
Design Space Analysis for Modeling Incentives in
Distributed Systems

Rameez Rahman
Delft University of Technology

Delft, The Netherlands
rrameez@gmail.com

Tamás Vinkó
Delft University of Technology

Delft, The Netherlands
tamas.vinko@gmail.com

David Hales
The Open University
Milton Keynes, UK

david@davidhales.com
Johan Pouwelse

Delft University of Technology
Delft, The Netherlands

peer2peer@gmail.com

Henk Sips
Delft University of Technology

Delft, The Netherlands
h.j.sips@tudelft.nl

ABSTRACT
Distributed systems without a central authority, such as peer-to-
peer (P2P) systems, employ incentives to encourage nodes to fol-
low the prescribed protocol. Game-theoretic analysis is often used
to evaluate incentives in such systems. However, most game-
theoretic analyses of distributed systems do not adequately model
the repeated interactions of nodes inherent in such systems. We
present a game-theoretic analysis of a popular P2P protocol, Bit-
Torrent, that models the repeated interactions in such protocols. We
also note that an analytical approach for modeling incentives is of-
ten infeasible given the complicated nature of most deployed pro-
tocols. In order to comprehensively model incentives in complex
protocols, we propose a simulation-based method, which we call
Design Space Analysis (DSA). DSA provides a tractable analysis
of competing protocol variants within a detailed design space. We
apply DSA to P2P file swarming systems. With extensive simula-
tions we analyze a wide-range of protocol variants and gain insights
into their robustness and performance. To validate these results and
to demonstrate the efficacy of DSA, we modify an instrumented
BitTorrent client and evaluate protocols discovered using DSA. We
show that they yield higher system performance and robustness rel-
ative to the reference implementation.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems – Distributed applications; H.1.0 [Information Systems]:
Models and Principles – General; J.4 [Computer Applications]:
Social and Behavioral Sciences – Economics

General Terms
Algorithms, Design, Economics, Theory

Keywords
Incentive systems, game theory, design space analysis, robustness

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’11, August 15–19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0797-0/11/08 ...$10.00.

1. INTRODUCTION
Incentives play an important role in distributed systems with no

centralized authority. Proper incentives ensure that the prescribed
protocol is followed by all the nodes, i.e., the protocol is robust to
strategic manipulation. A powerful tool for modeling incentives is
game theory, the branch of economics that can model individual
behavior in strategic situations [22]. The general applicability and
predictive powers of game theory has allowed designers to employ
it in a variety of contexts for the design of distributed systems [3,
29, 31].

In analyzing incentives in distributed systems, many papers
model the node interaction as a one-shot game. However, many
distributed settings involve repeated games in populations of inter-
acting players where such approaches do not apply. In this paper, as
our first contribution, we present a game-theoretic model of a dis-
tributed protocol that aims to capture some of the repeated aspects
of such systems.

Furthermore, theoretical analyses often require high levels of ab-
straction to keep the models simple. This is required because in-
volved models can become analytically intractable [19]. Thus, for
modeling complex protocols, a theoretical analysis runs the risk of
missing out on important variables that could have significant ef-
fects on protocol design. For instance, while designing a protocol,
it is not uncommon for the designer to employ a variety of arbitrary
design decisions and so-called “magic numbers”. Modifying any of
these can have negative effects on the robustness of the protocol’s
incentives. In other words, there are many elements in complex
protocols that could be gamed by strategic nodes.

A simulation based approach has been used by Axelrod [1] to
model strategic interactions in repeated games. As our second
contribution, taking inspiration from Axelrod, we aim to devise a
method which can be used to analyze protocols more comprehen-
sively. To that end, we present a simulation-based approach that we
call Design Space Analysis (DSA). DSA combines the specification
of a design space with an analysis of varying protocols within that
space.

The specification of a design space comprises two steps: Param-
eterization and Actualization. Parameterization involves identify-
ing salient design dimensions for the space, while Actualization
involves specifying multiple implementations for the identified di-
mensions.

For an analysis of the design space, we present a solution con-
cept, which we term the Performance, Robustness, and Aggressive-
ness (PRA) quantification. For a protocol Π, Performance is the
overall performance of the system when all nodes execute Π (where

182

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148002151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

performance is defined by the application); Robustness is the ability
of a majority of the population executing Π to outperform a minor-
ity executing a protocol other than Π; and Aggressiveness is the
ability of a minority of the population executing Π to outperform
a majority executing a protocol other than Π. PRA quantification
takes the form of a tournament in which each protocol competes
against every other protocol. By evaluating each protocol in the
space, the PRA quantification simulates strategic variants and pre-
dicts their effects.

We choose the domain of peer-to-peer (P2P) systems for apply-
ing and exploring our ideas, because there are many such deployed
systems, for which incentive-compatible design is of primary im-
portance to counter strategic behavior. We undertake the following
steps. We apply a game-theoretic analysis to the popular P2P pro-
tocol, BitTorrent, and devise a more robust variant by incorporating
the repeated aspects of the protocol (Section 2). Then we perform
a Design Space Analysis of P2P file swarming systems. We run ex-
periments on a cluster and discover that there are several protocols
that do better than this variant with respect to Performance, Robust-
ness, and Aggressiveness (Section 3 & 4). Finally, we implement
modifications to BitTorrent and with experiments on a cluster, an-
alyze some protocols discovered using DSA. We show that they
yield higher system performance and robustness as compared to
the reference implementation, thus demonstrating the effectiveness
of DSA (Section 5).

2. GAME-THEORETIC ANALYSIS OF
BITTORRENT

We consider one of the most popular P2P protocols, BitTorrent
(BT), for our analysis. Our reason for choosing BitTorrent is that
this protocol has probably been the most widely studied P2P pro-
tocol in the literature. A game-theoretic approach has often been
applied to BitTorrent [12, 16, 26].

First, we present a model of BitTorrent as a strategy in a game.
In game theory, a game is a description of a strategic interaction
that includes the constraints on the actions that the players can take
and the players’ interests [22]. Then we present an analysis of
this model for multiple bandwidth classes. Under our assumptions,
which are different from previous work [26], we show that BitTor-
rent is not a Nash equilibrium. Finally, we design a modification to
BitTorrent, which is a Nash equilibrium.

We assume the reader is familiar with certain game-theoretic
constructs such as the Prisoner’s Dilemma (PD), a game between
two players in which it is the dominant strategy of both players to
defect.

2.1 BitTorrent as a strategy in a game
We explain the basics of the BitTorrent protocol from an iterated

games setting perspective. Each peer plays a number of games with
other peers in a given time period, following a Tit-for-Tat (TFT)
like strategy. TFT is the strategy using which a player cooperates
on the first move and then simply mimics what the other player
did in the last round. In BitTorrent a peer cooperates with (i.e.,
uploads to) a certain number of preferred (fastest uploading) part-
ners while it defects in the rest of the games. These are the ‘reg-
ular unchokes’ in BT terminology. Additionally, a peer also starts
new games with other peers in search of better partners. These are
‘optimistic unchokes’ in BT terminology. In these games, a peer
always cooperates unconditionally for some iterations. We do not
model the seeders in BitTorrent as these do not affect our subse-
quent Nash equilibrium analysis. This is because we assume, like
Chow et al. [4], that seeders interact uniformly with all peers.

We now present an analysis of our model in a system containing
two classes of peers: fast and slow. The game interaction in Figure
1(a) captures the dynamics between a fast peer and a slow peer,
where f is the upload speed of a fast peer and s is the upload speed
of a slow peer. This game represents a single round in an iterated
scenario, where the ‘shadow of the future’ is large (i.e., the payoff
of subsequent moves is important relative to the previous move)
and peers can form sustained relationships. It can be seen that given
the payoffs, the dominant strategy for fast peers is to always defect
on the slow peers. This is because when a fast peer cooperates
with a slow peer, there is an opportunity cost associated with it.
Opportunity cost is an important concept in economics. It is the
cost of an alternative that must be given up in order to pursue a
certain action [8].

