
Simon Bliudze
Anastasia Mavridou
Alina Zolotukhina

Rigorous System Design Laboratory (EPFL)
{firstname.surname}@epfl.ch

Radoslaw Szymanek
Crossing-Tech S.A.
radoslaw.szymanek@crossing-tech.com

With partial support from
the Swiss Commission for Technology and Innovation

For Coordination, State Component Transitions

Need for coordination

Independent software entities share access to resources.

Communication and data exchange can be complex.

Component execution must be coordinated.
2

Semaphores, locks, monitors, etc.

Coordination based on low-level primitives rapidly
becomes unpractical.

3

Synchronisation

Task 1:

...
free(S1);
take(S2);
...

Task 2:

...
take(S1);
free(S2);
...

4

A simple synchronisation barrier

Synchronisation

5

Three-way synchronisation barrier

Task 2:
...
take(S1);
free(S2);
free(S2);
take(S3);
...

Task 3:
...
take(S1);
take(S2);
free(S3);
free(S3);
...

Task 1:
...
free(S1);
free(S1);
take(S2);
take(S3);
...

Synchronisation with data transfer

Task 1:
initialise(x);
free(S1);
take(S2);
sh = max(x, sh);
free(S2);
take(S1);
x = sh;

Task 2:
initialise(y);
take(S1);
free(S2);
sh = max(y, sh);
take(S2);
free(S1);
y = sh;

Coordination mechanisms mixed up
with computation do not scale.

6

Synchronisation with data transfer

Task 1:
initialise(x);
free(S1);
take(S2);
sh = max(x, sh);
free(S2);
take(S1);
x = sh;

Task 2:
initialise(y);
take(S1);
free(S2);
sh = max(y, sh);
take(S2);
free(S1);
y = sh;

Coordination mechanisms mixed up
with computation do not scale.

Code maintenance is a nightmare!
6

Separation of concerns: The BIP approach

Coordination glue is a separate entity

Component behaviour specified by Finite State Machines

7

b1 f1
p1

r1

b2

f2

p2

r2b1

f1 p1

r1

b2

f2 p2

r2

BIP background

8

Initially developed for embedded
systems control

Three layers:
• Component behaviour
• Coordination glue
• Data transfer

Glue can be synthesised and analysed for safety
• Analysis of synchronisation deadlocks

S. Bensalem, M. Bozga, J. Sifakis, T.-H. Nguyen.
DFinder: A Tool for Compositional Deadlock Detection and Verification [CAV’09]

• Synthesis of glue for safety properties
S. Bliudze and J. Sifakis.
Synthesizing Glue Operators from Glue Constraints for the Construction
of Component-Based Systems [SC’11]

Finite State Machine — A good abstraction

9

Android MediaRecorder interface
http://developer.android.com/reference/
android/media/MediaRecorder.htmlhttp://www.uml-diagrams.org

http://developer.android.com/reference/android/media/MediaRecorder.html
http://developer.android.com/reference/android/media/MediaRecorder.html
http://developer.android.com/reference/android/media/MediaRecorder.html
http://developer.android.com/reference/android/media/MediaRecorder.html
http://www.uml-diagrams.org
http://www.uml-diagrams.org

BIP by example: Mutual exclusion

10

work
sleep

sleep
work

sleep
sleep

work
work

f1b2

b1f2

f2

b1

f1

b2

f2

b2 b1

f1

b1b2

f1f2

Interaction model:
{b1, b2, b1 f2, b2 f1, f1, f2}

Maximal progress:
b1 < b1 f2, b2 < b2 f1

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2

work
sleep

sleep
work

sleep
sleep

work
work

f1b2

b1f2

f2
b1

f1
b2

f2

b2 b1

f1

work
sleep

sleep
work

sleep
sleep

work
work

f1b2

b1f2

f2
b1

f1
b2

f2 f1

Engine-based execution

1. Atoms reach a stable
state.

2. Atoms notify the
Engine about enabled
transitions.

3. The Engine picks one
interaction.

4. The Engine notifies the
involved components.

11

Priorities

Interactions

B E H A V I O U R

OSGi bundle states

Only lifecycle state is shown.

