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Abstract. We present a multiscale micro-macro method for the Stokes problem
in heterogeneous media. The macroscopic method discretizes a Darcy problem on
a coarse mesh with permeability data recovered from solutions of Stokes problems
around quadrature points. The accuracy of both the macro and the micro solvers is
controlled by appropriately coupled a posteriori error indicators, while the total cost
of the multiscale method is independent of the pore size. Two and three-dimensional
numerical experiments illustrate the capabilities of the adaptive method.

1 Introduction

Fluid flow in porous media is a basic problem in science and engineering. It
enters the modeling of geothermal and petroleum reservoirs, subsurface con-
tamination, textile modeling or biomedical materials. Since the pore size is
usually much smaller than the considered porous material, global discretiza-
tion that resolves the pore geometry and standard single-scale techniques
such as finite element method (FEM) are extremely expensive.

Averaging techniques such as homogenization of Stokes flow in porous
media is thus required in many applications. The homogenization method
has been studied by various authors in the past several decades assuming
periodic porosity [7, 16, 20, 22]. The effective solution is shown to be given
by a Darcy equation where the permeability tensor can be computed from
so-called micro problems.

Various multiscale methods have been recently proposed for the numer-
ical approximation of Stokes (or Navier-Stokes) equations in porous media
that rely on a Darcy macro problem, recovering the effective permeability
from local pore geometries by numerically solving appropriate micro prob-
lems. We mention a hierarchical multiscale FEM derived in [10], a two-scale
finite element method proposed in [21], and a control volume heterogeneous
multiscale method described in [8].

Most of the aforementioned works discuss a priori convergence rates and
assume regularity of the micro problems that might not always hold. Indeed,
complicated pore structures in typical applications and non-convexity of mi-
croscopic fluid domains result in sub-optimal a priori convergence rates. In
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this contribution, we give a concise description and illustrate numerically a
new adaptive numerical homogenization methods for Stokes flow proposed
in [3]. The method is built using the framework of the finite element het-
erogeneous multiscale method (FE-HMM) [1, 4, 13]. Adaptive FE-HMM for
elliptic problems has been studied in [2, 5, 18]. Our new method relies on
adaptive mesh refinement on macro and micro problems and on rigorous
residual-based a posteriori error estimates derived in [3]. One challenge is to
adequately couple macro and micro error indicators as to achieve optimal
accuracy with minimal computational cost.

The paper is organized as follows. We first review the model problem in
Section 2. We then describe the FE-HMM for Stokes flow in Section 3 and
the adaptive method in Section 4. In Section 5 we provide two and three-
dimensional numerical experiments to test the capabilities of the adaptive
method.

2 Model problem

Let Ω ⊂ Rd be a bounded connected domain, where d ∈ N and d > 1. Denote
Y the d-dimensional unit cube (−1/2, 1/2)d. For any x ∈ Ω let Y xS ⊂ Y and
denote Y xF = Y \Y xS . The sets Y xF and Y xS represent the local fluid and solid
geometry, respectively. Given a pore size ε > 0, we define the locally periodic
porous medium by

Ωε = Ω\
(
ε
⋃
m∈Zd

(1/2 +m+ Y
ε(1/2+m)
S

)
and consider the following Stokes problem

−∆uε +∇pε = f in Ωε,

div uε = 0 in Ωε,

uε = 0 on ∂Ωε,

for the velocity field uε and pressure pε, where f is a given force field.
In case of periodic porous media (Y xS does not depend on x), the asymp-

totic behavior of pε, uε as ε→ 0 is studied in [7,22]. An extension of pε and
uε from Ωε to Ω is constructed, such that (while keeping the notation for
the extensions) ‖pε − p0‖L2(Ω)/R → 0 and uε/ε2 → u0 weakly in L2(Ω) for
ε→ 0, where p0 and u0 are given as follows. Find p0 such that

∇a0(f −∇p0) = 0 in Ω,

a0(f −∇p0) · n = 0 on ∂Ω,
(1)

where the homogenized tensor a0(x) is given by the micro problems: Solve

−∆ui,x +∇pi,x = ei in Y xF , ui,x = 0 on ∂Y xS − ∂Y,
div ui,x = 0 in Y xF , ui,x and pi,x are Y -periodic,

(2)



Multiscale adaptive method for Stokes flow 3

for i ∈ {1, . . . , d}, where ei is the i-th canonical basis vector in Rd, and define

a0(x) =

∫
Y xF

[u1,x,u2,x, . . . ,ud,x] dy. (3)

The effective velocity is then defined as u0 = a0(f −∇p0).
Well-posedness of the model problem (1), (2), (3) depends on the geomet-

ric properties of the micro domains Y xF and is examined in [3].