We note here that by incorporating the ‘shadow of the future’
and opportunity costs in our ‘game’ we try to model two key as-
pects of the BitTorrent protocol usually ignored in traditional game-
theoretical analysis. These aspects are: (a) the repeated interactions
between peers; and (b) the wide choice of partners that peers can
have.

A fast peer’s opportunity cost in cooperating with a slow peer
is a missed interaction with another fast peer. When a fast peer
cooperates with a slow peer, it gets a negative utility of s− f . It
gets s from the slow peer but on the other hand, loses out on a
potential f from a fast peer. Conversely, for the slow peers, the
dominant strategy is to always cooperate with the fast peers. A
slow peer on defecting against a fast peer gets f from the fast peer
and can form a relationship with a slow peer, where it gets s− f
(where− f is the opportunity cost of cooperating with a slow peer),
thus getting a final utility of f +(s− f) = s. Figure 1(b) depicts
this scenario: a slow peer responds (with cooperation in the form
of a ‘regular unchoke’ slot) upon being optimistically unchoked
by a fast peer, while the converse does not hold. In light of this,
we note here that the Prisoner’s Dilemma is not an accurate model
for BitTorrent under heterogeneous classes of peers. Instead, the
way BitTorrent implements the interaction of a slow peer with a
fast peer, resembles an interaction in the Dictator game, a game in
which one player proposes to do something, while the other has no
choice but to respond passively without any strategic input into the
decision. It also resembles a game which has been called by some
as the One-Sided Prisoner’s Dilemma [28]. For simplicity, we refer
to it here as the BitTorrent Dilemma.

Next we give an analytical model of BitTorrent for multiple
bandwidth classes, using the BitTorrent Dilemma game as depicted
in Figure 1(a).

2.2 Analytical model of BitTorrent Dilemma
In this section, we model the BitTorrent Dilemma game with

multiple bandwidth classes of peers. We seek to calculate the ex-
pected number of games that a peer c from a particular class, with
payoffs defined according to Figure 1(a), can win against other
peers, where winning means getting cooperation from others.

In the remainder of this section we derive the formulae for the
expected number of games that peer c wins against other players
from different classes. We note that there are two types of games
that a player c can win: 1) the games that it wins when others re-
ciprocate to it; and 2) when other players start a new game with c
and in line with TFT, cooperate unconditionally, thereby giving c a
free game win.

We use the notation summarized in Table 1. Note that we as-
sume, for notational simplicity, that the number of new partners
that a peer cooperates with unconditionally (number of optimistic
unchoke slots in BT terminology) is equal to 1. Moreover, it is also

183

cooperate defect

cooperate

defect

fast

slow
ss-f

f 0

s
0

0

0

(a)

fast slowresponds

optimistically unchokes

optimistically unchokes

(b)

cooperate defect

cooperate

defect

fast

slow
ss-f

f-s 0

f
0

0

0

(c)

Figure 1: Analysis of the BitTorrent Dilemma: (a) The payoffs of the BT Dilemma for slow and fast peers; (b) An abstract illustration of
interaction between slow and fast peers; (c) Modified BT payoffs in view of slow peers’ opportunity costs.

assumed that there are always enough peers to exchange a particu-
lar piece of content.

Table 1: Model parameters. Classes are based on peers’ bandwidth
capacities.

Notation Definition
NA number of TFT players in classes above c’s class.
NB number of TFT players in classes below c’s class.
NC number of TFT players in c’s class.
Ur number of players that c can reciprocate with simul-

taneously (number of regular unchoke slots in BT)
Er[X → c] the expected number of games peer c wins against

peers in the class X ∈ {A,B,C}, where A,B and C are
the classes above, below and where peer c is from,
respectively.

E[X → c] the expected number of ‘free game wins’ that peer c
obtains from class X ∈ {A,B,C}.

Nr NA +NB +NC−Ur−1

First, we calculate the expected number of games that can be
won against higher classes. We assume that NA is greater than Ur;
thus, as per Figure 1(a), players employing TFT in higher classes
will not reciprocate with peer c. Therefore,

Er[A→ c] = 0.

However, as per the TFT policy, peers from higher classes, un-
knowingly, do offer first move cooperation to peers from lower
classes in search for better partners. The probability that peers in
class C are offered a ‘free game win’ by a peer from the higher
classes is NC/Nr, giving E[A→C] = NA×NC/Nr, which is the ex-
pected number of ‘free game wins’ that peers from higher classes
offer to players in the considered class C. This leads to

E[A→ c] = NA/Nr.

For the expected number of games won against the lower classes,
using similar reasoning as above, we obtain

E[B→ c] = Er[B→ c] = NB/Nr.

The expected value for the number of games in which a peer
c gets reciprocation from peers in the same class is Ur minus the
number of ‘free game wins’ that peer c obtains from the higher
classes (to which c always reciprocates as per its dominant strategy,
thus breaking its relationship with a partner from the same class),
minus the expected number of ‘free game wins’ that at least one
of c’s current partners gets from the higher classes (to which the
partner reciprocates, thus breaking its relationship with c). This
leads to

Er[C→ c] =Ur−E[A→ c]−K, (1)

where K = 1−
(
(1−E[A→ c])(1− 1

Ur
)
)Ur . Finally, the number of

peers in contention for ‘free game wins’ by peer c in the same class
is NC−1−Er[C→ c], which gives

E[C→ c] = (NC−1−Er[C→ c])/Nr.

2.3 Is BitTorrent TFT a Nash equilibrium?
Under certain assumptions, it was shown in [26] that the TFT

strategy as implemented in BitTorrent is a Nash equilibrium. How-
ever, by modifying the abstraction to incorporate more detail in our
model, and taking a cue from formula (1), we find that BT is not
a Nash equilibrium. In our model, the payoff structure in BitTor-
rent can be modified to devise a new protocol. This protocol can
individually, in a population of all BitTorrent peers, do better than
the BitTorrent peers, thereby showing that BitTorrent is not a Nash
equilibrium.

Next, we discuss how we devise a protocol improvement called
Birds1 by modifying the payoffs in the BitTorrent Dilemma.

Birds: Modifying BitTorrent’s payoffs. A fast peer upon being
optimistically unchoked by a slow peer does not reciprocate, as
given by Figure 1(a), because a fast peer realizes the opportunity
cost of reciprocating to a slow peer, which is a missed interaction
with another fast peer. A slow peer reciprocates to a fast peer be-
cause in its view there is an opportunity cost in defecting against a
fast peer, which is a missed chance to form a long-term relationship
with a fast peer. However, as stated, given the scenario described in
Figure 1(a), this does not happen. This suggests that the payoff as
calculated by a slow peer in the BitTorrent Dilemma could be mod-
ified. There is no opportunity cost in defecting against a fast peer.
In fact there is an opportunity cost in cooperating with it: missing
out on a sustained relationship with another slow peer. Therefore,
in order to account for this fact, we modify the payoff structure of
the BitTorrent Dilemma according to Figure 1(c) so that the dom-
inant strategy of both slow and fast peers is to defect against each
other. This new payoff structure leads to a new protocol that we call
Birds and reflects the behavior of peers following this protocol.

Analytically, this leads to

Er
B[A→ c] = Er

B[B→ c] = 0,

and obviously

Er
B[C→ c] =Ur.

For the ‘free game wins’, there is no change as compared to Bit-
Torrent. For the interactions of peers in the same class, we find that
we can use the same argument as used for BitTorrent, thus

EB[C→ c] = (NC−1−Ur)/Nr.

1Birds of a feather stick together. Using this protocol peers try to
stick with others from their own bandwidth class.

