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Abstract—The richness of user-centric information gathered
by modern devices can be used to keep track of memorable events,
therefore acting as a prosthesis of the prone-to-forget human
memory. We propose to combine virtual and physical sensors
from mobile devices to infer digital memories of user activities
in a semi-supervised fashion. In MemorySense, sensor data is
processed by a space and energy efficient algorithm to recognize
basic activities. We then use semantic reasoning to aggregate these
activities into the digital equivalent of a human episodic memory.

I. INTRODUCTION

The amount of digital information produced by users is
massive. Thanks to an ever-increasing range of hardware
devices whose capabilities soar while their price plummets
(e.g., smartphones, smartwatches), the digital trails of the
user behaviour, lifestyle, and social relationships are scattered
across a collection of unstructured repositories. As such,
efficient long-term archival and querying strategies are very
difficult to devise. How to scavenge this data, organise it,
extract meaningful information, and present it to the user is of
paramount importance to tap into the chaotic piles of digital
information that the users (semi-consciously) dump online.

Building a lifetime digital store of everything (e.g., articles,
books, letters, memos, photos, etc.) on desktop computers is a
long-standing challenge that dates back the early 2000. Among
other, the MyLifeBits project [1] aimed at fulfilling the Memex
vision by developing a system that stores all the digital media
of a user, offering visualisations and annotations capabilities.
However, the development of a digital memory system on a
mobile platform poses unique challenges, and at the same time
opens new opportunities. Thanks to the increasing number
of embedded sensors such as GPS, accelerometer and micro-
phone, user-centric sensing applications built on smartphones
and wearable devices are enabling new ways to sense and
understand the way we live (e.g., quantified self) and the
world that surrounds us [2]. There are several applications
that focus on structuring the digital information and recognis-
ing/quantifying specific aspects such as the physical activities
or the visited places. See for example [3], [4], [5] and [6].
However, to the best of our knowledge, how to build a system
capable of identifying the memorable events of a user, given
the signals and heterogeneous data sources that can be obtained
from the smartphone, is still an open question. A first step
in this direction has been taken by Guo et al. [7]. By using
mobile tagging, such as RFID or barcodes, human memories
are associated with physical objects, effectively externalising
part of the user memories, while at the same time building an
object-based social network for memory sharing.

Departing from classical infrastructures that provide static
views over heterogeneous sources, we propose to mimic the
way our brain stores and accesses information [8] in order
to narrow the cognitive burden of accessing digital memo-
ries. We focus on collecting and analysing mobile data from
smartphones, using multimodal data fusion, semi-supervised
online classification, and personalised statistical models to
automatically extract user digital memories. In MemorySense,
we aim at leveraging the sensors embedded in modern smart-
phones (i.e., GPS, accelerometer) and combining with external
open data sources (i.e., Google Places API, Foursquare API)
to answer the questions that are at the root of the creation
of memories (what occurred during an episode, where the
episode took place, and when the episode happened[8]). The
development of MemorySense on a mobile platform poses
unique challenges: coping with the limited computational
power, storage and battery; filtering noise from the input data;
reconstructing memories from partial chunks of information by
exploiting temporal, spatial and semantic correlations; ranking
the memories according to the user preferences, and represent-
ing them in an appealing form. Although part of the resource
limitations could be overcome by migrating the computations
to a cloud infrastructure, MemorySense has been designed to
explicitly avoid any exchange of sensitive user data with third-
parties.

The contributions of this paper are the following: (i) a
model to map digital data from smartphones to cognitive
memories; (ii) a combination of semi-supervised algorithms
with rule-based systems to create the basic elements that form
these memories; (iii) a framework to reconstruct the memories
by temporally, spatially and semantically correlating the basic
elements; (iv) the principle of a user-centric ranking function;
(v) a conceptual design of a GUI for memory representation,
retrieval and navigation.