3 FE-HMM for flow in porous media

We apply the FE-HMM framework [1,14] to the problem (1), (2), (3) following
[3]. Let Ω and Ωε be open, connected, bounded, and polygonal subsets of Rd
with Ωε ⊂ Ω. Let TH be a family of conformal, shape-regular triangulations of
Ω parametrized by the mesh size H = maxK∈TH HK , where HK = diam(K).
Define the macro FE space

Sl(Ω, TH) = {qH ∈ H1(Ω) : qH |K ∈ P l(K), ∀K ∈ TH},

where P l(K) is the space of polynomials on K of degree l ∈ N.
For each element K ∈ TH , consider a quadrature formula (QF) with

interior quadrature nodes {xKj}Jj=1 and positive weights {ωKj}Jj=1, where
J ∈ N. To guarantee the optimal order of accuracy (see [12, Chap. 4.1]), we
assume that the QF is exact for polynomials up to order max(2l−2, l). Define
QK = {xKj}Jj=1 and QH = ∪K∈THQK .

Let δ ≥ ε. For each x ∈ QH we define the local geometry snapshot by

Y x,δS = ((Rd −Ωε) ∩ (x+ δY )− x)/ε, Y x,δF = (δ/ε)Y − Y x,δS .

Let T xh be a family of conformal, shape-regular triangulations of Y x,δF param-
etrized by the mesh size h = maxT∈T xh hT , where hT = diam(T ). We consider
the Taylor-Hood Pk+1/Pk FE space with k ∈ N and periodic coupling for the
micro problems (for other micro FE spaces or couplings see [3]) and define

M(Y x,δF , T xh ) = H1
per(Y

x,δ
F )d ∩ Sk(Y x,δF , T xh ),

X(Y x,δF , T xh ) = {v ∈ H1
per(Y

x,δ
F )d : v = 0 on ∂Y x,δS } ∩ Sk+1(Y x,δF , T xh )d.

The FE-HMM for Stokes flow reads as follows: find pH ∈ Sl(Ω, TH)/R
such that

BH(pH , qH) = LH(qH) ∀qH ∈ Sl(Ω, TH)/R, (4)

where

BH(pH , qH) =
∑
K∈TH

J∑
j=1

ωKja
h(xKj )∇pH(xKj ) · ∇qH(xKj ),

LH(qH) =
∑
K∈TH

J∑
j=1

ωKja
h(xKj )f

H(xKj ) · ∇qH(xKj ).
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We observe that the precise knowledge of ε > 0 is not necessary to apply
the above method. Here, fH is a suitable interpolation of the force field
f ∈ L2(Ω)d and ah(xKj ) is a numerical approximation of the tensor a0(xKj )
computed by the micro Stokes problems: For any i ∈ {1, . . . , d} and x ∈ QH
find ui,x,h ∈ X(Y x,δF , T xh ) and pi,x,h ∈M(Y x,δF , T xh )/R such that1

(∇ui,x,h,∇v)− (∇v, pi,x,h) = (ei,v) ∀v ∈ X(Y x,δF , T xh )

(∇ui,x,h, q) = 0 ∀q ∈M(Y x,δF , T xh )/R
(5)

and set

ah(x) =
εd

δd

∫
Y x,δF

[u1,x,h, . . . ,ud,x,h] dy.

A velocity field approximation can be obtained by interpolation from
quadrature points. If the QF has the minimal number of nodes (J =

(
l+d−1
d

)
),

we know [6] that any tensor A(x) : QH → Rd uniquely defines an operator
ΠA : Sl−1D (Ω, TH)d → Sl−1D (Ω, TH)d such that

ΠA(v)(x) = A(x)v(x), ∀x ∈ QH ,

where the space Sl−1D (Ω, TH) is a space of functions qH : Ω → R such that
qH ∈ P l−1(K) for every K ∈ TH . We define the reconstructed velocity field
by uH = Πah(fH −∇pH).

Assuming sufficient regularity, a priori estimates derived in [3] yield

|p0 − pH |H1(Ω) ≤ CH l + rmic + rmod, (6)

where | · |H1(Ω) denotes the standard H1 seminorm, rmod is a modeling error

(vanishing if Y x,δF = Y xF is used), and rmic is a micro error. In many practical
applications, we expect rmic ≤ Chθ with θ < 2 instead of the ideal θ = k+ 2
(see Section 5).

4 Adaptive method

Suboptimal a priori error estimates (for non-convex microscopic fluid domain)
suggest to use an adaptive methods. In [3], the residual-based FE-HMM error
analysis developed in [2, 6] was coupled with an a posteriori error bound
for the micro Stokes flow (5) based on [23]. This result is summarized in
Theorem 1 and uses the following. Define the macro residual ηK by

η2K =H2
K‖∇ ·Πah(fH −∇pH)‖2L2(K)

+
∑
e∈∂K

1
2He‖[Πah(fH −∇pH) · n]e‖2L2(e),

1 We use (·, ·) for the standard scalar product in L2(Y x,δF )m for any m ∈ N.
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the data approximation error ξdata,K by

ξ2data,K = ‖a0(f −∇pH)−Πa(fH −∇pH)‖2L2(K),

where a(x) = limh→0 a
h(x) and the micro residual ηmic,K by

η2mic,K =‖fH −∇pH‖2L2(K) max
x∈QK

d∑
i=1

η2stokes,x,i,

η2stokes,x,i =
∑
T∈T xh

 ∑
e∈∂T\∂Y x,δF

he
2

∥∥∥∥[∂ui,x,h

∂n
− pi,x,hn

]
e

∥∥∥∥2
L2(e)

+ h2T ‖∆ui,x,h −∇pi,x,h + ei‖2L2(T ) + ‖∇ · ui,x,h‖2L2(T )

)
.