184

For a proof of Birds being a Nash equilibrium and BitTorrent not
being a Nash equilibrium, we refer the reader to the Appendix.

A practical approach to deploy Birds. We provide a simple, prac-
tical approach to incorporate Birds in current BitTorrent clients. We
propose to change the peer selection policy of BitTorrent, so that it
reciprocates not to the fastest peers but to those peers that are clos-
est to its own upload bandwidth. Given Figure 1(c), a peer in Birds
needs to sort others in increasing order of their distance to its own
upload bandwidth.

We define a peer’s distance to another peer to be equal to the
absolute difference between its upload speed and the upload speed
of the other peer. We note that a similar approach has been used for
replica placement in P2P Storage Systems [30].

2.4 Discussion
We have applied a game-theoretic analysis to the popular P2P

protocol, BitTorrent. Considering BT as a strategy in iterated
games, and using the concept of ‘opportunity costs’, we were able
to unearth new protocol aspects. Using a different abstraction as
compared to previous work [26] under which BT is a Nash equi-
librium, we demonstrated that in our abstraction, BitTorrent is not
Nash equilibrium. We also devised a protocol variant that is a Nash
equilibrium under our assumptions.

We now need to consider what we gain from our equilibrium
analysis and what exactly is meant when a protocol is said to be
robust. It was only subsequent to the proof that BitTorrent is a Nash
equilibrium [26], that questions about BitTorrent’s robustness were
raised. Locher et al. [17] showed that BitTorrent’s TFT policy is
vulnerable to attack from an Always Defect strategy. Later on, yet
another BT exploit was devised based on an adaptive policy for
number of partners and variable rate of reciprocation [24]. Even
in our case, simply by choosing an abstraction that incorporates
the interactions between various classes of peers in more detail, we
showed that BT is not a Nash equilibrium.

The literature of game-theoretic modeling of distributed systems
often relies on the analytical analysis of simple models [30, 26].
The results of such analyses, as we have seen, can sometimes be
misleading. In many other areas of networking, simulations are
used when a faithful model of the real system is far too compli-
cated, and it is not clear which details one can omit without chang-
ing the nature of the results. In the next section, we present Design
Space Analysis, an approach inspired by the work of Axelrod [1],
which uses a simulation based methodology for modeling incen-
tives in complex protocols.

3. DESIGN SPACE ANALYSIS
We wish to design distributed protocols that maximize perfor-

mance of the system under the assumption that protocol variants
may enter the system. We present Design Space Analysis (DSA), a
simulation based method, which emphasizes the specification and
analysis of a design space, rather than proposing a single proto-
col. First, we list the key elements of DSA. Then we present the
Performance, Robustness, Aggressiveness (PRA) quantification, a
solution concept within DSA.

3.1 Key elements of DSA
We consider the elements that are integral to Design Space Anal-

ysis.

Flexible behavioral assumptions. In DSA, we relax behavioral
assumptions. Specifically, we do not limit ourselves to the ratio-
nal framework, where nodes are supposed to be self-interested. By
foregoing the assumptions entailed in this framework, we consider

a great variety of protocols, which may not necessarily be ratio-
nal. Protocols may, in the words of Axelrod [1], “simply reflect
standard operating procedures, rules of thumb, instincts, habits, or
imitation”.
Specification of design space. In DSA, keeping in view that com-
plex protocols have many elements that can be gamed by strategic
nodes, a design space should encompass relevant details that can
affect the incentive structure. Design space specification occurs
at two levels: i) Parameterization, which involves determining the
salient dimensions of the design space, and ii) Actualization, which
involves specifying a host of actual values for every individual di-
mension.

The specification of the design space can be inspired by consult-
ing the relevant literature and analyzing existing systems. As an
example, the Parameterization phase of the design space for Gos-
sip Protocols [13] could result in the following salient dimensions:
i) Selection function for choosing partners for exchanging data, ii)
Periodicity of data exchange iii) Filtering function for determining
data to exchange, iv) Record maintenance policy in local database.

The Actualization of this example design space for gossip pro-
tocols could be: For Selection Function, following policies could
be used : 1) Random: Choose partners randomly; 2) Best: Choose
partners who have given the best service; 3) Loyal: Choose most
loyal partners; 4) Similarity: Choose partners based on similarity;
etc. Similarly, different values could be chosen for each of the other
dimensions.

An example of specifying a design space, with both the param-
eterization and actualization phases, will be described in detail in
Sections 4.1 and 4.2 when we apply DSA to P2P file swarming
systems.
Systematic analysis of the design space. In DSA, a desired fea-
ture of all solution concepts is a systematic exploration of the de-
sign space. This exploration could either follow an exhaustive ap-
proach, e.g., a parameter sweep, or a heuristic based approach. By
a thorough scan of the space, DSA solution concepts can antic-
ipate strategic variants and predict their effects. Heuristic based
approaches can provide partial solutions relatively fast, however,
without any guarantees on the level of goodness of the measures.

3.2 The PRA quantification
We now present the PRA quantification, a solution concept

within DSA. We note that other solution concepts within DSA
could also be devised. Using PRA, we can characterize any pro-
tocol, from a given design space, over three measures (or dimen-
sions). For a given protocol Π, these three particular measures, are:

• Performance - the overall performance of the system when
all peers execute Π (where performance is determined by the
application);

• Robustness - the ability of a majority of the population exe-
cuting Π to outperform a minority executing a protocol other
than Π;

• Aggressiveness - the ability of a minority of the population
executing Π to outperform a majority executing a protocol
other than Π.

We formulate a way to assign values to each of the three mea-
sures normalized into the range [0,1]. Hence the properties of any
given Π can be characterized as a point within a three-dimensional
Performance, Robustness, Aggressiveness (PRA) space. The im-
portance of these three measures is evident from the literature. Per-
formance and Robustness have been studied extensively [2, 12, 24].

185

Table 2: Existing protocols/designs mapped to our generic P2P protocol design space.

Protocol P2P Replica Stor-
age [30]

GTG [21] Maze [32] Pulse [23] BarterCast [20] Private BT Com-
munities

Peer Discovery Gossip based orthogonal Central server Gossip based Gossip based Central server
Stranger Policy Defect if set of

partners full
Unconditional co-
operation

Initialized with
points

Give positive
score

Unconditional co-
operation

Initial credit

Selection Function Closest to own
profile

Sort on Forward-
ing Rank

Ranked on points Missing list, For-
warding list

Rank/Ban accord-
ing to reputation

Credits or sharing
ratio above certain
level

Resource Allocation Equal Equal Differentiated ac-
cording to rank

Equal orthogonal Equal / Differenti-
ated according to
credits

Aggressiveness has not been explicitly studied but the numerous
papers that present protocol variants [11, 15, 16] suggest the need
for an aggressiveness measure to determine the effectiveness of a
new protocol variant in a population of peers following some other
protocol(s).

It is desirable, in open systems in which strategic variants can en-
ter, to design protocols which maximize all three measures. How-
ever, it can be conjectured that there will often be a trade-off be-
tween them. For example, one may design protocols with high
performance but low robustness or conversely high robustness and
low performance.

We now define more precisely how we can map a given protocol
Π, which can be expressed as a point in the design space, to a point
in the PRA space; formally, we define a function S : D→ [0,1]3,
where D is the design space.

We assume that for each peer in a system of peers we can calcu-
late a utility which quantifies individual performance. The measure
of performance is application specific, such as download speed in
P2P file swarming systems. Given this we define the performance
P of protocol Π as the sum of all individual utilities in a population
of peers executing Π normalized over the entire protocol design
space. Hence, P = 1 indicates the best performance obtained from
any protocol in the design space.