II. EPISODIC MEMORY MODEL

Defined by Turving in 1942, the episodic memory repre-
sents the human system responsible of storing and recollecting
past experiences (e.g., had dinner with Alice last Saturday). In
[8], Conway theorizes the way in which episodic memories are
stored and retrieved while preserving the temporal dimension.
MemorySense is based on such model, and maps memories to
its hierarchical representation: going from Episodic Elements
(EE) to Episodic Memories (EM). This approach has 2 main
benefits: (1) the cognitive burden while interacting with the
system is reduced, hence facilitating higher memory recall (i.e.,
MemorySense acts like a "memory prosthesis"), (2) EEs and
EMs encourage composability of memories (i.e., we interpret
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EEs as atomic elements, and EMs as high-level overviews of
the events happened during a longer timespan).

In MemorySense, EEs are characterized by 3 different
dimensions that answer the following questions: What? When?
Where? The location type and its coordinates (i.e., Where?) is
specified only for geo-localizable events, while all the other
events (including those that MemorySense is able to extract
automatically from the phone activities) answer at least What?
When? Therefore, EEs are detailed descriptions of single,
atomic events (similar to how Life Events are encoded in the
Facebook timeline). On the other hand, MemorySense is able
to recognize EMs out of sequences of specific EEs, even when
the sequence is incomplete or out-of-order. It is enough for
the user to annotate an EE based on her past activity, and then
MemorySense will learn to recognize similar sequences in the
future. This feature is of key importance to make sure that
MemorySense can display memories at different zoom levels
(e.g., 1 day, 1 week, 1 month, etc.). Similarly, MemorySense
requires a ranking function to be applied on memories, in
order to “forget” less relevant events when the application is
displaying an overview of a long time range. We are currently
running user studies to find out a suitable ranking function,
but we already reduced our search space to functions that take
into account: (1) location type, (2) frequency of the same event,
and (3) user-defined importance (gathered at input time, with
a standard Likert scale).

III. ARCHITECTURE

The MemorySense approach is summarized by the concep-
tual architecture depicted in Figure 1. Sensor data comes from
two different types of sensors: physical sensors (e.g., GPS,
accelerometer) and virtual sensors (e.g., phone, sms, camera,
apps).

A. Generation of episodic elements

To generate episodic elements, we are interested in the stay
points of the user, which are the locations where the user stayed
at least for a minimum amount of time to perform an activity.
The Android activity recognition API, which provides an easy
way to detect if the user is traveling (i.e., in a vehicle, on
a bicycle, etc.) is used as a trigger to de-activate the energy-
consuming GPS sensor, therefore saving energy while applying
a first filtering layer on the data.

The GPS coordinates provided by the location sensing are
given as real values and therefore need to be clustered for three
reasons: (i) to distinguish whether the user stays within an area
considered as a unique location; (ii) to alleviate the inaccuracy
of the GPS sensor; (iii) to limit the computational cost of
determining the location type by avoiding the categorization
of GPS coordinates belonging to a classified location.

We use the clustering algorithm ESOINN, described in [9],
which provides the following advantages: (i) it processes input
signals in an online and incremental way; (ii) it is unsuper-
vised, as it allows clustering signals without any ground truth;
(iII) it does not require the number of clusters as a parameter,
but it allows dynamic detection of an not predefined number
of clusters.

In order for the algorithm to fit the needs of the project, we
implemented several modifications. The forgetting mechanism

of ESOINN was altered to prevent data loss, which would
require manual input from the user, while keeping performance
boost. In addition, a density modifier has been included to
reduce the complexity of the generated network, making
ESOIN suitable to compute on a mobile device. Finally, the
classification function was modified to keep consistent cluster
labeling throughout consecutive iterations.

The clusters provided by ESOINN are given a type attribute
characterizing the function of the location they represent (i.e.,
park, restaurant, university, etc.). This type is obtained from
the Google place API, which provides a list of places that
match some given GPS coordinates.

The MemorySense application explicitly asks the user to
annotate the places with the description of the activities that
were being performed (participatory sensing). Based on the
location types discovered in the previous step, the system
provides the user with a list of potential activities, sorted by
probability of occurring, from which the user can select the
activity she is performing. For example, the clustering algo-
rithm can detect that the user is in Hyde park, then the system
provides the user with several activities (running, walking the
dog, having a pick nick, etc.) and the user manually selects the
one she is performing. After a learning phase, the system can
detect that the user is recurrently performing the same action
at a specific place and will therefore stop asking the user for
her input.

