
Compressed Look-Up-Table based Real-Time
Rectification Hardware

Abdulkadir Akin, Ipek Baz, Luis Manuel Gaemperle, Alexandre Schmid, and Yusuf Leblebici
School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL)

Lausanne, Switzerland, firstname.surname@epfl.ch

Abstract—Stereo image rectification is a pre-processing
step of disparity estimation intended to remove image
distortions and to enable stereo matching along an epipolar
line. A real-time disparity estimation system needs to perform
real-time rectification which requires solving the models of lens
distortions, image translations and rotations. Look-up-table
based rectification algorithms allow image rectification without
demanding high complexity operations. However, they require
an external memory to store large size look-up-tables. In this
work, we present an intermediate solution that compresses the
rectification information to fit the look-up-table into the on-
chip memory of a Virtex-5 FPGA. The low-complexity de-
compression process requires a negligible amount of hardware
resources for its real-time implementation. The proposed
image rectification hardware consumes 0.28% of the DFF and
0.32% of the LUT resources of the Virtex-5 XCUVP-110T
FPGA, it can process 347 frames per second for a 1024×768
pixels image resolution, and it does not need the availability of
an external memory.

Keywords—Stereo Matching; Image Rectification;
Compression; Real-Time; Hardware Implementation; FPGA

I. INTRODUCTION
Disparity estimation (DE) is an algorithmic step that is

applied in a variety of applications such as autonomous
navigation, robot and driving systems, 3D geographic
information systems, object detection and tracking, medical
imaging, computer games, 3D television, stereoscopic video
compression, and disparity-based rendering.

The stereo matching process compares the pixels in the
left and right images and provides the disparity value
corresponding to each pixel. If the cameras could be aligned
perfectly parallel and if the lenses were without distortion,
the matching pixels would be located in the same row of the
right and left images. However, providing the perfect set-up
is almost impossible. Lens distortion and camera
misalignments should be modeled and removed by internal
and external stereo camera calibration and image
rectification processes [1].

Image rectification is one of the most essential pre-
processing parts of DE. Nevertheless, many real-time stereo-
matching hardware implementations [2-4] prove their DE
efficiency using already calibrated and rectified benchmarks
of the Middlebury evaluation set [5], while some do not
provide detailed information related to the rectification of the
original input images [6].

In a system that processes the disparity estimation in real-
time, image rectification should also be performed in real-
time. The rectification hardware implementation presented in
[7] solves the complex equations that model distortion, and
consumes a significant amount of hardware resources.

A look-up-table based approach is a straightforward
approach that enables saving hardware resources [8-10]. In
[8-10], the mappings between original image pixel
coordinates and rectified image pixel coordinates are pre-
computed and the pre-computations are used as look-up-
tables. Due to the significant amount of generated data, these
tables are stored in an external memory such as a DDR or
SRAM [8-9]. Using an external memory for the image
rectification process may cause an additional cost for the
disparity estimation hardware system or impose additional
external memory bandwidth limitations on the system. In
[10], look-up-tables are encoded to consume 1.3 MB data for
1280×720 size stereo images with a low-complexity
compression scheme. This amount of data requires at least
295 Block RAMs (BRAM) without considering pixel
buffers, thus it can only be supported by largest Virtex-5
FPGAs or recent high-end FPGAs.

In this paper, we propose a novel compressed look-up-
table based image rectification hardware, which requires a
negligible amount of hardware resources for low complexity
de-compression algorithm, and does not require using an
external memory. The presented hardware requires 45
BRAMs for rectifying 1024×768 size stereo images, which
enables its implementation into low-cost FPGAs.

II. TYPICAL LOOK-UP-TABLE BASED SOLUTION

Look-up-table based rectification methods can be
distinguished by two different image warping flows: forward
mapping and inverse mapping. Forward mapping computes
the rectified target pixel locations considering the given pixel
locations in the original image. Inverse mapping computes
the original source pixel locations considering the given
pixel locations in the rectified image. The mapping requires
separate tables for X and Y coordinates, and for the right and
left images. Therefore, four tables are required. The
formulations for forward and inverse mappings are presented
in equations (1) and (2), respectively. In these equations,
ForwT is the forward mapping table, InvT is the inverse
mapping table, Ori represents the original image taken from
the camera, Rec represents the rectified image. YRec, XRec, Yori
and Xori represent the Y and X coordinates.