Theorem 1. There is a constant C depending only on Ω, on the continuity
and coercivity constants of a0, on the shape-regularity of TH and T xh , and on
the Poincaré-Friedrichs and inf-sup constants related to (5), such that

|p0 − pH |2H1(Ω) ≤ C
∑
K∈TH

(η2K + η2mic,K + ξ2data,K).

Moreover, if Y x,δF = Y xF , then ξdata,K = 0.

Theorem 1 gives a foundation for an adaptive refinement algorithm on
both macro and micro problems using the indicators ηK and ηmic,K . The usual

refinement cycle solve estimate mark refine is implemented
on both scales.

The stopping criterion in the adaptive solution of the micro problems is

η2stokes,x,i ≤ µd−1η2K‖fH −∇pH‖−2L2(K) ∀K ∈ TH , (7)

where µ > 0 is a problem dependent constant and can be calibrated as
described in [3]. The inequality (7) implies η2mic,K ≤ µη2K , i.e., the micro
error is dominated by the macro error.

Algorithm. Assume that the user provides Ω, Ωε, and δ. Then repeat:

Solve. For each quadrature point x ∈ QH solve the micro problems (5) adap-
tively using the stopping criteria (7).2 Then, find pH by solving (4).

Estimate. Compute ηK and ηmic,K . Repeat the previous step until (7) is satisfied.
Mark. Using the indicator ηK and the Döfler’s bulk-chasing marking strategy

E [24, Chapter 4.1], mark a subset of elements of TH .
Refine. The marked elements are refined while maintaining conformity [9, 11].

2 Since the right hand side of (7) is not known beforehand we use an approximation
from the previous solution.
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Fig. 1. FE-HMM in 2D: pH in different stages of refinement (upper left); corre-
sponding meshes (lower left); p0 (upper right); error and indicators (lower right).

5 Numerical Experiments

In this section we test our adaptive algorithm by presenting two numer-
ical experiments. The implementation is done in Matlab and makes use of
AFEM [11] and gmsh [15]. Sparse saddle point linear systems arising from the
micro problems were solved using the Matlab’s mldivide in two dimensions
(2D) and an Uzawa method [19] with algebraic multigrid preconditioning by
AGMG [17] in three dimensions (3D).

In both experiments we took P2/P1 Taylor-Hood micro FE and P1 macro
FE. We set δ = ε (eliminating the modeling error) for the micro domains

Y x,δF . Variation of Y xF for both examples is depicted in Figure 2.

2D experiment. Let Ω = ((0, 2) × (0, 3))\([1, 2] × [1, 2]) with periodic
boundary conditions between the edges (0, 2) × {0} and (0, 2) × {3} and
let f ≡ fH ≡ (0,−1). Setting δ = ε = 10−4, we performed the adaptive
FE-HMM method. Convergence rates and examples of solutions and meshes
are displayed in Figure 1. The global error estimator ηΩ = (

∑
K∈TH η

2
K)−1/2

and the error |pH − p0|H1(Ω) are both following the expected rate O(N
−1/2
mac ),

where Nmac is the number of degrees of freedom of the macro problem (4).
The micro error estimator η2mic,Ω =

∑
K∈TH η

2
mic,K is dominated by η2Ω .

3D experiment. Let Ω be a subset of (0, 2) × (0, 2) × (0, 3) for which
(x3−2)(x3−1) > 0 or max(x1, x2) < 1 and let f ≡ fH ≡ (0, 0,−1). Consider
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Fig. 2. Plots of pε for the 2D (left) and 3D (right) experiment.
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Fig. 3. FE-HMM in 3D: initial and final solution pH (left) and p0 (middle) displayed
on a cut domain Ω\((0.5, 2)× (0.5, 2)× (0, 3)); the error indicator (right).

periodic boundary conditions on Ω that connect the faces (0, 2)× (0, 2)×{0}
and (0, 2) × (0, 2) × {3}. The adaptive FE-HMM with δ = ε = 10−2 yields
a global error estimate ηΩ that seems to follow the right convergence rate

O(N
−1/3
mac ), which is displayed in Figure 3 along with plots of pH and p0.

References

1. A. Abdulle, On a priori error analysis of fully discrete heterogeneous multi-
scale FEM, Multiscale Model. Simul. 4:2 (2005), 447–459.

2. , A priori and a posteriori error analysis for numerical homogenization:
a unified framework, Ser. Contemp. Appl. Math. CAM 16 (2011), 280–305.
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