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Introduction to self-modeling curve 
resolution (SMCR)
• SMCR analysis of mixture spectra begins with a PCA model
• Iterative least-squares fitting process used to estimate non-negative,

unimodal composition profiles and non-negative spectra of the pure
components

• No referee measurements or other prior information is needed.

=

Physical model

A =       C x       P
(data)              (conc.)  x   (spectra)

Mixture spectra
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Basic SMCR algorithm
• Initial solution or "guess" is selected

– Initial estimate of conc. profiles, Co: Needle search, Evolving factor 
analysis

– Initial estimate of pure spectra, Po

– Initial starting points (Co or Po), seldom obey constraints 

• Alternating least-squares steps used to fit the initial 
unconstrained solution producing better "constrained" 
estimates.  
– Given some estimate of C, find P such that P minimizes 

||A - CPT|| subject to constraints on P such as P > 0, etc. 
– Given some estimate of P, find C such that C minimizes 

||A - CPT|| subject to constraints on C such as C > 0, etc.
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UV/Vis fiber-optic batch monitoring
• Reaction of salicylic acid (SA) with acetic anhydride (AA) to form acetylsalicylic acid 

(ASA) is exothermic
• At high conc., small changes in temperature can cause significant fluctuation in 

spectroscopic response
• PCA of the SA – AA reaction mixture spectra shows 3 factors instead of the 

expected 2 factors.
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Example of constrained vs. unconstrained 
solution

Unconstrained fit: SSQ = 99.98% (red curves)
Constrained fit:  SSQ = 99.91%

A small difference in 
SSQ can mean a large 

difference in shape

SA

ASA

SA + AA > ASA

SA

ASA
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An Implied SMCR Research hypothesis

• “There exists an unconstrained bilinear model 
with unimodal, non-negative pure component 
concentration profiles and pure component 
non-negative spectra that fits the data matrix 
of measurements obtained from the evolving 
system”.
– Hypothesis is tested by iteratively fitting a 

constrained model until convergence.
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SMCR with least-squares penalty 
constraints

• ALS steps performed using row-wise estimation 
of the parameter matrix C or P

– Given A and C, estimate constrained solutions pj
for each column in A

– Given A and P, estimate constrained solutions ci
for each row in A

• Row-wise procedure transforms the problem to 
the form:

y = Xb subject to bij = gi
• y is augmented with g (the constraint goal or 

target value)
• X is augmented with H (1’s and 0’s showing 

location of constraints4

• Penalty weighting factor,  , adjusted to give soft 
or hard constraints b
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Soft vs. hard constraints
• P-ALS resolution of simulated chromatography data shows the advantage 

of using “soft” non-negativity constraints vs. “hard” constraints.
• Average error in peak areas:     Soft: 1.9% Hard: 12.6%

Soft 
constraints

Hard 
constraints
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Flow injection example – resolution of 
equilibrium species

• Bolus of Bi(ClO4)3 injected 
into a flowing stream of 
HCl, 

• Mixing occurs in the from 
and tail of the bolus

• Species observed: Bi3+, 
BiCl2+, BiCl2+, BiCl3, BiCl4-, 
BiCl52-, and BiCl63-

• Spectral profiles 
measured with HPLC 
diode array detector
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Use of reference spectra in soft equality 
constraints
• Pure component spectra 

estimated from front half of 
bolus were used in equality 
constraints to improve estimates 
in the second half

BiCl52-

BiCl63- BiCl4-
BiCl3

BiCl2+
BiCl2+

Bi3+

BiCl4-
BiCl3

BiCl2+BiCl2+

BiCl52- BiCl63-

BiCl52-
BiCl63-

BiCl4-
BiCl3

BiCl2+

BiCl2+

Bi3+
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The range of feasible solutions in SMCR 
applications
• Most curve resolution problems have a range of feasible 

solutions that obey constraints 
• Analytical solutions for the boundary problems were 

published in the mid 1980’s for 2 component and 3 
component mixtures2,3.

• Published solutions were difficult to derive, complicated and 
hard to understand.

• Conceptually simple method for finding min/max boundaries 
was developed using the Matlab Optimization Toolbox.