Proceedings of 2013 IFIP/IEEE 21st International Conference on Very Large Scale Integration (VLSI-SoC)

272

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148002286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A typical rectification process utilizes fractional pixel
precision which requires the linear interpolation of four
pixels. The linear interpolation schemes for forward and
inverse mappings are represented in Figure 1 and Figure 2,
respectively. The linear interpolation process for forward
mapping is more complex than the linear interpolation
process of inverse mapping, since it requires additional
computation and an intermediate memory consumption to
find the closest target pixels in the rectified image. The look-
up-table based rectification hardware architectures presented
in [8-10] use the inverse mapping due to its simplicity.

The size of the look-up-table depends on the size of the
rectified image and the fractional precision. For example, for
the rectification of 1024×768 resolution stereo images with 6
bits fractional precision, only the rectification map requires
approximately 6 MB of space in a memory. This amount of
data is excessive to fit into the on-chip memory of a mid-
range FPGA. Therefore, dumping look-up-tables into an
external memory is preferred in the hardware
implementations of [8-9].

Fig. 1. Inverse mapping with fractional precision coordinates. Corners

indicate integer pixel coordinates.

Fig. 2. Forward mapping with fractional precision coordinates.

III. PROPOSED COMPRESSION ALGORITHM FOR
RECTIFICATION MAPPINGS

In contrast to the selection of the hardware
implementations of [8-10], a forward mapping based
rectification scheme is selected for the proposed compressed
look-up-table based rectification (CLUT-R) algorithm. In
CLUT-R, fractional precision is ignored. Therefore, CLUT-
R causes performance loss in the disparity estimation. This
performance loss is evaluated and its negligible distortion is
analyzed in section V. Ignoring fractional precision allows
an efficient compression scheme.

The compression scheme is presented in the flow graph
in Figure 3. The proposed compressed rectification algorithm
produces four compressed tables. The compression scheme
requires eight steps. The details of steps 1-2 can be found in
[1]. The details of steps 3-8 are detailed in this section.

In the third step, integer coordinate precision forward
mapping is extracted from the fractional precision inverse
mapping. The extraction scheme is demonstrated in Figure 4.
The example original and rectified pictures have a size of
4×5 pixels. First, inverse mapping is applied to find the
fractional source pixel locations of all pixels in the rectified
image. Due to the 3D rotation, some of the pixels in the
rectified image cannot be related to their source pixels in the
4×5 original image, as shown in Figure 4(a). The nearest
integer coordinates of all fractional source coordinates are
computed, and they are targeted onto the integer pixel
coordinates in the rectified image, as presented in Figure
4(b). Thus one-to-one mapping is provided in the third step.

Fig. 3. The flow chart for the proposed compressed look-up-table based

stereo image rectification process.

Fig. 4. The third step of the compression flow (a) selection of nearest

source pixels from fractional inverse mapping (b) extraction of
forward mapping with integer coordinates.

Fig. 5. Integer coordinate precision forward mapping look-up-tables after
the third step. Regular orders are shown with red ellipses (a) mapping
of Y coordinates (b) mapping of X coordinates.

(a)

(b)

(a) (b)

(1)

(2)

273

Fig. 6. The coded regular orders after the third step (a) coded mapping of

Y coordinates (b) coded mapping of X coordinates.

Fig. 7. Look-up-tables after filling the NT pixels using the fourth step (a)

mapping of Y coordinates (b) mapping of X coordinates.

Fig. 8. Coded regular orders after filling the NT pixels using the fourth
step (a) coded mapping of Y coordinates (b) coded mapping of X
coordinates.

Fig. 9. Visualization of the reason for the voids on the rectified image (a)
inverse mappings with fractional coordinates (b) forward mapping
with integer coordinate.

Fig. 10. Filling the voids on the rectified image in the fifth step (a) finding
the source location of a pixel at one row above the void (b) marking
the source pixel as double targeted pixel.

Fig. 11. Coding the behavior of breakpoints at the sixth step (a) coded

mapping of Y coordinates (b) coded mapping of X coordinates.

The integer pixel precision forward mapping extracted
for the example picture in Figure 4 yields the look-up-tables
of X and Y coordinates shown in Figure 5. The pixels that
are not targeted to any location are identified with NT.
Ori(2,2) and Ori(2,3) are adjacent pixels, and both of them
target “row no 2” of the rectified image; Ori(2,2) and
Ori(3,2) are adjacent pixels and both target “column no 1” of
the rectified image. This regular order is more apparent with
higher resolution images. According to our experiments with
a 1024×768 image, repetition of a single target coordinate up
to 220 times is observed in the integer precision forward
mapping table of X coordinates.

