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The drift-reduced Braginskii model describing turbulence in the tokamak scrape-off layer is

written for a general magnetic configuration with a limiter. The equilibrium is then specified for

a circular concentric magnetic geometry retaining aspect ratio effects. Simulations are then

carried out with the help of the global, flux-driven fluid three-dimensional code GBS [Ricci

et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. Linearly, both simulations and

simplified analytical models reveal a stabilization of ballooning modes. Nonlinearly, flux-driven

nonlinear simulations give a pressure characteristic length whose trends are correctly captured by

the gradient removal theory [Ricci and Rogers, Phys. Plasmas 20, 010702 (2013)], that assumes

the profile flattening from the linear modes as the saturation mechanism. More specifically, the

linear stabilization of ballooning modes is reflected by a 15% increase in the steady-state

pressure gradient obtained from GBS nonlinear simulations when going from an infinite to a

realistic aspect ratio. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4863956]

I. INTRODUCTION

The physical understanding of the scrape-off layer

(SOL) is of crucial importance for determining the perform-

ance of future fusion devices such as ITER. This region,

characterized by open field lines terminating on a limiter or

on a divertor, exhausts the tokamak power, controls the

plasma fueling and the impurity dynamics, affecting the

overall plasma confinement.

In the SOL, the collision frequency is usually large, thus

allowing to neglect off kinetic effects. It is therefore reasona-

ble to use a fluid1–3 or a gyro-fluid model4,5 to describe the

plasma dynamics in this regime. As the typical amplitude of

fluctuations in the SOL is comparable to the background val-

ues, one needs a full-n model that does not separate between

equilibrium and fluctuation quantities. Furthermore, since

the characteristic length of the fluctuations in the SOL is

comparable to the background one, a radially global

approach is necessary. Then, a flux-driven model is preferred

over a fixed-gradient model because the former is closer to

experimental conditions, where profiles result from a balance

between sources and losses and are a-priori unknown, exhib-

iting richer physics such as the appearance of avalanches6

and self-consistent interactions between the background and

the fluctuations. Such fluid flux-driven simulations have

emerged,6–9 allowing to simulate SOL plasma turbulence

and shedding light on the crucial physical phenomena at play

in this region. In a recent publication,10 it has been shown

that the gradient-removal theory is able to predict relatively

well the sustainable pressure gradient inside the SOL for 3D

fluid simulations in limited geometry. The validity of this

theory has been further confirmed in a large number of turbu-

lent electrostatic regimes11 as well as in electromagnetic

simulations.12

Although the importance of including a realistic mag-

netic equilibrium to study turbulence has been known since

the early 1980s,13 only a small number of studies have been

carried out in the SOL with an advanced geometry. The mir-

ror force has been found to play an important role in the

SOL of MAST,14,15 while the aspect ratio dependence of the

parallel flow profile in the SOL has been investigated in a

2D particle code.16 Aspect ratio effects are thought to play

an important role in determining the characteristic cross-

sectional area of the SOL and explain in part the improve-

ment of confinement when moving the toroidal limiter from

the low-field-side to the high-field-side of the tokamak.17 In

the plasma edge, a reduction of transport due to elongation is

observed in gyrofluid turbulence,18 while some aspect ratio

effects in collisional drift wave turbulence are briefly dis-

cussed in Ref. 19. Magnetic shaping also affects the edge

propagation of geodesic acoustic modes, which extract the

zonal flows energy, thus enhancing turbulence levels.20,21

While some codes have the capability to treat arbitrary

magnetic shapes, most of the studies focus on comparisons

with experiments (through the coupling of a turbulence code

with an equilibrium solver) rather than studying the specific

effects of shaping on turbulence. The aim of this work is to

study aspect ratio effects on SOL fluid turbulence. First, the

drift-reduced Braginskii equations used to evolve the SOL

plasma dynamics are derived in arbitrary magnetic geometry.

A magnetic equilibrium with circular flux surfaces retaining

finite aspect ratio effects22 is then prescribed. The effects of

this particular geometry are studied on the growth of linear

modes and, by using the 3D global fluid code GBS7 and the

gradient removal theory, a detailed analysis of nonlinear

simulations including finite aspect ratios is carried out. In

particular, aspect ratio effects are introduced in a simple lin-

ear dispersion relation describing the most basic features of

resistive ballooning modes (RBMs). This analytical model is

able to predict the behaviour of linear modes in the system.a)Electronic mail: sebastien.jolliet@epfl.ch
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It is also demonstrated in this paper that, through the com-

parison with nonlinear simulations, the gradient removal

theory is able, using only a linear dispersion relation, to pre-

dict aspect ratio effects on the nonlinearly sustained pressure

gradient. Therefore, the main result of this work is an analyt-

ical method to predict aspect ratio effects on the SOL width:

By decreasing the amplitude of the curvature at the low field

side of the tokamak with respect to the infinite aspect ratio

case, aspect ratio effects reduce the linear growth of balloon-

ing modes. This in turns leads to a decrease of the SOL

width.

The paper is organized as follows. In Sec. II, the drift-

reduced Braginskii equations are derived in a general

axisymmetric magnetic field configuration. The magnetic ge-

ometry studied in this work allows to pinpoint finite aspect

ratio effects and is detailed in Sec. III. In Sec. IV, the impact

of aspect ratio effects on the linear growth rate of the SOL

unstable modes is studied. Nonlinear simulations using the

GBS code10 are then presented in Sec. V and results are com-

pared with predictions of the gradient removal theory.

Finally, conclusions are drawn in Sec. VI.

II. FLUID MODEL IN THE SOL

A. Fluid moment equations

The study of the SOL presented in this paper is based

on the two-fluid, electrostatic, cold ion (Ti¼ 0) drift-

reduced Braginskii equations. By assuming that the order-

ings d=dt� xci (xci ¼ eB=mi is the ion gyrofrequency)

and k? � kk hold over the whole domain, the perpendicular

velocities are written as V?i¼VE�BþVpol and V?e¼VE�B

þV�e, where VE�B¼ð�r/�BÞ=B2 is the E�B drift ve-

locity, V�e¼�ð1=enB2ÞB�rpe is the electron diamagnetic

drift, e is the elementary charge, and Vpol is the polarization

velocity defined in Ref. 3. The continuity, vorticity, ion,

and electron parallel momentum and electron temperature

equations then read, in normalized form

@tn ¼ �
R0

B
/; n½ � � rk nvkeð Þ � nvker � b

þ 2

B
C peð Þ � nC /ð Þ
� �

þ Sn þ Dnr2
?n (1)

@tx ¼ �
R0

B
/;x½ � � vkirkxþ

2B

n
C peð Þ

þ B2

�
1

n
rkjk þ

jk
n
r � b

�

þ B

3n
C Gið Þ þ Dxr2

?x (2)

@tvke ¼�
R0

B
/;vke
� �

� vkerkvkeþDvker2
?vke;

þmi

me
�

jk
n
þrk/�

1

n
rkpe�0:71nrkTe�

2

3n
rkGe

� �
(3)

@tvki ¼ �
R0

B
/; vki
� �

� vkirkvki �
1

n
rkpe �

2

3n
rkGi

þ Dvkir2
?vki; (4)

@tTe ¼�
R0

B
/;Te½ � � vkerkTe

þ 4

3B
Te

7

2
C Teð Þ þ

Te

n
C nð Þ �C /ð Þ

� �
þ STe

þ2

3
Te 0:71rkvki� 1:71rkvkeþ 0:71

vki� vke
n

� 	
rkn

� �

þTeð0:71vke� 1:71vjiÞr � bþDTe
r2
?Teþ vkr2

kTe;

(5)

where R0 is the tokamak major radius expressed in qs0 units,

x ¼ r2
?/ is the vorticity, jk ¼ n vki � vkeð Þ is the parallel

current, b¼B/B is the unit magnetic field vector, � is the

normalized Spitzer resistivity, and vk is the parallel heat flux

diffusivity given as an input constant. Quasineutrality is

assumed such that ne ¼ ni 	 n. Plasma outflow from the

closed flux surface region is mimicked using density and

temperature sources, respectively, Sn and STe
. The Ge and Gi

terms represent the gyroviscous part of the pressure tensor

and are given by

Gi ¼ �3g0i

2

3
rkvki þ

1

3B
Cð/Þ

� �
; (6)

Ge ¼ �3g0e

2

3
rkvke þ

1

3B
Cð/Þ � 1

3Bn
CðpeÞ

� �
; (7)

where g0i and g0e are constant coefficients given on input.