We define the Robustness R for protocol Π as the proportion of
all other protocols from the design space that do not outperform Π

in a tournament. A tournament consists of multiple encounters in
which protocol Π plays against all other protocols in turn. An en-
counter is a mixed population of peers executing one of two proto-
cols. The winning protocol is that which obtains the higher average
utility for the peers executing it.

Aggressiveness A for protocol Π is defined in the same way as
Robustness, but here Π is in the minority.

4. APPLYING DSA TO P2P FILE SWARM-
ING SYSTEMS

In this section, we describe our methodology for applying DSA
to P2P file swarming systems. First, we Parameterize a generic
P2P design space. Next, based on this generic space, we Actualize
a specific file swarming design space. Subsequently, we apply the
PRA quantification on this space. Finally, we present the results of
our analysis.

4.1 Parameterization of a Generic P2P Proto-
col Design Space

We have identified the following salient dimensions applicable
to a large variety of P2P systems.

Peer Discovery: In order to perform productive peer interactions,
it is necessary to find other partners. For example, when a

peer is new in the system, looking for better matching part-
ners or existing partners are unresponsive. The timing and
nature of the peer discovery policy are the important aspects
of this dimension.

Stranger Policy: When interacting with an unknown peer
(stranger), past history cannot be used to inform actions. It is
therefore necessary to apply a policy to deal with strangers.
The way peers allocate resources to strangers is an important
aspect of this dimension.

Selection Function: When a peer requires interaction with others
this function determines which of the known peers should
be selected. This could include, for example, past behav-
ior (through direct experience or reputation system), service
availability and liveness criteria.

Resource Allocation: During peer interactions resources must be
allocated to the selected peers (given by the selection func-
tion). The way a peer divides its resources among the se-
lected peers, defines the resource allocation policy.

Some existing implemented protocols and proposed designs are
listed in Table 2. A protocol such as Give-to-Get (GTG) [21] em-
ploys unconditional cooperation with strangers as its stranger pol-
icy. A P2P replica storage design [30] presents a stranger policy
which defects on strangers when its set of regular partners is full.
For implementing the selection function, a deployed P2P reputa-
tion system like BarterCast [20] ranks peers in order of reputation
score and also proposes to ban peers below a certain reputation
score. P2P replica storage selects those peers which are closest
to the selecting peer’s own storage capacity. This selection pol-
icy is identical to the one proposed by us for implementing Birds in
BitTorrent-like file-sharing systems. For resource allocation, Maze
[32] allocates resources proportional to rank. These examples are
a few implemented systems and proposed designs; a large variety
of P2P systems that rely on eliciting cooperation from participating
nodes rely on similar dimensions.

4.2 Actualization of a Specific P2P Protocol
Design Space

We define some specific actualizations of a BitTorrent-like file
swarming system, as described in Section 2, based on the general
design space of Section 4.1. The ideas behind these actualizations
have been taken directly from, or inspired by, various works on co-
operation done in P2P and also some works done in biology and
social sciences in general [1, 10, 25]. We were motivated to take
inspiration from other fields, because eliciting cooperation in de-
centralized settings is a general problem that has been well-studied.

For the Stranger Policy, we define three different actualizations
and a value h for the number of strangers to cooperate with:

186

B1) Periodic: Give resources to up to a certain number of
strangers periodically.

B2) When needed: Only give resources to strangers when set of
regular partners is not full. This particular implementation
has been inspired by [11].

B3) Defect: Always defect on strangers, i.e., give nothing to
strangers.

We set h, the number of strangers to cooperate with at any given
time, to be in the range [1,3]. This gives 3×3= 9 different stranger
policies. We further add one more stranger policy, where the num-
ber of strangers is zero. This gives a total of 10 different stranger
policies.

We sub-divide the Selection Function into three parts: a candi-
date list, a ranking function over that candidate list, and finally a
value k for the number of peers to select from the ranked candidate
list.

For the ‘Candidate List’ we define two actualizations:

C1) TFT, used by default in BitTorrent, using which a peer only
places those peers in the candidate list who reciprocated to it
in the last round.

C2) TF2T, using which a peer places those peers in the candidate
list who reciprocated to it in either of the last two rounds.
TF2T has been taken from [1].

For the ‘Ranking Function’, we define six different actualiza-
tions:

I1) Sort Fastest, ranks peers in order of fastest first.
I2) Sort Slowest, ranks peers in order of slowest first.
I3) Sort Based on Proximity, ranks peers in order of proximity

to one’s own upload bandwidth, as in Birds.
I4) Sort Adaptive, ranks peers in order of proximity to an aspi-

ration level, which is adaptive and changes based on a peer’s
evaluation of its performance. This has been inspired from
[25].

I5) Sort Loyal, ranks peers in order of those who have cooper-
ated with the peer for the longest durations. This has been
inspired by [10].

I6) Random, does not rank peers and chooses them randomly.
This has been inspired by [15].

After applying the ranking function, a peer chooses the k top peers,
where k is the maximum number of partners that a peer can have.
Currently, we set k to be in the range [1,9]. This results in 2×6×
9= 108 different possibilities for the selection function. We further
add one more protocol, where the number of selected peers is zero.
This gives a total of 109 different selection policies.

For Resource Allocation, we define three actualizations:

R1) Equal Split, gives all selected peers equal resources (upload
bandwidth).

R2) Prop Share, gives others proportional to what they gave in
the past. This has been inspired by [16].

R3) Freeride, gives nothing to partners.

Based on the above, the total number of unique protocols comes
to 10×109×3 = 3270. We note that this number can be larger or
smaller based on what, and how many, specific implementations in
the space, designers want to explore2. Our purpose here is to show
the practicality of the DSA analysis by analyzing a considerable
space of unique protocols.
2For instance, we do not consider variants for resource allocation
to strangers. Also, we do not consider Peer Discovery.

4.3 Conducting the PRA quantification
First we describe our simulation model. Then we discuss our

methodology for conducting the PRA quantification on the design
space described in Section 4.2.

4.3.1 Simulation Model
We use a cycle-based simulation model, in which time consists

of rounds. For peer discovery we assume that all peers can con-
nect to each other. In each round, a peer decides to upload to a
given number of peers based on some selection criterion. It uses
its resource allocation policy to decide how much to give to each
of the selected partners. Furthermore, it decides to cooperate with
strangers based on its stranger policy. A peer also maintains a short
history of actions by others. At the same time a peer also has some
rate of requesting services from other peers that depends on specific
actualizations. This is the basic model on top of which we explore
the design space of Section 4.2. We run our simulation experiments
with 50 peers, which is a good approximation of an average BitTor-
rent swarm-size [9]. These peers interact with each other for 500
rounds. We use a cluster for running our experiments. In order to
lend realism to our experiments, we initialize the peers using the
bandwidth distribution provided by Piatek et al. [24]. We assume
that all peers always have data that others are interested in.

4.3.2 Methodology
Based on the PRA quantification, as described in Section 3.2,

we first measure the Performance of each protocol in the space.
For each protocol Π, we run simulations in which all peers execute
Π and measure the average performance of the population. We
perform 100 runs for each protocol. In these experiments we define
average performance as throughput of the population.

Next we run Robustness experiments. We run simulations, where
each protocol plays against every other protocol. We refer to a com-
petition in which two protocols are pitted against each other as an
encounter. For each encounter, the peer population is split up into
two equal halves where half the peers execute Π and the other half
executes another protocol. We chose 50% because this is the high-
est number that an invading protocol can have. Anything higher
than 50% means that the invading protocol actually becomes the
majority protocol. We hypothesize that if a protocol is robust when
50% of the population executes another protocol, then it will be
robust against small invading populations. To verify this hypothe-
sis, we also conduct simulations with the population split up into
90-10, where 90% of the peers follow protocol Π, while 10% ex-
ecute other protocols in the space, and observe similar results (the
Pearson’s correlation coefficient of the two sets of results is 0.97).
We do 10 runs for each particular encounter between two protocols.
This means that a protocol Π plays against the same protocol ten
times. For each run, we compare the average performance of Π

with the average performance of the other protocol. If the perfor-
mance of Π is greater than the performance of the other protocol,
we mark it as a Win for Π, otherwise we mark it as a Loss for Π.
The robustness value for Π is calculated by number of games that
it wins against all opponents in all runs divided by the total number
of games that it plays, which is constant for all protocols.