In parallel, virtual sensors are also queried without user
acknowledgment, albeit not at regular intervals as in oppor-
tunistic sensing. Instead, sensor data is acquired every time
the user performs an action (user-triggered sensing). At the
time of writing, the sensors that are monitored are: call logs,
camera, calendar, SMS, browser history. Triggering a virtual
sensor generates automatically an episodic element containing
the information relative to the sensor, therefore providing
additional content to the creation of episodic memories.

B. Creation of episodic memories

Once correctly identified, the episodic elements need to be
aggregated into episodic memories. In figure 1, while Jogging
in Hyde park is directly transformed into the episodic memory
morning jogging, the phone call with Alice and the lunch
at the Thai restaurant are aggregated into a single memory
lunch with Alice. The creation of the episodic memory requires
expert knowledge about the composition of the underlying
episodic elements. It is possible to infer an episodic memory
by using a knowledge driven approach such as presented in
[10]. This approach allows for recognition of activities (in our
case episodic memories), based on the different sub-activities
(episodic elements) it is composed of. The main advantage
of this approach is that it is resilient to reordering of the sub-
activities. For example having a cinema evening with Alice can
be modeled as having dinner → watching the movie → walk
Alice safely back home. However if the movie is early enough
the user may plan to have dinner after the movie without
changing the episodic memory in itself. A second advantage
is that it allows for the insertion of extra sub-activities without
perturbing the recognition (e.g., having an ice-cream before
walking Alice home can be included in the episodic memory
of having a cinema evening with Alice).
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Fig. 1: MemorySense conceptual architecture. The Storyline view and the Monthly overview are 2 views over the user memories,
each focused on a different detail level. The events are encoded as a tuple <verb, object>, and categorized with a color (e.g.,
activity, phone interaction, photos, etc.). Furthermore, in the Monthly overview, the size of each color encodes the frequency of
a certain event type in the given timespan.

In order to enforce the privacy friendliness of Memory-
Sense, and given that it is not possible to build a model for
each activity, the models must be built by the user during the
training phase of the system. Once the models are created, they
can be used to recognize re-occurrence of activities. The model
creation is necessary only for newly discovered activities.

C. Categorisation and ranking of memories

The episodic memories are then categorized as frequent
memories and exceptional memories. Frequent memories are
those that occur often in a given time range, such as being at
home or training in the gym. Exceptional memories are those
that occur with low frequency and may represent something re-
markable in someone’s life (e.g., a specific holiday in France).
The relative frequency notion that is used here is tightly bound
to the specific time range. Memories can be very frequent at
the week level (e.g., a week of ski sessions in the Alps), while
being exceptional if we consider them at the month or year
level. For this reason we need to keep track of the distribution
of the memories for different levels of granularity. We can then
provide a ranking of the memories for a specific granularity,
whose score is the average score of its underlying episodic
elements. The score of an episodic element is a function of the
type of the location, its frequency at the specific granularity,
and a 5-star grading coming either from the manual input of
the user, in case of new episodic elements), or directly from
the system, in case of re-occurring elements.

D. Representation of memories

Finally, memories are showed to the user in a graphical
user interface. Several views are envisioned at this stage. The

main view consists of a scrolling storyline of the episodic
memories of the user, with a zoom function that allows the user
to dive into a more specific period. A coarse-grained version
of the storyline should display only the most important (in the
sense defined in the previous subsection) memories, while the
zooming function should provide the user with memories with
a lower ranking as well.

A second view focuses on the locations where the user
experienced her memories. More specifically, the episodic
elements composing this memory are displayed on a map,
once again using the zoom function to adjust the number of
displayed memories.