Furthermore, the vorticity equation has been obtained using

the common Boussinesq approximation

r � nmi

B2e

d

dt
r?/

� 	
ffi nmi

B2e

d

dt
r2
?/: (8)

Small perpendicular diffusion terms of the form Dar2
?a are

added for numerical reasons. Perpendicular laplacians

are assumed to lie in the poloidal plane (see Appendix A).

The curvature operator is defined by CðAÞ ¼ B=2

½r � ðb=BÞ� � rA, the parallel gradient is rkA ¼ b � rA, the

perpendicular laplacian is r2
?A ¼ �r � ½b� ðb�rAÞ� and

the Poisson bracket is ½/;A� ¼ b � ðr/�rAÞ. The normal-

izations are (tilde denotes quantities in physical units): t ¼ ~t=

ðR0=cs0Þ; r? ¼ ~r?qs0;rk ¼ ~rkR0; v¼ ~v=cs0; n¼ ~n=n0; Te

¼ ~Te=Te0; /¼ e~/=Te0; � ¼ ~�=ðcs0me=R0miÞ, with cs0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te0=mi

p
and qs0 ¼ cs0=xci where xci is evaluated with the

magnetic field at the magnetic axis, while Te0 and n0 are the

reference temperature and density.

The above system of equations is implemented with a

proper set of boundary conditions to describe the interface

between the SOL and the magnetic pre-sheath where the ion

drift approximation d=dt� xci breaks down.23 At the top

and at the bottom of the limiter, these are, in normalized

units, vki ¼ 6
ffiffiffiffiffi
Te

p
; vke ¼ 6

ffiffiffiffiffi
Te

p
exp K� /=Teð Þ; @sn ¼ 7n=ffiffiffiffiffi

Te

p
@svki; @s/ ¼ 7

ffiffiffiffiffi
Te

p
@svki; x ¼ �ð@svkiÞ27

ffiffiffiffiffi
Te

p
@ssvki and

@sTe ¼ jT=Te@s/, with K ¼ 3 and jT ¼ 0:15. Here, s is a

coordinate normal to the limiter walls. Corrections of order

qs0=Lp described in Ref. 23 have been neglected.
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B. Magnetic field dependence in the fluid model

The system of equations presented in this paper consid-

ers, with respect to the system of equations presented in

Ref. 7, an arbitrary magnetic field configuration. The modu-

lus of the magnetic field B, the divergence of the unitary

magnetic field vector r � b, the differential operators rk,
r2
? as well as the curvature operator C and the Poisson

bracket operator ½/;A� depend on the particular form of the

magnetic field vector B. The magnetic field configuration

enters therefore in Eqs. (1)–(5) through six operators

½/;A� ¼ 1

J �ijkbi
@/

@nj

@A

@nk
; (9)

rkA ¼ bj @A

@nj ; (10)

CðAÞ ¼ B

2J
@cm

@nj

@A

@nk
�kjm; (11)

r2
?A ¼ 1

J
@

@nk
J�1�klm�iabgmiblba

@A

@nb

� 	
; (12)

r � b ¼ 1

J
@

@ni
ðbiJ Þ; (13)

B ¼
ffiffiffiffiffiffiffiffiffi
BjBj

q
; (14)

where the Einstein summation convention is assumed, �ijk is

the Levi-Civita tensor, fnig ¼ fn1; n2; n3g is an arbitrary set

of coordinates, b ¼ B=B; cm ¼ bm=B; gij ¼ rni � rnj is the

contravariant metric tensor, gij ¼ InvðgijÞ is the covariant

metric tensor, and J ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

p
is the Jacobian, bi ¼ b�

rni; bi ¼ gijb
j. These operators can be computed by know-

ing the covariant and contravariant coordinates of the mag-

netic field and the metric tensor for any coordinate system.

The general axisymmetric form for the magnetic field is

considered in this study

B ¼ FðwÞruþrw�ru; (15)

where w is the poloidal flux function, which is in general a

solution of the Grad-Shafranov equation, FðwÞ describes the

toroidal magnetic field and u is the toroidal angle.

C. Coordinate systems

Turbulence is often represented in the toric coordinate

system ðx ¼ r; y ¼ ah�; z ¼ R0uÞ, where r is a flux coordi-

nate, a is the tokamak minor radius, and the straight-field-

line angle h� is defined as

h� ¼
1

qðrÞ

ðh

0

dh0
B � ru

B � rh0
: (16)

h is a poloidal coordinate and q(r) is the safety factor

qðrÞ ¼ 1

2p

ð2p

0

dh
B � ru
B � rh

: (17)

The straight-field-line angle is such that B � rh� ¼ qðrÞB�
ru. In other words, magnetic field lines are straight in the

ðh�;uÞ plane. A model implementation in the (x,y,z) coordi-

nate system is usually simple but the parallel dynamics must

be treated carefully as the grid is not aligned with magnetic

field lines.

In order to take advantage of the strong anisotropy of

turbulence, it is computationally efficient to use coordinates

that are aligned with the magnetic field. One can define a

field-line label a ¼ u� qðrÞh�, from which the flux-tube

coordinates X ¼ r; Y ¼ ða=q0Þa; Z ¼ q0R0h� are derived,

with q0 	 qðaÞ a reference safety factor. The (X,Y) plane is

perpendicular to the magnetic field, and Z becomes a field-

aligned coordinate. Due to long parallel wavelengths, turbu-

lent simulations can be performed at low Z resolution which

strongly reduces the computational time. However, the non-

periodicity of the a coordinate requires some complicated

treatment in global geometry for the boundary conditions.24

Operators (9)–(12) can be written in advection form

½/;A� ¼ PXY ½/;A�XY þ PYZ½/;A�YZ þ PZX½/;A�ZX; (18)

rkA ¼ DX @A

@X
þDY @A

@Y
þDZ @A

@Z
; (19)

CðAÞ ¼ CX @A

@X
þ CY @A

@Y
þ CZ @A

@Z
; (20)

r2
?A¼N XX @

2A

@X2
þN XY @2A

@X@Y
þN YY @

2A

@Y2
þN X @A

@X
þN Y @A

@Y

þN ZZ @
2A

@Z2
þN XZ @2A

@X@Z
þN YZ @2A

@Y@Z
þN Z @A

@Z
;

(21)

where ½/;A�XY ¼ @A=@X@/=@Y� @A=@Y@/=@X. Equivalent

expressions are found with the coordinate system (x,y,z). Note

that the above relations are global and only assume

the axisymmetry of the magnetic field. Each coefficient is

therefore a function of x and y. The detailed expressions of the

operators are derived in Appendix A. All the magnetic equilib-

rium information is contained in these coefficients. In practice,

implementing a new magnetic configuration is equivalent to

finding the expression (whether analytical or numerical) of

these coefficients. An example is given in Sec. III.