The method governing compressed rectification is similar
to the run-length encoding technique. In the proposed coding
scheme, instead of coding the run-length of the regular order,
the locations where the regular order changes are encoded.
These locations are called breakpoints. Moreover, the

proposed scheme includes additional specific techniques to
compress the integer precision forward mapping efficiently.

The regular order of the mapping of Y coordinates is
encoded following a row-by-row scheme, and the regular
order of mapping of X coordinates is encoded following a
column-by-column scheme. The resulting look-up-tables
after encoding Figure 5(a) and Figure 5(b) are presented in
Figure 6(a) and Figure 6(b). In Figure 6(a), the elements of
the compressed table are represented as (column number,
new value in row). In Figure 6(b), the elements of the
compressed table are represented as (row number, new value
in column).

The high number of NT pixels dramatically increases the
number of breakpoints. This issue becomes more
pronounced for high resolution images. Therefore, the fourth
step of the compression algorithm fills the NT pixel locations
to keep the regular order. In order to fill the NT pixel
locations, the same order is repeated vertically and
horizontally for Y locations and X locations, respectively.
After the fourth step, Figure 5 is transformed into Figure 7,
and Figure 6 into Figure 8.

After the first two steps, two or more source fractional
coordinates can have the same pixel coordinate in the
original image as their nearest neighbor, as presented in
Figure 9 (a). However, after step three and four, every
integer pixel coordinate of the original image is targeted to a
single coordinate in the rectified image. Consequently, some
pixels in the rectified image may be void, as presented in
Figure 9 (b). The fifth step is applied to fill these voids. As
shown in Figure 10, the pixels on the original image which
target the pixel coordinates that are located on the row above
these voids are marked. Marked pixels are used to fill the
voids as source pixels which have double targets.

The sixth step of the algorithm extracts the breakpoint
locations and analyzes the behavior of the breakpoints. As
shown in Figure 8, the difference between the new and
previous target locations equals plus or minus one, which
can be encoded consuming less data than encoding the exact
integer coordinates. An example of coding the behavior of
the cells in Figure 8 is presented in Figure 11 as (location,
behavior). The initialization coordinates are provided in the
first column of the look-up-table for Y coordinates, and in
the first row of the look-up-table for X coordinates. The next
breakpoint values are identified with 1. Moreover, dummy
breakpoints are inserted at the edges of the image to simplify
the hardware implementation. Dummy insertions are
represented by (5,0) and (4,0) in Figure 11 (a) and Figure 11
(b), respectively.

Fig. 12. Concatenation of the locations and behaviors at the seventh step (a)

for the mapping of Y coordinates (b) for the mapping of X
coordinates.

(a) (b)

(a) (b)

(a) (b)

(a) (b)

(b) (a)

(a) (b)

(a) (b)

274

In the seventh step, the locations and behaviors of the
breakpoints are concatenated and stored in a data array.
Every BRAM in a Virtex-5 FPGA has 1024 addresses and it
can be configured to store one array composed of
1024×36bits or two arrays composed of 1024×18bits. The
BRAMs of the FPGAs are configured to store 18-bits in each
address in the proposed concatenation scheme. As shown in
Figure 12, 3-bits are used for coding the behaviors, and the
remaining 15-bits encode the locations of the breakpoints.
Therefore, the proposed concatenation scheme can easily be
applied to an image that has a resolution lower than
32767×32767 pixels.

The number of the breakpoints in every row of the Y
table and the number of the breakpoints in every column of
the X table depend on the distortion of the lens, the
resolution of the image sensor and the mechanical
misalignment. The experimental setup used in this paper has
1024×768 resolution cameras. At most 21 breakpoints are
observed in any given row of Y tables, and at most 17
breakpoints are observed in any given column of X tables.
Data arrays are created for 24 possible breakpoint locations
for Y tables and 20 possible breakpoint locations for X tables
to support more challenging distortion conditions. Therefore,
storing the X and Y tables for the right and left images
requires 44 BRAMs which can even be supported by low
cost FPGAs. The data arrays that are programmed into the
BRAMs are converted into coefficient (COE) files using
MATLAB.

In the eighth step, 44 BRAMs are instantiated as single
port ROMs. The pre-computed compressed rectification
maps are programmed into the BRAMs using the Xilinx ISE
12.4 and COE files.