For Aggressiveness we use the same setup as for Robustness ex-
periments, with the difference that the population is so divided that
10% of the peers execute Π while the rest execute another protocol.

Next, we present results of applying the PRA quantification over
the design space3 described in Section 4.2.

3We note here that the entire series of simulations for PRA took
around 25 hours on a 50-node dual-core cluster.

187

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Robustness

P
e

rf
o

rm
a

n
c
e

Figure 2: Scatter plot of all 3270 protocols in the design space with
Robustness against Performance. The results presented here are
a synthesis of over 107 million individual simulation runs. His-
tograms are also shown.

4.4 Results and Discussion
Figure 2 shows all the 3270 protocols actualized in Section 4.2,

with their normalized Robustness and Performance values. Given
the methodology of conducting the PRA quantification as described
in Section 4.3.2, this figure represents a synthesis of 107 million
individual runs. For performance, each point represents the aver-
age normalized performance of a protocol Π, over 100 runs. The
robustness values are calculated as described in Section 4.3. The
maximum variance in the runs for each protocol’s performance and
robustness was as low as 0.0014 and 0.0206, respectively.

Performance. We shall start by looking at different regions of Fig-
ure 2. It can be seen that numerous protocols have both very low
performance and robustness in the range [0,0.2] (as can be seen
from the large histogram bars in the bottom left hand corner). Upon
inspection we discover that most of them are freeriders, although
different kinds of freeriders. The freeriders with low robustness
usually defect on strangers, while freeriders with low performance
usually defect on their partners. The maximum performance that
such freeriders get is 0.31. This can be seen in the form of two
clusters in Figure 2, where the lower and upper clusters are below
and above 0.4 performance, respectively.

The lower cluster for performance contains all freeriders that do
not reciprocate with their partners. It also contains some freeriders
that defect on strangers. The upper cluster for performance does
not contain any freeriders that defect on their partners but inter-
estingly does contain freeriders who defect on strangers. In fact,
the protocol with the highest performance (of 1), is the one that al-
ways defects on strangers, has the Sort Slowest ranking function,
and maintains one partner. We try to dissect why this particular
protocol performs so highly. By defecting on a stranger, a proto-
col in effect uploads nothing to the stranger. Since, all peers follow
the Sort Slowest ranking function, a peer p1 on downloading noth-
ing from another peer p2, immediately discards its partner p3 and
chooses p2 to be its partner. Peer p3 now finds itself partner-less.
However, it can also quickly find a partner for itself by upload-
ing nothing to another peer. Thus by following this protocol, peers
rarely find themselves without a fully occupied partner set and can
always download at full speed.

Thus, counter-intuitively, by maintaining a single partner, by not
uploading anything to strangers and by employing the Sort Slowest

Number of partners

P
e
rf

o
rm

a
n

c
e

0 1 2 3 4 5 6 7 8 9

0.9

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 3: Normalized Performance histograms for different partner
values. Darker squares represent high ‘partner value’ frequency for
a particular Performance interval.

ranking function, a very high performing protocol can be designed.
It is imperative of course in this case that the resource allocation
method should not be Prop Share. This is because Prop Share will
ensure that a peer on getting nothing from another peer, also up-
loads nothing in response. If that happens, the entire population
that follows this protocol will fail to bootstrap.

In Figure 3 we observe that in fact many of the top performing
protocols are those with one partner. In Figure 3, for each perfor-
mance interval, darker squares represent higher relative frequency
of the number of partners. The empty white spaces in Figure 3 re-
flect the empty spaces in the scatter plot and the histogram of the
Performance values in Figure 2. All the top 15 performing proto-
cols maintain one partner each and the overall trend in the top per-
forming protocols shows a low number of partners. In the top hun-
dred performing protocols only 11 maintain more than 2 partners.
It can be seen from Figure 3, starting from the top, till the perfor-
mance interval [0.7,0.8], the frequency of low number of partners
is relatively higher than the frequency of high number of partners.

We analyze these high performing protocols with a low number
of partners more closely now. We have already discussed the fea-
tures of the highest performing protocol, which uses the Sort Slow-
est ranking function. However, not all high performing protocols
with low number of partners have the same features. Many of them
employ the Sort Loyal ranking function. With the Sort Loyal rank-
ing function, it can be conjectured that peers which come to form
cooperative relationships early on, stay committed in their relation-
ships. This stability of relationships increases the performance of
the system, because at no time do peers find themselves short of
partners.

Apart from this, many such protocols often also use the When
needed stranger policy. This policy also leads to more committed
partnerships. With the When needed stranger policy, peers only co-
operate with strangers when their set of partners is not full. Thus
once its partner set is full, a peer will not cooperate with strangers.
By not cooperating regularly with strangers, a peer protects itself
from breaking relationships by avoiding temptation. This is be-
cause when a peer p defects against a stranger, it does not get back
anything in response from the stranger. In this way peer p does not
discover how much better or worse the stranger is than its current
partners, and thus continues to stick with them.

It could be assumed that in the presence of churn, protocols with
low number of partners will not perform so well. However, we ran
Performance tests for the whole space under churn rates of 0.01 and
0.1 per round, and found that it was still the protocols that employed

188

Number of partners

R
o

b
u
s
tn

e
s
s

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Normalized Robustness histograms for different partner
values. Darker squares represent high ‘partner value’ frequency for
a particular Robustness interval.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x = Robustness

P
(X

 >
 x

)

Periodic

When needed

Defect

Figure 5: Complementary CDF plots of Robustness of different
stranger policies.

a low number of partners that performed the best. Thus, it can be
claimed that having low number of partners is a desirable feature
of high performing protocols, given that everyone in the population
runs the same protocol.

Robustness. It is interesting to compare Figure 3 with Figure 4.
While a low number of partners seems to be a good choice for high
performance, the situation is reversed when it comes to robustness.
In Figure 4, we observe that most of the highly robust protocols
have a high number of partners. This can be seen in the top right
hand corner of the figure. This is intuitive, because protocols that
employ a low number of partners would very likely perform worse
in face of an invading protocol that employs high number of part-
ners. This is because, in case of an invasion, peers employing a
protocol that maintains a high number of partners are less likely to
find themselves short of partners as compared to peers who follow
a protocol that maintains a low number of partners. Hence, in the
case that some partners defect, peers with a high number of part-
ners can continue to download at high speeds while peers with a
low number of partners are likely to suffer with poor speeds. To
put it straightforwardly, a peer that maintains 9 partners will suffer
less when one of its partners defects on it, as compared to a peer
that only maintains one partner.

As we are considering the robustness of protocols, it can be seen
from Figure 2 that there are some protocols that are highly robust
with robustness values above 0.99. By analyzing these highly ro-
bust protocols, we discovered their interesting properties. Including

Equal Split Prop Share Freeride
0

0.2

0.4

0.6

0.8

1

R
o

b
u
s
tn

e
s
s

Figure 6: Robustness values using different resource allocation
methods. Each circle is a unique protocol. Bigger circles repre-
sent better performance.

the most robust protocol in that cluster, these protocols use a combi-
nation of the When needed stranger policy, the Sort Fastest ranking
function and the Prop Share reciprocation function. Figure 5 shows
that only those protocols which use the When needed stranger pol-
icy reach robustness levels greater than 0.99. Similarly, it can be
seen from Figure 7 that protocols which use the Sort Fastest rank-
ing function, are the most robust protocols. Figure 6, shows that
even though the Equal Split resource allocation policy does quite
well, it is the Prop Share policy that manages to get robustness val-
ues greater than 0.99.