III. CIRCULAR MAGNETIC FLUX SURFACES WITH
ASPECT RATIO EFFECTS

In the present paper, a magnetic equilibrium with circular

magnetic surfaces, retaining finite aspect ratio effects is con-

sidered. The local inverse aspect ratio, noted �, is defined as

� ¼ r=R0, where R0 is the major radius of the tokamak. The

magnetic field is completely defined by setting FðwÞ ¼ B0R0

and the shape of magnetic surfaces

Rc ¼ R0 þ r cos h; (22)

Zc ¼ r sin h; (23)

where (Rc, Zc) are standard cylindrical coordinates in the

poloidal plane. The poloidal flux w 	 wðrÞ can be expressed
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as a function of the safety factor through Eq. (17), giving

w0ðrÞ ¼ B0r=�qðrÞ, where �q is a pseudo safety factor such that

qðrÞ ¼ �qðrÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

. In this geometry, the ðr; hÞ coordinates

coincide with the usual polar coordinates. The straight-field-

line can be analytically computed from Eq. (16)

h� ¼ 2 tan�1

ffiffiffiffiffiffiffiffiffiffiffi
1� �
1þ �

r
tanðh=2Þ

" #
; (24)

from which it is trivial to see that lim�!0 h� ¼ h. A circular,

concentric model is a solution of the Grad-Shafranov equa-

tion if the latter is expanded up to first order in � at b¼ 0 and

the Shafranov shift is negligible. This model is therefore not

appropriate for low aspect ratio tokamaks R0=a �3.

Mathematically, this is expressed by the fact that h� is not

defined for �! 1 as can be seen in Eq. (24).

In practice, implementing an equilibrium means com-

puting the metric tensor and the magnetic field components

associated with the chosen coordinate system. First, the co-

variant metric tensor in ðh; r;uÞ coordinates is obtained from

Eqs. (22)–(23), for example, grr ¼ ð@Rc=@rÞ2 þ ð@Zc=@hÞ2.

The contravariant metric tensor in ðh; r;uÞ coordinates is

then obtained by inverting the covariant one. The contravar-

iant metric tensor coefficients for ðh�; r;uÞ are then given by

gh�h� ¼ @h�
@h

� 	2

ghh þ 2
@h�
@h

@h�
@r

grh þ 1

R0

@h�
@�

� 	2

grr;

guu ¼ 1

R2
c

; (25)

gh�r ¼ @h�
@h

grh þ 1

R0

@h�
@�

grr; gru ¼ gh�u ¼ 0; (26)

gh�a ¼ �ŝh�
q

r
gh�r � qgh�h� ; (27)

gra ¼ �ŝh�
q

r
grr � qgh�r; (28)

gaa ¼ guu þ q2gh�h� þ 2
q2ŝh�

r
gh�r þ ðŝh�Þ2

q2

r2
grr; (29)

where ŝ ¼ rq0ðrÞ=qðrÞ is the magnetic shear,

@h�
@h
¼ 1� � cos h�ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p ; (30)

@h�
@�
¼ � sin h�

1� �2
; (31)

Rc ¼ R0

1� �2

1� � cos h�
; (32)

and the Jacobian associated with the metric tensor is

J ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

p
¼ R0r

ð1� �2Þ3=2

ð1� � cos h�Þ2
: (33)

The covariant metric tensor can be easily calculated as

a function of the contravariant one, for example, grr

¼ J 2ðra�rh�Þ � ðra�rh�Þ ¼ J 2ðgh�h�gaa � gh�agh�aÞ.

The contravariant component of the magnetic field for a coor-

dinate ni is given by Bi ¼ B � rni and the associated

covariant component is given by Bi¼ gij Bj. For the present

geometry, Bu ¼ ðB0R0Þ=R2
c and Bh� ¼ w0=J . Using the co-

variant and contravariant components of the metric tensor and

the magnetic field as well as the derivatives of these coeffi-

cients, the coefficients in the operators (18) to (21) can be ana-

lytically obtained. Their detailed expressions are given in

Appendix B for both toric and flux tube coordinate systems.

The model used in earlier studies of the SOL7,12,23,25

adopted the usual s� a geometry26 which describes circular

concentric surfaces in the large aspect ratio limit �! 0. In

this model, the modulus of the magnetic field, B, is assumed

constant and the straight-field-line angle is approximated to

the poloidal angle h, where q(r) is the safety factor. It is

shown in Appendix C that the model considered here and the

s� a models are equivalent in the �! 0 limit.

In the remaining of the paper, the equilibrium will be

approximated to be local in the radial direction. In particular,

the inverse aspect ratio � is evaluated at the last closed

surface, i.e., � ¼ a=R0 and the safety factor is constant

throughout the simulation domain.

IV. LINEAR ASPECT RATIO EFFECTS

The influence of finite aspect ratio effects on the growth

of linear unstable modes is now investigated. To this aim,

the drift-reduced Braginksii equations (1) to (5) are linear-

ized, assuming an equilibrium density and temperature pro-

file dependent on the radial coordinate only. Each physical

quantity A is therefore split according to A ¼ A0ðXÞ
þ dAðY; ZÞ, where A0 is a local radial equilibrium at r¼ a
and dA is the perturbation. The equilibrium gradient is defined

by @A0=@X! �A0=LA, where LA is the characteristic length

of the field A. By setting /0 ¼ vke0 ¼ vki0 ¼ 0, the plasma

equilibrium is defined through a density and temperature gra-

dient. The linearised drift-reduced Braginskii equations are

@dn

@t
¼ R0

Ln

1

B
PLðd/Þ þ 2

B
CLðdn� d/þ dTeÞ

� ðrk þ r � bÞdvke; (34)

1

B2
ðr2
?Þ

L @d/
@t
¼ 2

B
CLðdnþ dTeÞ

þ ðrk þ r � bÞðdvki � dvkeÞ; (35)

me

mi

@dvke
@t
¼ rkðd/� dnÞ � 1:71rkdTe þ

me

mi
�ðdvke � dvkiÞ;

(36)

@dTe

@t
¼ R0

Ln
g

1

B
PLðd/Þ þ 4

3B
CLðdn� d/þ 7=2dTeÞ

þ 2

3
ðrk þ r � bÞð0:71dvki � 1:71dvkeÞ; (37)

@dvki
@t
¼ �rkðdnþ dTeÞ; (38)

where g ¼ Ln=LTe; PL; ðr2
?Þ

L
and CL are the linearized

expressions of the Poisson bracket, the perpendicular
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laplacian and the curvature operator. In flux-tube geometry,

they read

PLðAÞ ¼ PXY
@A

@Y
þ PYZ

@A

@Z
; (39)

CLðAÞ ¼ CY @A

@Y
þ CZ @A

@Z
; (40)

ðr2
?Þ

LA ¼ N YY @
2A

@Y2
þN Y @A

@Y
: (41)

It has been checked analytically and numerically that

PYZ; CZ and N Y
are small and can be neglected.