All functional states are hidden in the ‘Active’ state.
12

Installed

ResolvedUninstalled

StoppingStarting

Active

install

uninstall resolve

uninstall

start

stop

update

Use case: Camel Routes

Many independent routes share memory
• We have to control the memory usage
• e.g., by limiting to only a safe number of routes simultaneously

Camel API: suspendRoute and resumeRoute
13

Camel routes

14

public class RouteBuilder(...)
{
from(…).process(…).to(…);

}

working

ready

begin end

begin

end

finishing

suspended

end

off

off

on on

off
Transition types:
• Enforceable

(can be controlled by the Engine)

• Spontaneous
(inform about uncontrollable external events)

off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finishedon

add rm

0

add

1 2

add

rmrm

15

Use case: BIP model

The (enforceable) off
ports are made visible to
the Engine through
singleton connectors

The end ports
correspond to
spontaneous events

The Monitor component
limits the number of
active routes to two

BIP Specifications

BIP Monitor

Implemented architecture

16

Arrows:
• Blue — API calls between model and entity
• Red — OSGi-managed through published services
• Green — called once at initialisation phase

BIP Coordinator bundle

OSGi bundle

BIP Component

Spring app context bundle
BIP ComponentSpring

bean to
control

Notifier

BIP
Control
Spec

BIP
Model
Executor

BIP Monitor
Spec

BIP Model
Executor

Symbolic BIP Engine

Current
State

Encoder
Glue

Encoder

Behaviour Encoder

Glue description
from an XML file

Components register
during initialisation

inform

execute

BIP Component specification: Ports, Initial

17

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on

@bipPorts({
@bipPort(name = "end", type = "spontaneous"),
@bipPort(name = "off", type = "enforceable"),
…

})

@bipComponentType(
initial = "off",
name = "org.bip.spec.switchableRoute")

public class SwitchableRoute
 implements CamelContextAware,
 InitializingBean,
 DisposableBean
{ … }

BIP Component specification: Transitions

18

Transition annotations provide
• Label: a port, declared by @bipPort

• Source and target states
• Guard expression

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on

@bipTransition(name = "off",
source = "on", target = "wait", guard = "")

public void stopRoute() throws Exception {
 camelContext.suspendRoute(routeId);
}

BIP Component specification: Guards

19

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on

@bipTransition(name = "end",
 source = "wait", target = "done",
 guard = "!isFinished")
public void spontaneousEnd() throws Exception { … }

@bipTransition(name = "",
 source = "wait", target = "done",
 guard = "isFinished")
public void internalEnd() throws Exception { … }

BIP Component specification: Guards

19

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on

@bipTransition(name = "end",
 source = "wait", target = "done",
 guard = "!isFinished")
public void spontaneousEnd() throws Exception { … }

@bipTransition(name = "",
 source = "wait", target = "done",
 guard = "isFinished")
public void internalEnd() throws Exception { … }

@bipGuard(name = "isFinished")
public boolean isFinished() {
 CamelContext cc = camelContext;
 return
 cc.getInflightRepository().size(
 cc.getRoute(routeId).getEndpoint()
) == 0;
}

BIP Component specification: Interface

20

Interface methods:
• execute — called by the Engine to

execute an enforceable transition
• inform — called by Notifiers to inform

about spontaneous events

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on

public interface BIPComponent extends BIPSpecification
{
 void execute(String portID);
 void inform(String portID);
}

BIP Executor: Interface

21

Interface methods:
• publish/unpublish — collaborates with OSGi

service registry
• register/deregister — manage connection with the

BIP Engine

Implements the component execution semantics

public interface Executor extends BIPComponent {
 void publish();
 void unpublish();

 void register(BIPEngine bipEngine);
 void deregister();
}

Spontaneous event notifiers

22

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on

new RoutePolicy() {
…
public void onExchangeDone(
Route route, Exchange exchange)

{
executor.inform("end");

}
}

BIP spec may require knowledge
about it’s executor to set up
notification mechanisms

Conclusion (1/2)

• Business components do not have incorporated fragile
coordination code that depends on the execution
environment.

• Such code is confined to
‣ BIP Glue specification
‣ BIP Specification of the monitors imposing safety properties

23

Conclusion (2/2)

• BIP Specification classes provide reusable specification
of the underlying Finite State Machine of the components.

• Component coordination ensuring safe execution of the
system is specified as a combination of
‣ BIP Specification for the safety properties monitors
‣ Allowed interactions between components

24

Future work

• Data transfer

• Exception handling & transaction support

• Further experimentation with real-life applications

• Adding BIP coordination to the OSGi standard

25

State stability

It must be possible to postpone the treatment of
spontaneous events.

26

working

ready

begin end

begin

end

finishing

suspended

end

off

off

on on

off

working

ready

begin

end

finishing

suspended

end

off

off

on

on

finishing suspended
end

off

internal
[!g]

on

wait

internal
[g]

on

suspended

off

end
[!g]

on

wait

internal
[g]

on

done

off

end
[!g]

on

wait

internal
[g]

off
finished

27

g = isFinished()

on

begin

end

finishing

suspended

end
off off

on

