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ABSTRACT: Shear velocity u* is an important parameter in geophysical flows, in particular with respect to sediment transport dynam-
ics. In this study, we investigate the feasibility of applying five standard methods [the logarithmic mean velocity profile, the Reynolds
stress profile, the turbulent kinetic energy (TKE) profile, the wall similarity and spectral methods] that were initially developed to estimate
shear velocity in smooth bed flow to turbulent flow over a loose bed of coarse gravel (D50=1�5 cm) under sub-threshold conditions. The
analysis is based on quasi-instantaneous three-dimensional (3D) full depth velocity profiles with high spatial and temporal resolution that
weremeasuredwith an Acoustic Doppler Velocity Profiler (ADVP) in an open channel. The results of the analysis confirm the importance
of detailed velocity profile measurements for the determination of shear velocity in rough-bed flows. Results from all methods fall into a
range of�20% variability and no systematic trend betweenmethods was observed. Local and temporal variation in the loose bed rough-
ness may contribute to the variability of the logarithmic profile method results. Estimates obtained from the TKE and Reynolds stress
methods reasonably agree. Most results from the wall similarity method are within 10% of those obtained by the TKE and Reynolds stress
methods. The spectral method was difficult to use since the spectral energy of the vertical velocity component strongly increased
with distance from the bed in the inner layer. This made the choice of the reference level problematic. Mean shear stress for all
experiments follows a quadratic relationship with the mean velocity in the flow. The wall similarity method appears to be a
promising tool for estimating shear velocity under rough-bed flow conditions and in field studies where other methods may be
difficult to apply. This method allows for the determination of u* from a single point measurement at one level in the intermediate
range (0�3< h<0�6). Copyright © 2013 John Wiley & Sons, Ltd.
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Introduction

Bed shear stress t is an important parameter in many
geophysical and environmental engineering applications. It is
a fundamental variable and turbulence scaling parameter in
river studies because it relates to scour and channel changes.
The estimation of critical erosion and deposition thresholds
and of erosion and deposition rates requires the determination
of hydrodynamic forces applied to sediment as bed shear stress.
The accuracy of sediment transport rate calculations is strongly
affected by shear stress estimates. Bed shear stress t is related
to shear velocity u* by t ¼ r u2

�, where r is water density. Shear
velocity is linked to turbulent flow structures close to the
bed and is important for understanding the development of
near-bed turbulence. In gravel-bed flows, shear stress cannot
be measured directly and is indirectly determined from
estimates of u*. Due to the quadratic relationship between t
and u*, high-quality estimates of u* are required in order to
obtain reliable shear stress estimates.
Shear velocity is determined using velocity profile data,

particularly those measured in the inner layer. In loose gravel
bed flows, a roughness layer develops just above the bed
(Raupach, 1981; Nikora and Smart, 1997), thus affecting the
lower end of the inner layer velocity profile. The flow dynamics
in the roughness layer are directly influenced by the length
scales associated with bed roughness elements and this flow
is often three–dimensional (3D). No universal concept exists
for the determination of the layer height. Awide range of prop-
ositions for the layer height is found in the literature: 50 rough-
ness lengths z0, Townsend (1976); two to five diameters D,
Raupach et al. (1991); three diameters D, Wilcock (1996); sD
(sD= standard deviation of the bed elevations), Nikora and
Goring (2000); 0�05 h (h is water depth), Smart (1999). Above
the roughness layer, concepts of smooth boundary layer flow
may be applied to characterize the flow. Their applicability
also depends on the relative roughness D/h. If the relative
roughness increases, the height of the water column may not
be sufficient for the boundary layer profiles to develop
according to known smooth bed flow distribution laws. Katul
et al. (2002) suggest that these laws may fail for h< 10D.

Shear velocity in rough-bed flows often has to be determined
from detailed full depth velocity profiles because of the uncer-
tainty of the roughness layer height. In gravel bed rivers,
Wilcock (1996) and Smart (1999) used the logarithmic profile
method to determine shear velocity, Nikora and Goring
(2000) applied the Reynolds stress method and MacVicar and
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Roy (2007) applied the turbulent kinetic energy (TKE) method.
Rowinski et al. (2005) compared these methods in a laboratory
study of flow over armoured gravel beds and found that the
logarithmic profile method was not suitable in their case. They
pointed out that due to the bed irregularity in coarse gravel
beds, it is difficult to use single point measurements for the
determination of shear velocity with the methods which they
applied.
Under certain conditions, it may be difficult to obtain reliable

velocity profile data, particularly in the field. In that case,
shear velocity must be estimated from single point measure-
ments. This approach is often taken in oceanographic studies
(Stapleton and Huntley, 1995). Kim et al. (2000) used the same
methods as Rowinski et al. (2005) and the spectral method in
an estuary over a soft mud bottom and recommend further
investigating the TKE method based on velocity measurements
carried out at two levels. Biron et al. (2004) performed labora-
tory experiments over fine sand, using the same methods and
observed that the logarithmic profile methods gave shear veloc-
ity estimates that were significantly larger than the remaining
methods. They suggest that single point measurements should
be made at 0�1 h, but above the roughness layer. However, they
caution that more research is needed to determine whether this
level is correct for all flow cases. Hurther and Lemmin (2000)
investigated the validity of the wall similarity method over
transitionally rough beds based on detailed profile data. They
found this method promising for applications in difficult bed
conditions, because it allows determining the shear velocity
from single point measurements within the intermediate depth
range. It appears that no study thus far has compared all these
methods in flows over fully rough beds with coarse gravel, even
though this situation is most often found in rivers with irregular
bed surfaces.
Since the laboratory studies cited earlier were carried out