In order to study the growth of linear modes in a limited

SOL configuration, a numerical code, described in Ref. 25,

has been developed. Perturbations are imposed to have the

form dAðZÞexp½iðkYY þ ctÞ� and the Z coordinate is discre-

tized using 4th order centered finite differences. Dirichlet

boundary conditions are applied for the perturbed potential,

density, and temperature, while no boundary conditions are

imposed for the ion and electron velocities. Various types of

boundary conditions have been tested for ballooning modes

and drift waves and no significant impact on the growth rate

was found. Note that this contrasts with global modes such

as ideal ballooning modes for which the boundary conditions

are important.12 The Z (resp. Y) coordinate is normalized to

R0 (resp. qs0). The resulting linear system is integrated im-

plicitly in time, and the growth rate c is extracted as a func-

tion of the phase space parameters ðR0=Ln; g; �; q; �; kYÞ.
The linearized equations (34)–(38) are able to describe

inertial and resistive drift wave modes, due to the E�B con-

vection in the presence of non-adiabatic electrons, as well as

inertial and resistive ballooning modes, driven unstable by

the unfavorable curvature in the low-field side region. A

thorough linear study of these linear instabilities can be

found in Ref. 25 and, in Ref. 11, it is shown that RBMs dom-

inate for typical limited SOL parameters. In the following, a

set of parameters representative of this instability is consid-

ered. Parameters are g ¼ 1, q¼ 4, ŝ ¼ 0; � ¼ 0:1, and

R0/Ln¼ 10. In essence, RBM eigenfunctions have a bell

shape peaking around h� ¼ 0 in the parallel direction with

kk ! 1=ðqR0Þ. Also, artificially removing the curvature op-

erator leads to a strong decrease of the growth rate.

Note that magnetic equilibrium effects influence the

linear dynamics through four distinct mechanisms: the

E�B convection expressed by the ð1=BÞ½/;A� operator,

the parallel convection, described by the rk þ r � b opera-

tor, the (1/B) C(A) operator, and finally the vorticity opera-

tor expressed by ð1=B2Þr2
?. Aspect ratio effects may be

studied by introducing � corrections, one by one, inside

these different operators in the linearized Braginskii equa-

tions while keeping all the other parameters fixed. A scan

in ðkY ; �Þ is performed and the maximum growth rate over

kY is selected for each value of �. It is observed that the

peak growth rate shifts from ky¼ 0.62 to ky¼ 0.89 for � ¼ 0

and � ¼ 0:25, respectively. However, it is noted that the

growth rate is fairly flat around its peak in ky. Results are

summarized in Fig. 1. Introducing � effects in the parallel

gradient enhances the growth rate while the opposite effect

is seen in the (1/B) C(A) operator. The presence of aspect

ratio effects in the Poisson brackets and the vorticity opera-

tor does not affect the growth rate significantly. Overall,

when all aspect ratio effects are included, the growth rate is

reduced by 20% at � ¼ 0:25. The qualitative behavior of

each curve can be explained by looking at a simple analyti-

cal dispersion relation describing the main features of

RBMs12

@dp

@t
¼ R0

Lp

1

B
PLðd/Þ; (42)

1

B2

@r2
?d/
@t

¼ 2

B
CLðdpÞ þ rkdjk; (43)

0 ¼ �djk þ rkd/: (44)

The dispersion relation is obtained by setting @=@Y ! ikY ;
@=@t! c; rk ! ikk, keeping the leading term in �, and

assuming a strongly ballooned mode around h� ¼ 0. This

allows to expand the differential operators

1

B
PLðAÞ ffi �R0

Ln
1� 1

2
�2

� 	
@A

@Y
! R0

Lp
1� �

2

2

� 	
ikY ; (45)

rkA ffi ð1� � cos h�Þ
@A

@Z
! ð1� �Þikk; (46)

FIG. 1. Growth rate as a function of the aspect ratio for a Resistive Ballooning Mode (left) and a Resistive Drift Wave (right). The value of kY maximising the

growth rate is chosen for each �. Aspect ratio are turned on individually in the Poisson Bracket operator (red, circles), the parallel gradient and r � b operators

(green, pluses), the (1/ B)C(A) operator (black, stars), and the vorticity operator ð1=B2Þr2
? (cyan, squares). The blue curve (crosses) shows the full aspect ratio

corrections
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1

B
CLðAÞ ffi �½cos h� � �ð2� cos2 h�Þ�

@A

@Y
! �½1� ��ikY ;

(47)

1

B2
ðr2
?Þ

LA ffi ð1� �2 cos2 h�Þ
@2A

@Y2
! �ð1� �2Þk2

Y : (48)

It has been checked that the scalar r � b does not influence

linear growth rates significantly. The dispersion relation then

writes

0 ¼ c2 þ 2cDc� c2
I ; (49)

cD ¼
k2
kð1� �Þ

2

2k2
Yð1� �2Þ� ; (50)

cI ¼
1

ð1� �2=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R0

Lp
ð1� �Þð1� �2=2Þ

s
: (51)

In the large resistivity limit, the instability is a pure inter-

change mode with a growth rate c ¼ cI, resulting from the

combination of the pressure gradient drive and the magnetic

curvature operator. Finite kk effects introduce a damping on

the mode through the cD coefficients. In the following analy-

sis, the value of kY will be kept constant, independent of �.
This assumption is appropriate since, in the linear simula-

tions of the “full” system presented above, the growth rate is

very weakly dependent on kY close to its peak.

From Eq. (45), aspect ratio effects on the E�B convec-

tion operator will decrease the drive by a small factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2=2Þ

p
. The parallel damping term cD will be

decreased by a factor ð1� �Þ2 ffi ð1� 2�Þ according to Eq.

(46) and this should result in a higher growth rate. Finite as-

pect ratio effects in the (1/B) C(A) operator should decrease the

growth rate as cI ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� �ÞR0=Lp

p
. Finally, the vorticity op-

erator should slightly increase cI by a factor 1=ð1� �2=2Þ and

cD by a factor 1=ð1� �2Þ, leading in a slight increase of the

growth rate c. All these dependences are qualitatively repro-

duced in Fig. 1. � effects can be described as a balance between

a decreased parallel damping and a reduced curvature drive,

while other effects are of higher order in �. Simulations show

that this behavior is independent of the toroidal mode number.

Remark that a similar reduction of the curvature operator

jCðAÞj ¼ jC�¼0ðAÞ � �j has been obtained in Ref. 27.

The right panel of Fig. 1 displays the same analysis for a

density gradient value of R0/Ln¼ 70. In this case, the growth

rate peak shifts from ky¼ 0.62 to ky¼ 0.57 when going from

� ¼ 0 to � ¼ 0:25, respectively. At this density gradient

value the fastest linear instability in the system is linearly

unstable for resistive drift waves (RDW). Results are qualita-

tively similar, however the quantitative change of about 5%

in the growth rate for � ¼ 1=4 is much smaller compared to

the RBM case. This is because the curvature plays a minor

role in setting the amplitude of the instability. The eigen-

functions exhibit a finite kk and extend over the whole h� do-

main. As a matter of fact, an analytical estimate of aspect

ratio effects is more difficult to obtain than in the RBM case.

In particular, aspect ratio effects on the parallel gradient

operator seem to have a very small impact on the growth

rate. Similarly to the RBM case, the second order � effects in

the Poisson bracket and vorticity operators do not affect the

growth rate significantly.

