contain solutions to sub-problemsD(i, k) isO(NK).
To compute each entry in the DP table, the operation in (8) is
O(N). Hence the complexity of the algorithm isO(N2K).

4. EXPERIMENTATION

To demonstrate the value of optimizing tile placement, we
conducted the following experiment. To find the optimal tile
placement for a given static geometry, we use our proposed
DP algorithm discussed in Section 3.3.3 for a given budget of
tilesK. Fig. 3(a) illustrates the optimal tile placement for the
3D mesh whenK = 4, while a naı̈ve scheme uses four planar
tiles. The prediction structure is IPPP and the quantization pa-
rameters are 5, 10, 15, 20, and 25. The generated depth maps
are coded using either DCT based encoder (HEVC) or GT
based encoder3. Fig. 3(b) shows the RD performance of the
two schemes, where maximum root mean square (RMS) of
the metro distance [14] is used to measure 3D reconstruction
distortion. The performance curve of our proposed method is
the convex hull of operational points obtained by varying QP
and the number piecesK used for approximation of SNF. We
see that our proposed method outperformed the naı̈ve method
at all bitrates.

Fig. 4 shows the performance of another 3D mesh. The
3-tile competing scheme is obtained by replacing cylindrical
tile with a planar tile. The 4-tile competing scheme replaces

3Implementation of GT used was found here:
http://biron.usc.edu/∼kumarsun/Codes/GraphTransformMatlab.zip

the cylinder tile by two orthogonal planar tiles,i.e., the four
tiles face North, East, South and West direction, respectively.
From both experiments, we found that our proposed tile se-
lection scheme outperforms the naı̈ve tile placements. The
gain is most pronounced at low rate, where up to 35% bit rate
reduction can be observed. We observe also that more gain
is achieved by using GT, where piecewise smooth signals can
be represented more sparsely compared to DCT.
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Fig. 3. Result for the first 3D mesh.
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Fig. 4. Result for the second 3D mesh.

5. CONCLUSION

We presented an image tiling framework for representation
of an object’s dynamic 3D geometry, where the object’s 3D
mesh is first projected as 2D images to a set of carefully
placed image tiles, before a multiview image codec tuned for
piecewise smooth signals is deployed for coding of tile im-
ages. The key to a compact yet accurate representation is the
selection and placement of image tiles. We showed that if
only planar and cylindrical tiles are considered, the optimal
tile placement problem (a finite tile set that best matches the
object’s representative 2D cross section) can be mapped to
a piecewise linear approximation problem. The approxima-
tion problem can be subsequently solved efficiently using a
dynamic programming algorithm. Experimental results show
that optimal tile placements can outperform naı̈ve tile place-
ments by up to 35% in rate reduction.
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