2. Borgen, O.S.,Kowalski, B.R., An Extenssion of the Multivariate Component-Resolution Method to Three 
Components, Anal. Chim. Acta., 174, 1-26, (1985).

3. Borgen, O.S., Davidsen, N., Mingyang, Z., Oyen, O., The Multivariate N-Component Resolution problem 
with Minimum Assumptions, Mikrochim. Acta, 2, 63-73, (1986)
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Criteria for uniqueness in SMCR frequently not met in 
batch process profiles
• Rank one sub-windows frequently may not be present
• Zero concentration sub-windows frequently may not be present

• The first spectrum may be pure starting material; however, at intermediate times 
and at the  reaction end-point a mixture of starting material, intermediate(s) and 
product(s) may be present (see simulated profiles and mixture spectra, above)
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Min/max boundaries for SMCR results with non-
negative constraints

Feasible bands are shown for SMCR analysis of simulated data.  The starting material 
spectrum (blue) is held constant.  Lack of zero-component regions leads to wide 
feasible bands in the curves for the intermediate (green) and product (red).
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UV/vis measurement of a tritylation reaction

• Trityl chloride
– This reaction forms a solvated reactive intermediate.  Progress of the 

reaction can be tracked with UV/vis measurements.  
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The SMCR results look great, but…
are they accurate estimates of REAL profiles?

Lack of full selectivity in the measurements means that ranges of feasible solutions exist that meet non-
negativity constraints. Results outside the boundaries violate non-negativity constraints, e.g., estimated
composition profiles and/or spectral profiles will have one or more negative regions.
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Overall project goal – develop monitoring 
technique for batch processes involving slurries
• Extend kinetic modeling approach to a prototypical slurry 

reaction
• Make optical measurements in light-scattering medium
• Modify kinetic models to include:

• Dissolution of starting material A & flow-in of reagent B
• Nucleation and crystallization of product, P

• Develop empirical models for dissolution, nucleation and 
crystallization

• Kinetic models with reagent flow-in impose strict mass balance 
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Slurries
• A dynamic system of crystalline 

material suspended in a liquid 
medium

• Common Examples
– Production of pharmaceuticals
– Production of fine chemicals
– Biological absorption of 

pharmaceuticals
• Dynamic processes

– Dissolution of starting materials
– Nucleation and crystal growth of 

products

• Crystal products
– Often desire specific 

properties
• Size distribution, lattice 

form, etc.
– Relative rates determine 

properties
– Factors governing process 

rates
• Temperature
• Rate of stirring
• Crystal surface area
• Attrition
• Agglomeration
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Challenges – Optical Methods in Slurries
• Linear response is needed for kinetic modeling and 

self-modeling curve resolution
• Reflectance measurements include both light 

scattering and light absorption signals
– Mathematical resolution of the two is needed to estimate 

solid fraction and dissolved fraction
– Effective path length is dependent on

• Number density of light scattering particles
• Particle size distribution
• Wavelength

• ATR measurements for light absorption (dissolved 
fraction)
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Experimental demonstration

• Reaction of Salicylic Acid to form 
Acetylsalicylic Acid (Aspirin)
– Simple, well understood reaction to test modeling 

ability

• Process includes:
– Dissolution
– 4 Primary Reactions
– Crystallization
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Laboratory scale batch 
reactors

21
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Reaction Mechanisms

Catalyzed Reaction

Water Addition

22

HAASAAA  SA 1 +⎯→⎯+ k

HAASAAAA  ASA 2 +⎯→⎯+ k

HAASAOHASAA 3
2 +⎯→⎯+ k

HA2OHAA 4
2 ⎯→⎯+ k
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Saturation and Supersaturation
• Considered relative to 

equilibrium solubility
• Super-saturation

– “Driving force” of 
nucleation and crystal 
growth

– Metastable
– Generated by

• Cooling
• Anti-solvent addition
• Solvent evaporation
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Modeling Dissolution/Growth of Solid

• High Level of Theory

• With simplifying assumptions
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Rate Laws
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Differential Equations
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Change in Volume

• Partial molar volume:

• Change in volume as a function of time:
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Concentration Profiles of All Species
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Validation of Concentration Profiles
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