V. ASPECT RATIO EFFECTS ON NON-LINEAR
SIMULATIONS

A. Implementation and simulation setup

The circular flux surface geometry with aspect ratio

effects described in Sec. III has been implemented in the

GBS code, initially developed to perform simulations in ba-

sic plasma physics devices28–31 and then ported to the s� a
tokamak geometry.26 GBS results have been validated

against experimental data from the TORPEX device.32–34

The main properties of the GBS code are briefly summar-

ized here for completeness. More details can be found in

Ref. 7. The toric coordinate system ðx ¼ r; y ¼ ah�; z ¼ R0uÞ
is employed and all the magnetic field quantities, including

the safety factor, are radially local. Eqs. (1) to (5) are inte-

grated in time with a 4th order Runge-Kutta algorithm. At

each substep, the spatial derivatives in the r.h.s. of the equa-

tions are evaluated using second order centered finite differ-

ences, except for the Poisson bracket terms evaluated with

the Arakawa scheme.35 The main subtlety appears in the par-

allel gradient. Although fields are discretized on a grid that

uses the toroidal and straight-field-line coordinates, the par-

allel gradient is computed along the field line as described in

Ref. 7

rkA ¼ qbh
�R0

@A

@z
þ a

q

@A

@y

� 	
	 qbh

�R0

@A

@f
; (52)

@A

@f
	 1

2Df
Ai;jþDj;kþ1 � Ai;j�Dj;k�1ð Þ; (53)

where now the coefficient qbh�R0 contains � corrections, f
¼ zþ ay=q is a field-following coordinate, Df
¼ Dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2=�q2

p
; Dj ¼ Ny=ðqNzÞ and Ny (resp. Nz) are the

number of grid points in the y (resp z) direction. In the pres-

ent implementation Dj is constrained to be an integer. The

second order parallel gradient is approximated as

r2
kA ¼ ðqbh

�R0Þ2
@2A

@f2
; (54)

and the small term proportional to @ðqbh�R0Þ=@f has been

neglected as it is usually extremely small.

After each substep of the fluid moments integration, the

potential is obtained from the vorticity by solving the

Poisson equation x ¼ r2
?/, and boundary conditions

described in Sec. II A are imposed. The 3D arrays are paral-

lelized in the x and z direction using a standard message

passing interface (MPI) domain decomposition. The Poisson

solver is trivially parallelized in the z direction using the par-

allel (on the x communicator) direct solver MUMPS.36

Equations (9)–(14) can be expressed in (x,y,z) coordi-

nates but further approximations on the Poisson bracket op-

erator (see Appendix C) and on the perpendicular laplacian
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(see Appendix A) allow to save significant central processing

unit time.

Simulations are initialized with flat radial profiles and

smooth poloidal profiles consistent with the boundary condi-

tions described in Sec. II A. A small perturbation is then

superimposed on top of them. After the simulation starts, the

localized injection of density and temperature produces

enough free energy to trigger a number of unstable modes

that develop into turbulence. The simulations will therefore

experience a transient phase followed by a quasi steady-state

given by the interplay between the plasma sources, perpen-

dicular transport, and parallel losses at the limiter plates.

There is no separation between the background gradient and

the fluctuations: the profile gradients are a-priori unknown

and are extracted from the time-averaged data over the quasi

steady-state.

GBS simulations have a fixed aspect ratio given by

�GBS ¼ 2pR0=Ly, where R0 and Ly ¼ 2pa are specified in qs0

units on input. A fully consistent aspect ratio scan would

imply to vary either R0 (in other words the amplitude of the

Poisson brackets) or Ly (in other words the plasma size

q� ¼ qs=a). In order to remain focused on the equilibrium

effects only, the aspect ratio effects entering the various

operators are handled with an aspect ratio parameter � that is

varied separately from the other parameters. Its value is

then scanned from the “s� a” value � ¼ 0 to the

realistic value � ¼ �R ¼ Ly=ð2pR0Þ. Simulations for

�¼ 0; 1=8; 1=5; 1=4 have been performed where the last value

corresponds to the real aspect ratio. The other physical

parameters are q¼ 4, ŝ ¼ 0; Lx ¼ 100; Ly ¼ 800; R0 ¼ 500;
� ¼ 0:1; mi=me ¼ 200. The value of � is consistent with typi-

cal values from experiments. The ion to electron mass ratio is

smaller than the physical due to the Courant-Friedrichs-Lewy

(CFL) constraint imposed by the explicit time integrator. This

unphysical value could potentially affect the simulations

results as it enhances the inertial branch of drift waves and bal-

looning modes. However, as the inertial branch becomes im-

portant if cmi=me > �,28 in the considered parameter regime,

the resistivity value is sufficiently high that one is far away

from the resistive-inertial transition (see Ref. 11). Thus, the ar-

tificial high value of mi/me does not influence the results. The

source terms Sn and STe
in Eqs. (1) and (5) have a Gaussian

shape centered at xS¼ 30 with a characteristic width rs ¼ 5

and have an amplitude of 1. The source profiles are flat in the y
direction but decay exponentially at a distance of 40qs from

the top and bottom limiter. As these source terms mimic the

outflow of plasma from the closed flux surface region, the sim-

ulations are physically meaningful for x > xS. In a previous

work,10 the source strength was varied by a factor of four with-

out significant changes in the dynamics. The shape of the

source has been changed as well, without significantly

impacting the results. The following numerical parameters

were used for the simulations: Nx ¼ 128;Ny ¼ 512;Nz ¼ 64;
Dt ¼ 2 � 10�4R0=cs. g0i and g0e have a fixed value of 4 in this

work. g0i is formally equal to 0 in a cold ion model, but a finite

value is used for numerical stability; the value of g0e used in

GBS is usually larger than the physical one by 2 to 3 orders of

magnitude. It has been checked that its influence on the simu-

lation is very limited. vk describes the amplitude of the parallel

diffusive heat flux. GBS simulations typically use vk ¼ 1,

much smaller than the Braginskii value. However, the simula-

tions presented in this work are in the sheath-limited regime,

where the parallel electron temperature gradient is small. The

value of vk has therefore little influence on the results and it

has been checked that an increase of vk by one order of magni-

tude does not modify the results. Finally, all the perpendicular

diffusion coefficients have been set to 5. It is noted that reason-

able values (of order unity) of the diffusion coefficients do not

modify the results.

B. The gradient removal theory

In previous publications,7,12 it has been demonstrated

that the gradient removal turbulence saturation mechanism

theory10 leads to predictions of the SOL steady-state gradient

in agreement with simulation results and experimental

data.37 The main features of this theory are briefly summar-

ized here for completeness. The main hypothesis is that the

linearly unstable modes saturate when the gradient associ-

ated with the perturbation equals the background one. This

condition writes @dp=@r � @p0=@r and the turbulence satu-

ration occurs when dp=p0 � rx=Lp, where rx is the radial

extension of the perturbation. Non-local linear theory30,38

gives rx �
ffiffiffiffiffiffiffiffiffiffiffi
ky=Lp

p
. Then, using the leading order term in

the pressure equation, i.e., @p=@t � ½/; p�, the radial E�B
flux can be expressed as C � p0c=ky, where c and ky are,

respectively, the growth rate and the poloidal wave number

of the instability that dominates the transport. Finally,

the nonlinear steady state can be written as a balance

between the divergence of the perpendicular turbulent

fluxes @rC? � C=Lp and the parallel flux at the limiter plates

rk � Ck � p0cs=ðqR0Þ to obtain

Lp

q
¼ R0

cs

c
ky

� 	
max

; (55)

within the hypotheses that Ln ffi LT and that turbulence is

dominated by the mode that maximises the transport. This

equation is a prediction of the pressure characteristic length

in limited SOL plasmas and can be tested against numerical

simulations. For this purpose, the values of Ly;me=mi; q; �
and � of the nonlinear simulations are used as input in the

linear code to obtain the growth rate of the linear modes in

the system. The value of g is extracted from the 4 different

non-linear simulations, and a scan in (ky,Ln) (assuming

ky¼ kY) is performed. For each Ln value, the ky value that

maximizes c=ky is used and Eq. (55) is solved for Lp.