The last view that we envision focuses on the meaning
of the episodic memories, by grouping semantically-related
memories together. This relation can be computed using the
activity attached to the episodic memories. From the same
view, the user should also be able to define episodic memories
by manually grouping episodic elements together. As explained
previously, the manual input is only necessary for the first
occurrence of an episodic memory. From this input, the system
extracts the model of the memories and will use it afterward
to detect every new instance of this memory in an automatic
way.

IV. EVALUATION

We evaluate our approach both in terms of performance
and feasibility. The two following experiments are based on the
the GPS trace of users extracted from the dataset of the Nokia
challenge organized in 2009 [11] [12]. This dataset contains
data from 100 users for a period of 10 months. The Nokia



all exceptional frequent
DBSCAN [0.92 0.89] [0.71 0.61] [0.93 0.93]
ESOINN [0.92 0.86] [0.95 0.77] [0.83 0.83]

(a) Average precision and recall [P R]

1 day 7 days 1 month 6 months 10 months
DBSCAN 0.05s 0.12s 2.55s 14m 12s 36m 8s
ESOINN 2.6s 9s 32s 4m 13s 7m 25s

(b) Processing time for different time windows

TABLE I: Performance evaluation of the location clustering

timeseries contains noisy data resulting from the acquisition
of data-points while the users was traveling. While in our
architecture, sensor readings are submitted by the Android
activity recognition API which detects if the user is traveling,
this piece of information is not available in the Nokia dataset.
We therefore consider only the datapoints which can be labeled
and define the rest as noise which would have been discarded
by the Android activity recognition trigger.

A first evaluation aims at assessing the performance of the
recognition of episodic elements. We generate a storyline of
places, comparing our modified version of the ESOINN algo-
rithm with the state-of-the-art clustering algorithm DBSCAN.
The two storylines are compared to a third one based on the
ground truth provided by the Nokia dataset. Two alternate
storylines are created for each algorithm: (i) one containing
only events which are considered exceptional at the scale of
a month (i.e., less than 1.5% of events of the current month)
and (ii) another one containing frequent events (i.e., at least
10% of events of the current month). The precision and recall
values of the storylines of 4 different users have been averaged
(see table Ia). Since elements belonging to the true storyline
may not appear in the storylines produced by the algorithms,
and elements not present in the true storyline may be inserted,
the precision and recall computation has been modified by
introducing a null class in the confusion matrix. We remark
that the precision and recall of the null class is not taken
into account in the computation of the overall precision and
recall, and only false negatives (i.e., an element is deleted) and
false positives (i.e., an element is created) introduced by the
null class are factored in the performance metric. While for
the storylines containing all events the performance of both
algorithms is quite similar, we can observe that our approach
outperforms DBSCAN for the exceptional events, and it has a
comparable performance for the frequent events.

To evaluate the applicability of our approach in a mobile
environment, the two algorithms are ran on an Android smart-
phone with a CPU of 1.5 GHz quadcore, 2GB of RAM and
the operating system Android 4.4. Due to time constraints,
we limited our tests to a single user with a GPS trace con-
taining 13674 GPS points in the format <timestamp, latitude,
longitude>, for which a ground truth is provided. As de-
picted in table Ib, the processing time for DBSCAN increases
dramatically with the length of the trace. Since DBSCAN
is not incremental, after 180 days (' 6 months), DBSCAN
would need to process all the 179 previous days to generate
the daily storyline, with a processing time of 14 minutes
and 12 seconds, while ESOINN would need on average 2.60
seconds. Although we envision this daily processing to happen
when the smartphone is charging, to limit the impact on the
user experience, the growth of DBSCAN processing time will
eventually become unpractical and exceed the charging time
itself.

V. CURRENT STATUS AND FUTURE WORK

MemorySense aims at building a structured representation
of the user memories in a semi-supervised fashion, by leverag-
ing physical and virtual sensors in modern smartphones. Such
representation exploits Conway’s memory model to generate
digital memories, similarly to how the human brain generates
real memories. This work in progress paper presents the
conceptual architecture of the system, including some initial
results on the generation of episodic elements and episodic
memories. While the initial results are promising, additional
work is still required on the aggregation of semantically-related
episodic elements, the categorisation of the resulting episodic
memories, and their representation.
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