IV. REAL-TIME DE-COMPRESSION HARDWARE
The de-compression process is simpler than the off-line

compression process in terms of computational complexity.
The proposed rectification module can be used as a hardware
accelerator taking place between the camera interface
hardware and the on-chip memory controller, as shown in
Figure 13. The rectification module is used for the left and
right cameras separately. The rectification module processes
source pixel values as Ori(Yori, Xori) and the respective source
row and source column coordinates as Yori and Xori. The
rectification module computes the target row and target
column coordinates as YRec,and XRec, and the 1-bit DT signal
to identify double targeted locations. Ori(Yori, Xori) is delayed
for 6 clock cycles and Rec(Yrec, Xrec) is given as an output. Due
to the pipelined structure of the hardware, inputs can be
consecutively received and outputs can be consecutively
provided.

The top-level block diagram of the rectification module
is presented in Figure 14. The rectification module involves
12 BRAMs to store the compressed table of Y coordinates
and 10 BRAMs to store the compressed table of X
coordinates. Half of 1 additional BRAM is used to store the
last break point locations and the last target X coordinates of
the row which is located above the row currently being
processed.

The block diagram of the decompression hardware of Y
coordinates is presented in Figure 15. The hardware resets
itself every time Xori is equal to zero which implies that the
pixel of a new row is fetched from the camera. The target Y
coordinate of the first incoming pixel in a new row is loaded
from the ROM and written to the output register of YRec. For
every consecutive pixel, Xori is compared to the coordinate of
the next breakpoint which is loaded from the ROM. When a
breakpoint is reached, the YRec value is changed using a
multiplexer depending on the coded behaviors of the
breakpoints. Meanwhile, the hardware loads the coordinate
of the next breakpoints to compare with the upcoming Xori.

The block diagram of the decompression hardware of X
coordinates is presented in Figure 16. Pixels are supplied by
the camera row-by-row, whereas the X coordinates are
compressed column-by-column. This situation causes one
important difference between the de-compression hardware
architectures of the X and Y tables. When the camera
provides pixels of a new row, the de-compression hardware
needs to keep record of the previous XRec coordinates and the
last checked breakpoint address in the ROM for the
respective column of the previous row. Two 1x1024 size
data arrays are needed to store this information. These arrays
are named array_last_break_x and array_last_target_x in
Figure 14. These arrays are concatenated for respective
column coordinates of the original image, and stored into one
half of the 1 BRAM, which is named X_last_data_BRAM in
Figure 16. The values in X_last_data_BRAM are replaced
with the new ones when a breakpoint is reached for the
respective XOri. The de-compression hardware of the Y
coordinates does not comprise these arrays because Y
coordinates are compressed row-by-row. Therefore, the last
YRec can be directly used for computing the next YRec of the
next pixel in the same row of the original image. The
decompression hardware of X coordinates operates in a
similar fashion as the decompression hardware of Y
coordinates, with the exception of keeping record of the
information about the previous row.

Fig. 13. Example utilization of the proposed rectification hardware.

Fig. 14. Top-level block diagram of the proposed rectification hardware.

275

Fig. 15. Block diagram of the proposed rectificat
decompressing the table of Y coordinates. P
presented with dashed lines.

Fig. 16. Block diagram of the proposed rectificat
decompressing the table for X coordinates.

The proposed rectification hardware can
stereo-matching system. The stereo matching
started when the required amount of rows is
BRAMs of the stereo matching hardware. Pr
these BRAMs can be overwritten by new r
stereo matching process.

The hardware architectures presented in
large pixel buffers due to the inverse mappi
proposed de-compression does not need lar
between the camera interface and the rectifi
In contrast, the hardware requires these pixel
rectified image. However, typically
implementations already include BRAMs to b
[2-4, 6]. Therefore, these buffers can be
proposed de-compression hardware. Th
proposed rectification hardware on a comp
may not need additional large pixel buffers.

V. IMPLEMENTATION RESUL

The proposed rectification hardware i
using Verilog HDL, and verified using Mod
Verilog RTL models are mapped to a Vir
110T FPGA comprising 69k Look-Up-Tab
DFFs and 148 BRAMs. One rectification m
0.32% of the LUTs, 0.28% of the DFF resou
the BRAM resources of the Virtex-5 FPGA
hardware operates at 273 MHz after p
Therefore, it can process up to 347 fps at a
video resolution. In addition, the propos
hardware is merged with the DE hardware p
The merged DE system is also verified using

The proposed rectification hardware do
support of external memory if the cameras ar

tion hardware for
Pipeline stages are

tion hardware for

n be used in any
g process can be
s buffered in the
rocessed rows in
rows during the

n [9-10] require
ing scheme. The
ge pixel buffers
ication modules.
ls buffers for the
DE hardware

buffer the pixels
e used for the

hus, using the
plete DE system

LTS
is implemented

delsim 6.6c. The
rtex-5 XCUVP-

bles (LUT), 69k
module consumes
urces and 16% of
A. The proposed
place & route.
1024×768 XGA
sed rectification
presented in [4].
Modelsim 6.6c.

es not need the
re synchronized.