C. Simulations results

Typical snapshots of the pressure profiles are displayed

in Fig. 2. Turbulent eddies are produced at the source loca-

tion and are transported radially outwards. The peak pressure

increases with increasing � while the value toward the right

edge of the domain remains unchanged. The left panel of

Fig. 3 shows the time evolution of the radial, poloidal, and

toroidal average of R0/Lp for the 4 different aspect ratios.

The bursty behavior of turbulence is clearly seen on these

curves. The standard deviation is roughly constant for all
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cases and is around 0.55. The time window to evaluate

steady-state profile must be larger than the typical period of a

burst and long enough to have a good statistic. For all cases,

steady-state profiles are computed over a time window of 50

R0/cs, in a source free region of width 45qs in x and containing

the full domain in y and z. The steady-state value is

R0/Lp¼ 11.2, 11.4, 11.7, and 12.8 for � ¼ 0; 1=8; 1=5; 1=4. In

other words, decreasing the aspect ratio tends to increase the

steady-state pressure gradient by 15% when going from the cy-

lindrical to the realistic aspect ratio. The right panel of Fig. 3

shows the steady-state pressure radial profile and fits obtained

with expressions of the form p � expð�ðx� xSÞ=LpÞ. These

fits describe well the numerical profiles.

The steady-state pressure gradient of these nonlinear

simulations can be compared with the predictions of the gra-

dient removal theory, Eq. (55) and are summarized in Table

I. Good qualitative agreement is found for all simulation

cases and the trend observed in nonlinear simulations is

recovered by the gradient removal theory. According to these

results, the gradient removal theory predicts that as � is

increased, the gradient sustained inside the SOL increases.

This change is due to the reduction of the growth rate as the

poloidal wavelength of the mode maximizing c=ky is

FIG. 2. Poloidal snapshots of the pres-

sure observed in the four different as-

pect ratio values.

FIG. 3. Left: time evolution of the normalized pressure gradient for simulations with different aspect ratios, averaged over the source free region. The dashed

lines represent the average value over the last 50R0/cs. Right: Radial profile pressure for simulations with different aspect ratios. The dashed lines are exponen-

tial fits of the form expð�x=LpÞ, where Lp is the steady-state pressure characteristic length.

TABLE I. Pressure gradients obtained from simulations and gradient re-

moval theory. The gradients obtained from simulations are averaged poloi-

dally, toroidally and radially between x1¼ 35 and x2¼ 80, and over a time

window of 50R0/cs at the end of the simulation.

Simulation ðR0=LpÞsim ðR0=LpÞGR

� ¼ 0 11.2 12.5

� ¼ 0:125 11.4 13.1

� ¼ 0:2 11.7 13.6

� ¼ 0:25 12.8 14.1
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unchanged by aspect ratio effects according to both the gra-

dient removal theory and the nonlinear simulations.

In order to explain this result, the type of instability that

dominates turbulent transport is characterized. A set of linear

simulations using the density and temperature gradients

obtained in nonlinear simulations have been performed in

order to identify which is the dominant instability. To this

aim, four simplified models25 are used, in which either the

resistivity or the electron inertia, and either the ballooning

drive or the drift wave coupling have been neglected. These

four models are limiting cases that describe the inertial drift

wave, the inertial ballooning mode, the RDW, and the RBM.

For each of these instabilities, a ky scan is performed and it is

supposed, in accordance with the gradient removal theory

described above, that the instability with the maximum c=ky

is the dominant one in nonlinear simulations. This procedure

has been rigorously verified in a significant portion of the

phase space ðq;me=mi; ŝ; �Þ11 and is displayed in Fig. 4 for

the � ¼ 0 case. Clearly, the resistive ballooning mode is the

dominant instability over the whole ky spectrum, confirming

previous findings.11 The same result is obtained for the other

� scan values.

Another way to distinguish between drift waves and bal-

looning modes in nonlinear simulations is described in Ref.

39. Both types of instabilities occur in the presence of an

E�B convection down a pressure gradient but the energy

transfer channel is different. For drift waves, it is a (small)

breaking of electron adiabaticity that allows a perturbation to

grow, while, in the ballooning case, the energy transfers

through the curvature operator. As a result, the phase shift

between the potential and the pressure should be close to 0

for drift wave dominated turbulence, while it should be close

to p=2 for ballooning-mode dominated turbulence.

Fig. 5 shows the probability distribution function (pdf)

of the phase between the perturbed potential and the per-

turbed electron pressure as a function of ky. The pdf is nor-

malized to the pressure ky spectrum amplitude such that the

ky modes that contribute most to the transport are enhanced.

The plot shows that the phase is located around p=3. This

value, although not exactly equal to p=2, reflects a relatively

pronounced ballooning character of the turbulence.

Having now established that the simulations are domi-

nated by ballooning modes, one is now able to give an expla-

nation to the increase of R0/Lp when turning on aspect ratio

effects. The linear dispersion relation described in Sec. IV

predicts a stabilization of linear ballooning modes with

increasing �, while the ky mode maximizing c=ky remains

unchanged. Therefore, according to the gradient removal

theory, the gradient sustained in nonlinear simulations

increases with �. This is indeed what is observed in GBS

nonlinear simulations.

Fig. 6 shows the poloidal profile of 1/Lp normalised to

its poloidal average. Beside a steepening of the average pres-

sure gradients observed when finite aspect ratio effects are

taken into account, one observes that the steepening is stron-

ger on the part of the SOL above the equatorial midplane

ðy > Ly=2 ¼ 400Þ than in the one below ðy < Ly=2 ¼ 400Þ.
This results from the E�B convection of a steeper profile

FIG. 4. Growth rate as a function of the toroidal mode number for reduced

models describing the Inertial Ballooning Mode (InBM, red, circles), the

Inertial Drift Wave (InDW, green, pluses), the RBM (black, stars), and the

RDW (cyan, squares). The blue line with crosses shows the full model.

Parameters are derived from the � ¼ 0 GBS nonlinear simulations:

R0=Ln ¼ 6:6; g ¼ 0:66; q ¼ 4; ŝ ¼ 0; � ¼ 0:1;me=mi ¼ 1=200.

FIG. 5. pdf of the phase between the perturbed electrostatic potential and

the perturbed electron pressure as a function of ky. The pdf is normalized to

the pressure ky spectrum amplitude. The simulation is � ¼ 0:25.

FIG. 6. Inverse characteristic pressure length in the poloidal direction, nor-

malised to its poloidal average. The gradients obtained from simulations are

averaged poloidally, toroidally, and radially between x1¼ 35 and x2¼ 80,

and over a time window of 50R0/cs at the end of the simulation.
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from the low-field side equatorial midplane to the y> 0 part

of the SOL.

Aspect ratio effects do not seem to have any other meas-

urable effect on the turbulence. An additional analysis reveals

that the fluctuation level increases by approximately 2% when

going from � ¼ 0 to � ¼ 0:25, and that the pdfs of the perturba-

tions look extremely similar once normalised to the variance.