Since this is a vital point, as it tells us about the features of proto-
cols that are almost completely robust, we consider these properties
in detail. As discussed previously, the When needed stranger policy
only cooperates with strangers when its set of partners is not full.
The Sort Fastest ranking function, as the name implies, ranks peers
in decreasing order of their speed, and finally the Prop Share re-
source allocation policy, allocates resources to peers in proportion
to their contribution.

This combination, first of all, validates the claims about the ro-
bustness of the Prop Share mechanism [16]. However, it should
be noted that, unlike their proposal, these protocols do not recip-
rocate with everyone. In fact, the most robust protocol maintains
only 7 partners. Secondly, the combination of When needed with
Prop Share is very important to note. In [16] a cryptographic boot-
strapping technique was proposed to avoid exploitation by freerid-
ing strangers. Our results suggest that the combination of the When
needed stranger policy with the Prop Share resource allocation pol-
icy is a practical and lightweight alternative for designing robust
protocols.

Trade-off between Performance and Robustness. Looking at the
very robust protocols, we note that most of them are not among
the high performing protocols. This suggests a trade-off between
performance and robustness.

However, looking at the top right hand corner of Figure 2, we can
see that there are at least some protocols that are robust and also
have high performance (with robustness and performance values
above 0.8). On inspection we find that there are 9 such protocols
and all of these protocols follow the Sort Loyal ranking function.
No other dimension (such as resource allocation, stranger policy,
etc.) is uniform across all 9 protocols. Sort Loyal cooperates with
those other peers who cooperate with it for the longest durations.
It could have been assumed that a ranking policy like Sort Loyal
would not fare very high in terms of robustness. This is because
of the danger that a fast peer that employs the Sort Loyal ranking

189

Table 3: Multiple linear regression analysis applied for the PRA measures of the whole search space. The adjusted R2 values are reported in
the second row. The standard errors for all the variables are less than 0.012. Significance level is indicated as ‘OK’ if it was less than 0.001.

Performance Robustness Aggressiveness
(adj.R2 = 0.68) (adj.R2 = 0.52) (adj.R2 = 0.61)

variable estimate t value sign. estimate t value sign. estimate t value sign.
(intercept) 0.661 64.372 OK 0.813 73.286 OK 0.801 96.300 OK
log(k̃) −0.008 −2.487 – 0.035 10.334 OK 0.037 14.591 OK
log(h̃) 0.109 33.121 OK 0.115 32.287 OK 0.092 34.340 OK
B2 0.008 1.046 – 0.026 3.010 OK 0.026 4.012 OK
B3 −0.206 −26.257 OK −0.241 −28.399 OK −0.190 −29.778 OK
C2 −0.066 −10.567 OK −0.045 −6.576 OK −0.039 −7.716 OK
I2 0.023 2.151 – −0.214 −18.186 OK −0.212 −24.000 OK
I3 0.020 1.831 – −0.199 −16.911 OK −0.155 −17.503 OK
I4 0.022 1.975 – −0.230 −19.517 OK −0.193 −21.796 OK
I5 0.031 2.843 OK −0.074 −6.262 OK −0.097 −11.004 OK
I6 −0.009 −0.796 – −0.082 −7.080 OK −0.090 −10.259 OK
R2 −0.194 −25.260 OK −0.093 −11.188 OK −0.053 −8.511 OK
R3 −0.544 −70.848 OK −0.220 −26.562 OK −0.253 −40.697 OK

Fastest Slowest Proximity Adaptive Loyal Random
0

0.2

0.4

0.6

0.8

1

R
o
b

u
s
tn

e
s
s

Figure 7: Robustness values using different ranking functions.
Each circle is a unique protocol. Bigger circles represent better
performance.

function, could get stuck with very slow peers (who follow another
protocol) that keep cooperating with it. However, it is interesting
to note that the highest robustness achieved by a protocol that sorts
others based on loyalty, is actually a very high 0.97.

Aggressiveness. In Figure 8 we see that Robustness and Aggres-
siveness are linearly correlated with a Pearson’s correlation coef-
ficient of 0.96. This suggests that robust protocols are also very
aggressive and there does not seem to be a major payoff between
robustness and aggressiveness. We can conclude that the results for
Robustness also hold for Aggressiveness.

4.4.1 Regression Analysis
We applied multiple linear regression analysis for the whole pro-

tocol design space, which is reported in Table 3. Values of h and
k (i.e. number of strangers and partners) were treated as numerical
values (in the table h̃ and k̃ are the standardized values of h and k,
respectively), whereas the other variables are categorical, thus were
substituted by dummy variables.

These results serve as a summary of our previous results and also
examine some dimensions which were not covered in the previous
section. From Table 3 we can conclude the following: i) Choos-
ing Freeride as a resource allocation policy (R3) has the biggest
negative impact on Performance and Aggressiveness and it is also
has a big negative impact on Robustness. ii) Another bad choice
is the Defect stranger policy (B3). This policy has the biggest neg-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Robustness

A
g

g
re

s
s
iv

e
n
e

s
s

Figure 8: Scatter plot of robustness and aggressiveness values of
the protocols. The Pearson’s correlation coefficient is 0.96.

ative effect on Robustness. On the other hand, the When needed
policy (B2) increases Robustness and Aggressiveness, but is not
statistically significant for Performance. iii) Increasing the num-
ber of strangers to cooperate with increases all three, Performance,
Robustness, and Aggressiveness values and this variable has the
biggest positive effect on all three measures. iv) Higher number
of partners results in an increase in Robustness and Aggressive-
ness, but not for Performance. v) We can see that TF2T strategy
(C2) plays a consistent negative role for all three measures. vi) The
choice of the ranking function has a big effect on Robustness and
Aggressiveness. This is in line with Figure 7. However, choice of
ranking function does not have significant impact on Performance,
except for the Sort Loyal ranking function (I5), which increases
Performance.

4.4.2 Birds according to Design Space Analysis
We devised a robust variant of BitTorrent in Section 2.3 using

a game-theoretic analysis. Subsequently, we augmented game-
theoretic analysis for protocol design with Design Space Analysis.
We would now like to inspect if the results that we obtained from
our game-theoretic analysis have held. How does Birds fare in the
larger design space, under a more comprehensive and more realistic
analysis?

For the Performance measure, the best Birds variant, i.e., a pro-
tocol that at the very least ranks other by Proximity and employs

190

0 0.1 0.25 0.5 0.75 0.9 1
0

50

100

150

200

Fraction of Loyal−When−needed clients

A
v
e

ra
g

e
 D

o
w

n
lo

a
d

 T
im

e
s
 (

s
e

c
)

Loyal−When−needed

BitTorrent

(a)

0 0.1 0.25 0.5 0.75 0.9 1
0

50

100

150

200

Fraction of Birds clients

A
v
e

ra
g

e
 D

o
w

n
lo

a
d

 T
Im

e
s
 (

s
e

c
)

Birds

BitTorrent

(b)

0 0.1 0.25 0.5 0.75 0.9 1
0

50

100

150

200

Fraction of Loyal−When−needed clients

A
v
e

ra
g

e
 D

o
w

n
lo

a
d

 T
im

e
s
 (

s
e

c
)

Loyal−When−needed

Birds

(c)

Figure 9: Encounters between three selected protocols.

Equal Split reciprocation, does well with a Performance value of
0.83 to rank at 30 among all 3270 protocols. In Robustness, Birds
achieves a highest value of 0.76 and ranks at 714. For Aggressive-
ness, Birds achieves a highest value of 0.74 to rank at 630 among
all protocols.