The cameras can be perf
common I2C module for th
cameras with same clock sou

The proposed comp
algorithms are evaluated us
stereo camera system presen
original left and right pictur
original images are rectified
algorithm [1] and the prop
rectification results of the C
18. The breakpoint locations
the left image are presented in

Fig. 17. Original images have dis
folder and cup; horizontal epipolar
these objects (a) left image (b) right

Fig. 18. CLUT-R corrects distor
folder and cup (a) left image (b) righ

Fig. 19. Breakpoint locations of th
targeted Y coordinates; code
targeted X coordinates; coded

Fig. 20. DE results using the rectifi
mini-census [2] (b) DE result o

(a)

(a)

(a)

(a)

fectly synchronized using one
he initialization and driving the
urce as explained in [11].

ression and decompression
sing the pictures taken by the
nted in [4]. The 1024×768 size
es are shown in Figure 17. The

d using the Caltech rectification
posed CLUT-R algorithm. The

CLUT-R are presented in Figure
s for the X and Y coordinates of
n Figure 19.

stortions as observed near the lamp, bag,
lines are demonstrated near the edge of

t image.

rtions as observed near the lamp, bag,
ht image.

he left image (a) breakpoints of the
ed row-by-row. (b) breakpoints of the
column-by-column.

ied images of CLUT-R (a) DE result of
of AWDE [4].

(b)

(b)

(b)

(b)

276

TABLE I. PSNR () WITH THE RECTIFIED IMAGES PRODUCED BY [1]

 Comparison with
Rectified Left Image [1]

Comparison with
Rectified Right Image [1]

Original Image 15.69 16.08
Proposed (CLUT-R) 42.67 41.87

TABLE II. PSNR () COMPARISON OF THE DISPARITY ESTIMATION
RESULTS USING DIFFERENT DISPARITY ESTIMATION ALGORITHMS

DE using [1] vs.

DE using CLUT-R
DE using [1] vs.

DE using Original Images
DR=120 DR=255 DR=120 DR=255

Mini-Census [2] 29.98 32.49 12.01 11.70
Georgulas [3] 28.72 32.31 12.39 13.44
AWDE [4] 29.95 32.87 12.93 13.65
Greisen [6] 26.30 27.94 11.20 10.79

TABLE III. HARDWARE RESOURCE COMPARISON OF THE
RECTIFICATION HARDWARE IMPLEMENTATIONS

 Device Resolution LUT DFF Memory
(KB)

E.M.

[7] Virtex-4 752×480 3418 5932 0
[8] Virtex-E 640×512 2459 2075 99
[9] Spartan-2 640×480 2396 2396 16
[10] Virtex-5 1280×720 NA NA 1300 X
CLUT-R Virtex-5 1024×768 227 197 104 X
2×(CLUT-R +
BRAM Contr.) Virtex-5 1024×768 784 427 203 X

The PSNR between the rectification results of CLUT-R
and Caltech rectification algorithm are evaluated in Table I.
The PSNR of the left image is 42.67 dB, and the PSNR of
the right image is 41.87 dB. Generally, a PSNR larger than
30 dB is considered acceptable to the human eye. Therefore,
CLUT-R provides very high quality rectification results. The
PSNR between the original images and the rectification
results of Caltech are also provided in Table I for
comparison.

The performance loss of CLUT-R is also evaluated for
different DE algorithms. The DE algorithms that are
implemented on real-time hardware are used for the
evaluation [2-4, 6]. The DE results obtained using the images
that are rectified by Caltech rectification algorithm are
assumed as the respective ground truths of the DE
algorithms. These ground truths are compared with the DE
results of the respective algorithms using the images that are
rectified by CLUT-R. The PSNR results are provided in
Table II. 120 and 255 are applied as a disparity range (DR)
and the respective DRs are used as peak signals for PSNR
calculations. CLUT-R provides 32.87 dB and 27.94 dB
PSNR for the AWDE algorithm [4] and Greisen et al. [6], for
a 255 DR, respectively. Therefore, the proposed CLUT-R
algorithm has an insignificant effect on the quality of the DE,
and it can be used in different DE systems. The PSNR
between the DE results using the original images and the DE
results using the rectified images of Caltech are also
provided in Table II for the comparison. In Figure 20, the DE
results of the AWDE [4] and the mini-census [2] algorithms
by using the rectified pictures of the CLUT-R are presented.