The ballooning character and the radial correlation length are

also similar between the different simulations. This similarity

between the different simulations is explained by the relatively

mild impact of aspect ratio effects on the equilibrium gradient.

VI. CONCLUSIONS

In the present work, the aspect ratio effects in circular

geometry on SOL turbulence in a limiter configuration have

been investigated. Results can be summarized as follows.

First, the Braginskii equations have been extended to a gen-

eral magnetic geometry, and the expression of the various

differential operators has been given for an arbitrary set of

coordinates. This constitutes a general framework to describe

SOL turbulence in a more complex magnetic equilibrium in

the future. In this work, one has focused on a circular flux

surface configuration retaining aspect ratio effects. A linear

analysis has revealed that aspect ratio effects stabilize pres-

sure gradient driven modes. In more details, it is shown that

the overall effect is mainly a balance between the destabiliz-

ing effects of the modified parallel gradient operator and the

stabilizing effect of the (1/B) C operator. This trend is recov-

ered analytically by a simplified model describing ballooning

modes. While the stabilization occurs for both RBM and

RDW, the effect is more important on ballooning instabil-

ities for which the curvature plays a major role. Then, the

nonlinear simulations of SOL turbulence in limited configu-

ration, carried out with the flux-driven fluid code GBS, con-

firm that the turbulence level is set according to the gradient

removal theory. The pressure gradient, sustained in a non-

linear steady state by the interplay mechanism between a

mimicked source from the core, turbulent perpendicular

transport and parallel losses at the limiter sheaths, is related

to the linear properties of the unstable modes present in the

system. In this paper, the trend of GBS simulations is quali-

tatively reproduced by the gradient removal theory predic-

tions, and it is shown that including aspect ratio effects

increases the steady-state pressure gradient by 15%. This

result is supported by a simple analytical dispersion relation

describing the main features of ballooning modes, instability

that is dominating transport for the phase space parameters

considered. The other features of turbulence do not seem to

be significantly affected by aspect ratio effects.

More generally, this work stresses the fact that finite as-

pect ratio effects on the SOL width in limited plasma seem

to be well described by the gradient removal theory. This

work therefore illustrates the fortunate situation where the

impact of a change in one of the phase space parameter (for

instance in the aspect ratio) on the SOL width does not affect

the nature of the driving instability and therefore it can be

qualitatively predicted using a simple dispersion relation.

Future work will try to extend this result to a wider class of

magnetic configurations, such as plasmas with Shafranov

shift, elongation, and triangularity.
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APPENDIX A: OPERATOR COEFFICIENTS
IN GENERAL GEOMETRY

The coefficients derived in this section are computed from

the contravariant and covariant metric in ðr; a; h�Þ for the flux-

tube geometry and in ðh�; r;uÞ for the toric geometry. In particu-

lar, J 	 J h�ru ¼ J rah� . The coefficients indexed with (XYZ)

and (xyz) are obtained by renormalizing the partial derivatives.

For example, CðAÞ / Ch�@A=@h� ¼ aCh�@A=@Y. The coeffi-

cients in Eqs. (18) to (21) for the flux-tube geometry are given by

PXY ¼
bh�a

J q
; PYZ ¼

aR0br

J ; PZX ¼
qbaR0

J ; (A1)

DX ¼ DY ¼ 0; DZ ¼ qR0bh� ; (A2)

CX ¼ � B

2J
@ca

@h�
; CY ¼ aB

2J q

@cr

@h�
� @ch�

@r

� 	
;

CZ ¼ qR0B

2J
@ca

@r
; (A3)

N XX ¼ grr; N XY ¼ 2gara

q
; N YY ¼ a2gaa

q2
; (A4)

N X ¼ r2r; N Y ¼ a

q
r2a;

N Z ¼ qR0 r2h� �
1

J
@

@h�
½J ðbh� Þ2�

� �
;

(A5)

N ZZ ¼ q2R2
0ðgh�h� � ðbh� Þ2Þ; N XZ ¼ qR0grh� ;

N YZ ¼ R0agh�a; (A6)

r � b ¼ 1

J
@

@h�
ðbh�J Þ; (A7)

where ci¼ bi/B and h� is defined by Eq. (24).

For the toric geometry (x,y,z), the perpendicular lapla-

cian is approximated to lie in the poloidal plane to avoid a

costly 3D solver. One has

r2
? ¼ r2

pol � a2ðbh� Þ2 @
2A

@y2
� a

J
@

@h�

w02
JB2

� 	
@A

@y

� 2aR0bh�bu @2A

@y@z
þ R2

0ðbh� Þ2 @
2A

@z2
; (A8)
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r2
pol ¼

1

J
@

@nl J gl� @A

@n�

� 	
; (A9)

where l; � ¼ fh�; rg. In Eq. (A8), terms after r2
pol on the

right hand side of (A8) are neglected. The second one is of

order Oð�2Þ and the other ones are least qs0=a times smaller

than r2
pol. The general coefficients are then given by

Pxy ¼
bua

J ; Pxz ¼
R0bh�

J ; Pzx ¼
braR0

J ; (A10)

Dx ¼ 0; Dy ¼ abh� ; Dz ¼ R0bu; (A11)

Cx ¼ � B

2J
@cu

@h�
; Cy ¼ aB

2J
@cu

@r
; Cz ¼ R0B

2J
@cr

@h�
� @ch�

@r

� 	
;

(A12)

N xx ¼ grr; N xy ¼ 2agrh� ; N yy ¼ a2gh�h� ; (A13)

N x ¼ r2r; N y ¼ ar2h�; (A14)

r � b ¼ 1

J
@

@h�
ðbh�J Þ: (A15)

APPENDIX B: OPERATOR COEFFICIENTS FOR A
CIRCULAR CONCENTRIC MAGNETIC
CONFIGURATION WITH ASPECT RATIO EFFECTS

1. Flux-tube coordinate system

The general coefficients given in Eqs. (A1)–(A7) can be

written specifically for the magnetic configuration described

in Sec. III. The Poisson bracket coefficients are given by

PXY ¼
1þ �2=�q2
� �1=2ð1� � cos h�Þ

ð1� �2Þ1=2
; (B1)

PYZ ¼
1� � cos h�

1þ �2=�q2
� �1=2ð1� �2Þ3=2

� ŝh�q
R0

a
ð1� �2Þ þ �2sin h�

�qð1� �2Þ1=2

" #
; (B2)

PXZ ¼
q

1þ �2=�q2
� �1=2

R0

a

1� � cos h�

ð1� �2Þ1=2
: (B3)

The parallel gradient and r � b coefficients reads

DX ¼ DY ¼ 0; (B4)

DZ ¼ 1� � cos h�

1þ �2

�q2

 �1=2
; (B5)

r � b ¼ � � sin h�

�qR0hð�Þð1� �2Þ3=2
: (B6)

The curvature operator coefficients are given by

CX ¼ sinh�

R0hð�Þð1� �2Þ3=2
; (B7)

CY ¼ 1

hð�Þð1� �2Þ3=2

1

R0

��
� cos h�kð�Þ � ŝh� sin h�

þ kð�Þpð�Þð1� � cos h�Þ �
�3 sin h�

�qqð1� �2Þ3=2

�

þð1� � cos h�Þ
q

�
�2 sin h�

�qð1� �2Þ3=2
� qk0ð�Þ

��
; (B8)

CZ ¼ � q

ahð�Þð1� �2Þ3=2
�cos h� þ ð1� � cos h�Þpð�Þ½ �;