4.4.3 Discussion
Using DSA we were able to discover protocol variants that do

well by employing interesting and counter-intuitive combinations
of actualized dimensions. Some combinations lead to extremely
high performance, while some lead to very high robustness. We
also discovered a few protocols that are both highly robust and also
have high performance.

The highly robust protocols are the best candidates for usage
in open distributed systems, in which protocol variants may en-
ter; whereas the protocols that achieve very high performance are
perhaps more suited to closed systems, where incentives are not re-
quired. With the regression analysis on the whole design space we
were able to measure the relative impacts of the different dimen-
sions. This also gives new insights into practical protocol designs,
and indicates the actualized dimensions that should be preferred
and those that should be avoided.

Finally, we observed that Birds ranked very well in Performance
and it is within the top quarter in Robustness. Given the fact that
Birds was devised using a highly abstracted game-theoretic analy-
sis, we claim to have: a) shown that a game-theoretic analysis is
a useful tool which can be used to devise protocols through sim-
ple abstractions, that do reasonably well; and b) demonstrated the
utility of DSA, by discovering several protocols that do better than
Birds, in terms of Robustness and Performance.

5. VALIDATION OF DSA RESULTS
We discovered several interesting protocols using Design Space

Analysis. In this section we want to explore how well DSA can be
used to design deployable protocols. In order to prove the feasi-
bility of using DSA to produce robust and high performing proto-
cols that can be deployed, we modified an instrumented BitTorrent
client provided by [14]. From the discovered protocols we choose
one that uses the Sort Loyal ranking function and the When needed
stranger policy because this variant resulted in both high Perfor-
mance and Robustness according to DSA. We term this protocol as
‘Loyal-When-needed’. Another variant was suggested by our Nash
equilibrium analysis, which is the Birds protocol. Birds uses the
Proximity ranking function. The third protocol type is the standard
BitTorrent, which represents the baseline.

Sort−S Random Loyal−Wn BT Birds
0

50

100

150

200

A
v
e

ra
g

e
 D

o
w

n
lo

a
d

 T
im

e
s
 (

s
e

c
)

Figure 10: Performance of various protocols.

Experimental setup. In our experiments we pitted one protocol
against another, with varying proportions of the two protocols. We
adopted an experimental setup similar to [16] and [24]. The to-
tal number of leechers is 50. We setup one seeder with an upload
bandwidth of 128 KBps. We setup a local tracker, with peers down-
loading 5MB files. We used the bandwidth distribution provided by
[24]. Peers leave upon completing their download. The results of
these runs can be seen in Figures 9 and 10, where each point in the
figures represents the average over at least 10 runs and error bars
mark 95% confidence intervals. Finally, we base our decision to
use a cluster on the arguments and results in [27].

BitTorrent vs Loyal-When-needed. Figure 9(a) represents com-
petitive encounters between BitTorrent and Loyal-When-needed
clients. We can see the consistent trend of the Loyal-When-needed
clients regarding the average download times: it is largely inde-
pendent of the composition of the swarm. Moreover, Loyal-When-
needed clients never do worse than BitTorrent, and they do signifi-
cantly better if they are in a majority in the swarm.

Birds vs BitTorrent. Figure 9(b) represents a validation of our
game-theoretic analysis from Section 2.3: Birds does as well or
better than BitTorrent in all proportions. The difference is statisti-
cally significant if the proportion of Birds clients is more than or
equal to three quarters. We can also conclude that the swarm with
only Birds clients results in significantly better average download
time than a swarm with only BitTorrent clients.

191

Birds vs Loyal-When-needed. Finally, in Figure 9(c) we com-
pare the competitive encounters of Birds and Loyal-When-needed.
We can immediately see that a swarm with only Birds clients re-
sults in better average download time. Together with the previous
results, this validates our analysis using DSA, according to which
Birds ranks high in performance (as discussed in Section 4.4.2).
In line with our DSA results, the Loyal-When-needed protocol is
more robust than Birds. The degradation in Birds performance be-
comes statistically significant when the two protocols compete; this
is more evident when the Loyal-When-needed clients are in the ma-
jority.

Performance of various protocols. We now compare the perfor-
mance of different protocols when all peers in the population exe-
cute the same protocol. For this, we consider two additional pro-
tocols that we discovered through DSA. Figure 10 shows that a
protocol that we term Sort-S, together with Birds, fares the best
when all peers in the swarm follow the same protocol. Sort-S is the
interesting protocol that we discovered in our DSA analysis. It uses
the Sort Slowest ranking function, defects on strangers and only has
one partner. It is interesting to observe that a protocol that uses the
Sort Random ranking function performs as well as BitTorrent. This
recalls the results presented in [15]. We note that Figure 10 does
not say anything about the Robustness of these protocols.

6. RELATED WORK
The study of incentive mechanisms for distributed systems has

been a well-studied topic in the research community. Such works
can be roughly categorized into the works, which came before the
seminal papers by Feigenbaum and Shenker [6], and Dash et al. [5],
and those that came subsequently. We concentrate on the latter
works. Mahajan et al. [18] described their unsuccessful efforts at
applying game theory for system design. They suggested that relax-
ing the notion of perfect selfishness could increase the applicabil-
ity of game theory. We demonstrated that game theoretic analysis
despite high level of abstraction, can result in a fruitful analysis,
which, however, needs to be augmented with a detailed analysis.

Feldman et al. [7] applied an evolutionary game-theoretic analy-
sis on a P2P design space. Their analysis differed from ours as it fo-
cussed on simple cooperation, defection and reciprocation, whereas
we analyze a considerably vast space of protocols. Also, we apply
the results of our analysis to BitTorrent to validate our approach.

Qiu et al. [26] under certain assumptions showed that BitTorrent
is a Nash Equilibrium. We used a different abstraction and proved
otherwise. Similarly Levin et al. [16] argued that BitTorrent is an
auction, and with their model gained insights to develop a more
robust variant. We showed that considering BitTorrent as a strategy
in a game, also leads to insights, and we also developed a more
robust variant.

Finally, many papers propose protocol variants not based on
game-theoretic analysis [2, 15], but to our knowledge, ours is
the first attempt to provide a comprehensive, simulation based ap-
proach.

7. CONCLUSION AND FUTURE WORK
We have presented Design Space Analysis (DSA), a simulation

based approach that complements game-theoretic analysis of in-
centives in distributed protocols. DSA emphasizes the specifica-
tion and analysis of a design space, rather than proposing a single
protocol. We have shown that DSA can be used to gain an in-depth
analysis of the properties of protocol variants, and it can be used for
designing deployable protocols. For future work, we would like to
explore if a solution concept similar to PRA quantification could be

developed which explores the design space using a heuristic based
approach. This could be needed in situations where a thorough scan
of the design space becomes infeasible due to its size. We would
also like to test DSA on distributed domains other than P2P. In con-
clusion, we note that DSA is a general method, which is practical
and easy to apply, and we have demonstrated its merits by applying
it successfully to P2P file swarming systems.

Acknowledgement
This work was partially supported by the Higher Education Com-
mission (HEC) of Pakistan; and by the European Community 7th
Framework Program through the QLectives and P2P-Next projects
(grant no. 231200, 216217). We thank Márk Jelasity and his group
at Szeged, Hungary for their valuable feedback during the early
phase of this work. We would also like to thank the anonymous
reviewers who have helped to improve the paper. Finally, we thank
our shepherd, Scott Shenker for guiding us in the final stages of this
work.

8. REFERENCES
[1] R. Axelrod. The Evolution of Cooperation. Basic Books,

New York, 1984.
[2] A. Bharambe, C. Herley, and V. Padmanabhan. Analyzing

and improving a BitTorrent network’s performance
mechanisms. In INFOCOM, 2006.

[3] C. Buragohain, D. Agrawal, and S. Suri. A game theoretic
framework for incentives in P2P systems. In IEEE P2P,
2003.