The hardware implementation of the CLUT-R is
compared with the stereo image rectification hardware
implementations in Table III. The hardware architecture of
[7] requires a significant amount of hardware resources to
support complex operations for solving the lens distortion
models. Hardware architectures of look-up-table based

implementations [8] and [9] require a significant amount of
resources to implement external memory (E.M.) controller.
Hence, combining CLUT-R with BRAM controller
consumes less LUT and DFF resources than [7-9]. The DFF
and LUT consumption of [10] is not available (NA).
Nevertheless, the capacity of CLUT-R to fit the look-up-
tables into the on-chip memory of the Virtex-5 FPGA is
approximately six times more efficient than [10], as a benefit
of its efficient compression scheme.

VI. CONCLUSION
In this paper, a novel compressed look-up-table based

image rectification hardware is presented. The proposed
method is based on off-line compression of the rectification
information to be able to fit the tables into the on-chip
memory of a Virtex-5 FPGA. The presented de-compression
hardware consumes a negligible amount of hardware
resources, and it does not require using any external memory
to store the look-up-tables. The proposed hardware is
advantageous if using external memory is considered as an
additional cost, or if the disparity estimation system has
external memory bandwidth limitations. The proposed
rectification hardware would be even more profitable if it is
adapted for high resolution multiple camera disparity
estimation systems.

REFERENCES
[1] J. Y. Bouguet, “Camera Calibration Toolbox for Matlab,”

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html.
[2] N.C. Chang, T. H. Tsai, B. H. Hsu, Y. C. Chen, and T. S. Chang,

“Algorithm and Architecture of Disparity Estimation With Mini-
Census Adaptive Support Weight,” IEEE Transaction on Circuits and
Systems for Video Technology, vol. 20, no. 6, pp. 792-805, Jun. 2010.

[3] C. Georgoulas and I. Andreadis, “A Real-Time Occlusion Aware
Hardware Structure for Disparity Map Computation,” Image Analysis
and Process. ICIAP, pp. 721-730, 2009.

[4] A. Akin, I. Baz, B. Atakan, I. Boybat, A. Schmid, and Y. Leblebici,
“A Hardware-Oriented Dynamically Adaptive Disparity Estimation
Algorithm and its Real-Time Hardware,” GLSVLSI Conference, Paris,
France, May 2013.

[5] D. Scharstein and R. Szeliski, “A Taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” Int. J. Comput.
Vision,vol. 47, nos. 1–3, pp. 7–42, Apr. 2002.

[6] P. Greisen, S. Heinzle, M. Gross, and A. P. Burg, “An FPGA-based
Processing Pipeline for High-Definition Stereo Video,” EURASIP
Journal on Image and Video Processing, pp. 18-25, Nov. 2011.

[7] H. Son, K. Bae, S. Ok, Y. Lee, and B. Moon, “A rectification
Hardware Architecture for an Adaptive Multiple-Baseline Stereo
Vision System,” Springer Journal on Communication and
Networking, pp. 147-155, 2012.

[8] C. Vancea, and S. Nedevschi, “LUT-based Image Rectification
Module Implemented in FPGA,” IEEE International Conf. on ICCP,
Cluj, Romania, Sept. 2007.

[9] K. Gribbon, C. Johnston, and D. Bailey, “A Real-time FPGA
Implementation of a Barrel Distortion Correction Algorithm with
Bilinear Interpolation,” Image and Vision Computing New Zealand,
pp. 408-413, 2003.

[10] D. H. Park, H. S. Ko, J. G. Kim, and J. D. Cho, “Real Time
Rectification Using Differentially Encoded Lookup Table,”
International ACM Conf. on ICUIMC, 2011.

[11] A. Akin, O. Cogal, K. Seyid, H. Afshari, A. Schmid, and Y.
Leblebici, “Hemispherical Multiple Camera System for High
Resolution Omni-Directional Light Field Imaging,” IEEE Journal on
JETCAS, June 2013.

277