(B9)

where hð�Þ¼ ð1þ �2=�q2Þ1=2=ð1� �2Þ; kð�Þ¼ h2ð�Þð1� �2Þ3=2;
pð�Þ ¼ h0ð�Þ=hð�ÞÞ. The coefficients for the perpendicular

laplacian are given by

N XX ¼ 1; (B10)

N XY ¼ �2ŝh� þ
2� sin h�
1� �2

; (B11)

N YY ¼ ð1� � cos h�Þ2

ð1� �2Þ þ ðŝh�Þ2 � 2
�

q
ŝh�

sin h�
1� �2

þ �
2

q2

1� � cos h�
1� �2

� 	2

; (B12)

N X ¼ 1

a

1

1� �2
ð1þ � cos h� � 2�2Þ; (B13)

N Y ¼ a

q
r2a ffi � 1

R0

sin h�
1� �2

; (B14)

N ZZ ¼ q2R2
0

r2

�
ð1� � cos h�Þ2

1� �2
þ �

2 sin2 h�
ð1� �2Þ2

� �2

�q2

ð1� � cos h�Þ2

h2ð�Þð1� �2Þ3
�
; (B15)

N Z ¼ � q

a

sin h�
1� �2

; (B16)

N YZ ¼ qŝh�
sin h�
1� �2

� q
R0

a

ð1� � cos h�Þ2

ð1� �2Þ þ �
2 sin2 h�
ð1� �2Þ2

 !
;

(B17)

N XZ ¼ �q
sin h�
1� �2

: (B18)

2. Toric coordinate system

The general coefficients given in Eqs. (A10)–(A15) can

be written specifically for the magnetic configuration

described in Sec. III

Pxy ¼
1

ð1þ �2=�q2Þ1=2

1� � cos h�

ð1� �2Þ1=2
; (B19)

Pxz ¼
�ð1� � cos h�Þ

�qð1þ �2=�q2Þ1=2ð1� �2Þ
; (B20)
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Pyz ¼ �2 �q
1� � cos h�

ð1þ �2=�q2Þ1=2ð1� �2Þ2
; (B21)

Dy ¼ a

R0q

1� � cos h�

ð1� �2Þð1þ �2=�q2Þ1=2
; (B22)

Dz ¼ q

a
Dy; (B23)

Cx ¼ 1

R0

sin h�

ð1þ �2=�q2Þ1=2ð1� �2Þ1=2
; (B24)

Cy ¼ 1

R0

cosh� � ð1� � cos h�Þpð�Þ
ð1þ �2=�q2Þ1=2ð1� �2Þ1=2

; (B25)

Cz ¼ 1

rhð�Þð1� �2Þ2 �q

�
�2

2
cosh� �

�3

2
cos2h� � �3sin2h�

�g0ð�Þ
2
ð1� �2Þ3=2ð1� �cosh�Þ

þ �2ð1� �2Þð�cosh� þ ð1� �cosh�Þpð�ÞÞ
�
; (B26)

N xx ¼ 1; (B27)

N xy ¼ �2�
sin h�
1� �2

; (B28)

N yy ¼ a2

r2

ð1� � cos h�Þ2

1� �2
þ �

2 sin2 h�
ð1� �2Þ2

 !
; (B29)

N x ¼ 1

a

1

1� �2
ð1þ � cos h� � 2�2Þ; (B30)

N y ¼ � 1

R0

sin h�
ð1� �2Þ2

; (B31)

where gð�Þ ¼ �2=�q=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

. The toric geometry differs

from the flux-tube one in the fact that local magnetic shear

effects are not included in the metric tensor. In flux-tube ge-

ometry, shear effects are directly present when computing

ra ¼ rðu� qðrÞh�Þ. In global geometry, shear effects are

introduced by applying the following transformation:

ĥ� ¼ h� þ ŝh�
r � a

a
; (B32)

where it is assumed that DSOL � a where DSOL � r � a is

the SOL width. The main modifications are given by

grĥ� ¼ grh� þ ŝh�
a

grr; (B33)

gĥ�ĥ� ¼ gh�h� þ 2
ŝh�
a

grh� þ ðŝh�Þ
2

a2
grr; (B34)

@

@r

	
ĥ�

Aðr; h�ðr; ĥ�Þ
	
¼ @A

@r

	
h�

þ @A

@h�

@h�
@r

	
ĥ�

: (B35)

APPENDIX C: THE �fi0 LIMIT

The coefficients described in Appendix B can be simply

computed in the �! 0 limit. For the purpose of this analysis,

the flux-tube coordinate system is considered. Similar results

are obtained when using the toric coordinate system

lim
�!0
PXY ¼ 1; (C1)

lim
�!0
PYZ ¼ ŝh�q

R0

a
; (C2)

lim
�!0
PXZ ¼ q

R0

a
: (C3)

Approximating @X ! kX; @Y ! kY ; @Z ! kZ, one finds

����PXZ½/;A�XZ

PYX½/;A�YX

���� � q
R0

a

kZ

kY
� Oð1=ðkYaÞÞ; (C4)

����PZY ½/;A�ZY

PYX½/;A�YX

���� � Oð1=ðkXaÞÞ: (C5)

Assuming that typical turbulence structure have kX

�
ffiffiffiffiffiffiffiffiffiffiffiffi
kY=Lp

p
,38 kZ � 1=ðqRÞ; kY � 0:1=qs0; R0=Lp � 101� 102,

the terms containing PYZ and PXZ can be neglected. The

same kind of argument is used to neglect Pyz and Pxz in toric

geometry.

As lim�!0 DZ ¼ 1 the parallel gradient simply becomes

rk ¼ @=@Z and lim�!0 r � b ¼ 0 therefore related terms can

be neglected.

The curvature operator coefficients are given by

lim
�!0
CX ¼ sin h�

R0

; (C6)

lim
�!0
CY ¼ � cos h� � ŝh�sin h�

R0

; (C7)

lim
�!0
CZ ¼ q cos h�

a
; (C8)

and one sees that CZ in normalized units is a=qs times

smaller than unity and can be therefore neglected. Finally,

the coefficients for the laplacian are given by:

lim
�!0
N XX ¼ 1; (C9)

lim
�!0
N XY ¼ �2ŝh�; (C10)

lim
�!0
N YY ¼ 1þ ðŝh�Þ2; (C11)

lim
�!0
N X ¼ 1

a
; (C12)

lim
�!0
N Y ¼ � 1

R0

: (C13)

Like for the CZ coefficient, N X
and N Y

are extremely small

and are usually neglected

lim
�!0
N ZZ ¼ q2R2

0

a2
; (C14)

lim
�!0
N Z ¼ � q

a
sin h�; (C15)
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lim
�!0
N YZ ¼ qŝh� sin h� � q

R0

a
; (C16)

lim
�!0
N XZ ¼ �q sin h�: (C17)

Those terms will all be small as they are multiplied by deriv-

atives in the Z direction giving a ð1=R0Þ � 1 factor. These

expressions describe the s� a model without Shafranov

shift. Note that earlier implementations of the s� a model in

gyro kinetic codes have been found inconsistent,22 leading to

significant differences on the growth rate of ion-temperature-

gradient turbulence in the core. The reason was that trapping

effects of order � were retained in the modulus of the mag-

netic field only. At the plasma edge, trapping is usually

neglected due to the high collisionality and no � effects are

retained. Therefore, the ordering s� a implementation in

GBS is done in a consistent way.
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