[4] A.L.H. Chow, L. Golubchik, V. Misra. BitTorrent: An
extensible heterogeneous model. In INFOCOM, 2009.

[5] R. Dash, N. Jennings, and D. Parkes.
Computational-mechanism design: A call to arms. IEEE
Intelligent Systems, 18:40–47, 2003.

[6] J. Feigenbaum and S. Shenker. Distributed Algorithmic
Mechanism Design: Recent Results and Future Directions.
In ACM DIALM, 2002.

[7] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust
incentive techniques for peer-to-peer networks. In ACM EC,
pp. 102–111, 2004.

[8] R. Hahnel and A. Library. The ABCs of political economy: A
modern approach. Pluto Press, 2002.

[9] T. Hoßfeld, F. Lehrieder, D. Hock, S. Oechsner,
Z. Despotovic, W. Kellerer, and M. Michel. Characterization
of BitTorrent swarms and their distribution in the Internet.
Computer Networks, 55:1197–1215, 2011.

[10] D. Hruschka and J. Henrich. Friendship, cliquishness, and
the emergence of cooperation. Journal of Theoretical
Biology, 239:1–15, 2006.

[11] R. Izhak-Ratzin. Collaboration in BitTorrent systems. In
IFIP-TC Networking, pp. 338–351, 2009.

[12] S. Jun and M. Ahamad. Incentives in BitTorrent induce free
riding. In P2PECON, 2005.

[13] A.-M. Kermarrec and M. van Steen, editors. ACM SIGOPS
Operating Systems Review 41, Special Issue on
Gossip-Based Networking. 2007.

[14] A. Legout, N. Liogkas, E. Kohler, and L. Zhang. Clustering
and sharing incentives in bittorrent systems. In ACM
SIGMETRICS, pp. 301–312, 2007.

[15] B. Leong, Y. Wang, S. Wen, C. Carbunaru, Y. Teo, C. Chang,
and T. Ho. Improving peer-to-peer file distribution: winner
doesn’t have to take all. In ACM APSys, pp. 55–60, 2010.

192

[16] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee.
BitTorrent is an auction: analyzing and improving
BitTorrent’s incentives. In ACM SIGCOMM, 2008.

[17] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free
riding in BitTorrent is cheap. In HotNets-V, 2006.

[18] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.
Experiences applying game theory to system design. In ACM
PINS, pp. 183–190, 2004.

[19] G. Mailath. Do people play Nash equilibrium? Lessons from
evolutionary game theory. Journal of Economic Literature,
36:1347–1374, 1998.

[20] M. Meulpolder, J. Pouwelse, D. Epema, and H. Sips.
BarterCast: A practical approach to prevent lazy freeriding in
P2P networks. In IEEE IPDPS, 2009.

[21] J. Mol, J. Pouwelse, M. Meulpolder, D. Epema, and H. Sips.
Give-to-get: Free-riding-resilient video-on-demand in p2p
systems. In SPIE/ACM MMCN, 2008.

[22] M. Osborne and A. Rubinstein. A course in game theory. The
MIT press, 1994.

[23] F. Pianese, J. Keller, and E. Biersack. PULSE, a flexible P2P
live streaming system. In INFOCOM, 2006.

[24] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. Do incentives build robustness in
BitTorrent. In NSDI, 2007.

[25] M. Posch. Win-Stay, Lose-Shift Strategies for Repeated
Games–Memory Length, Aspiration Levels and Noise.
Journal of Theoretical Biology, 198:183–195, 1999.

[26] D. Qiu and R. Srikant. Modeling and performance analysis
of BitTorrent-like peer-to-peer networks. ACM SIGCOMM
Computer Communication Review, 34:367–378, 2004.

[27] A. Rao, A. Legout, and W. Dabbous. Can Realistic
BitTorrent Experiments Be Performed on Clusters? In IEEE
P2P, 2010.

[28] E. Rasmusen. Games and information: An introduction to
game theory. Wiley-Blackwell, 2007.

[29] T. Roughgarden and É. Tardos. How bad is selfish routing.
Journal of the ACM, 49:236–259, 2002.

[30] K. Rzadca, A. Datta, and S. Buchegger. Replica placement in
p2p storage: Complexity and game theoretic analyses. In
ICDCS, pp. 599–609, 2010.

[31] S. Shenker. Making greed work in networks: A
game-theoretic analysis of switch service disciplines.
IEEE/ACM Transactions on Networking, 3:819–831, 2002.

[32] M. Yang, Z. Zhang, X. Li, and Y. Dai. An empirical study of
free-riding behavior in the Maze P2P file-sharing system.
Peer-to-Peer Systems IV, pp. 182–192, 2005.

Appendix: BitTorrent Nash Equilibrium
In the following we use the notation introduced in Table 1 and the
results from Sections 2.2 and 2.3.

In order to show that BitTorrent is not a Nash equilibrium (NE),
we consider a swarm with N−1 BitTorrent (BT) peers and assume
that one peer using the Birds protocol enters this swarm.

In this setup the expected number of games won by the BT
clients against higher and lower classes do not change. On the other
hand, for the Birds client only the formula for the expected number
of games won against the peers from the lower classes changes to
Er

B[B→ c]′ = NB/Nr, which is the same as for the BT clients.
Now, we consider the class C where the peer using the Birds

protocol is located. The expected values of the number of games
that the peers win due to reciprocation from other peers in this class

will be Er
B[C− c]′ =Ur−K for Birds and

Er[C→ c]′ =
NC′ −Ur

NC′
(Ur−K−E[A→ c])

+
Ur

NC′
(Ur−E[A→ c]−K′)

= Ur−K−E[A→ c]− Ur

NC′
(K +K′)

for the BT clients, where NC′ = NC−1, and K′ = 1−
(
(1−E[A→

c])(1− 1
Ur
)
)Ur−1, which leads us to the fact that

EB[C→ c]′ > E[C→ c]′.

Regarding the ’free game wins’, the formulae change to

EB[C→ c]′ =
NC′

NC
(NC−Er[C→ c]′)/Nr,

E[C→ c]′ = EB[C→ c]′+
NC−Er

B[C→ c]′

NCNr
,

which says that E[C→ c]′ > EB[C→ c]′; however,

Er
B[C→ c]′+Er

B[C→ c]′ > Er[C→ c]′+E[C→ c]′

holds. Thus, the peer using the Birds protocol, on average, wins
more games than any of the BT clients, proving that BT is not a
NE.

Now we show that it is a NE when all peers in the swarm follow
the Birds protocol.

We assume that there are N−1 peers following the Birds proto-
col and one peer using the BT protocol enters this swarm. We give
a formal proof for the case when this new peer uses BT; the other
three cases (regarding class-based reciprocation) can be proved in
the similar way.

First, we consider the games where peers get reciprocation. Nei-
ther the Birds peers nor the BT peer get anything from the higher
and lower classes. For that particular class C, where the BT peer is
located we have

Er
B[C→ c]′′ =

NC′ −Ur

NC′
Ur +

Ur

NC′
(Ur−E[A→ c])

= Ur−
Ur

NC′
E[A→ c],

where NC′ is the number of Birds in class C, i.e. NC′ = NC − 1.
Moreover, we have Er[C→ c]′′ = Ur −E[A→ c]; from here it is
easy to see that Er

B[C→ c]′′ > Er[C→ c]′′.
‘Free game wins’ remain the same. The expressions for the same

class become

E[C→ c]′′ =
NC′

NC
×

NC′ −Er
B[C→ c]

N−Ur−1
,

and

EB[C→ c]′′ = E[C→ c]′′+
NC′ −Er[C→ c]
NC′(N−Ur−1)

,

Thus we conclude that EB[C→ c]′′ > E[C→ c]′′ which completes
our proof that Birds is a NE.

193