under less rough-bed flow conditions (D50< 0�5 cm) and found
great differences in the shear velocity estimates calculated
by different methods, it is of interest to investigate the feasibility
of using these methods under coarse gravel bed conditions.
In this study, local mean shear velocity estimates are calculated
using Acoustic Doppler Velocity Profiler (ADVP) quasi-
instantaneous full depth profile data that were collected under
controlled laboratory conditions in a sub-threshold open-
channel flow over a fully rough coarse gravel-bed (D50 = 1�5
cm). We will first summarize the methods used. We will then
investigate the possibility of applying them to turbulent flow
over a fully rough bed. The results obtained by the different
methods will be compared and discussed. The objective is to
determine the best of these methods and make recommenda-
tions on each of them. Furthermore, profile methods will be
applied here in order to determine which of these methods
can also provide reliable shear velocity estimates based on
single point measurements.
Techniques for estimating shear velocity

Shear velocity was initially defined within concepts of bound-
ary layer flow. Commonly employed methods are based on
the assumption of the presence of a constant shear layer stress
within the water column where shear stress only varies slightly
from bottom stress t. Even though a constant shear layer does
not exist in open-channel flow, these methods have been
successfully applied in open-channel flow studies. For open-
channel flow over rough beds, Nezu and Nakagawa (1993)
suggest four methods to calculate shear velocity and bed shear
stress: (1) from the bed slope under conditions of normal and
Copyright © 2013 John Wiley & Sons, Ltd.
uniform flow, (2) the logarithmic profile method, (3) the
Reynolds stress method, and (4) direct measurements.

In two-dimensional (2D), uniform flow, shear velocity can be
estimated based on a force balance approach and is often used
as a reference:

u� ¼
ffiffiffiffiffiffiffiffiffiffiffi
g R I

p
(1)

where g is the gravitational acceleration, R the hydraulic radius
and I the bed slope. However, this method provides an overall
value and may not be adequate for the evaluation of the flow
characteristics. In fully rough flows, local estimates of shear
velocity that determine sediment dynamics may strongly deviate
from those obtained from Equation 1 due to significant bed
roughness variability. In the present study, we focus on profile
methods for the determination of u*, taking advantage of the
detailed quasi-instantaneous full-depth ADVP profiles of all three
velocity components.Wewill evaluatemethods (2) and (3) and in
addition, apply the TKE method, the wall similarity method and
the spectral method.
Logarithmic velocity profile method

Katul et al. (2002) suggest that a logarithmic velocity profile
may exist in the inner layer of rough-bed flows covering the
lowest 20% of the water depth, if h> 10D. The logarithmic ve-
locity distribution is described by the von Karman–Prandtl
equation (Schlichting, 1987):

u
u�

¼ 1
k
ln

z
z0

� �
(2)

The constant k is von Karman’s constant. We will use k = 0�4
(Smart, 1999). Flow dependence of k is discussed in Ferreira
et al. (2012). Here, z0 is the characteristic hydraulic roughness
length (or roughness), and u is the mean longitudinal velocity at
height z above the bed. Monin and Yaglom (1971) define z0 as
the height at which the mean velocity of the flow will become
zero, if the logarithmic law would be applicable down to that
height. In rough-bed flows, the relative magnitude of z0 and a
representative length scale for the roughness elements are
important for the determination of the lower limit of the validity
of the log-law. For homogeneous sand roughness, Monin and
Yaglom (1971) established z0/D50 = 1/30 with bed roughness
parameter D50. For irregular roughness, the proportionality co-
efficient is often larger: z0/D50� 1/10 or even z0/D50�1/5
(Monin and Yaglom, 1971; Townsend, 1976). These authors
stress that this coefficient may not strictly be a constant for a
set of irregularities, since it also depends on the form of the
roughness element.

The logarithmic velocity profile method is widely used in
open-channel flow and river studies (Nezu and Nakagawa,
1993). It has the advantage that no independent estimate of
z0 is needed, because u* only depends on the slope of the pro-
file, not the intercept. In rough-bed flows, a logarithmic profile
will develop above the roughness layer. The following ranges
have been proposed for the validity of the log law: at heights
of z/z0> 50 (Townsend, 1976), between 3 Dp< z<h/5 (Dp

being the grain size for which p percent is finer; often taken
as D84; Wilcock, 1996), 0.05 h< z< h/2 (Smart, 1999).
Reynolds stress method

When turbulence measurements are available, local mean
shear velocity can be determined from the measured Reynolds
Earth Surf. Process. Landforms, Vol. 38, 1714–1724 (2013)
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stress distribution in the constant stress layer where stress
within the water column only varies slightly from bottom stress
t (Kim et al., 2000). It can be expressed as:

u� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� u0w 0�

p
(3)

where u0 and w0 are the velocity fluctuations of the longitudinal
(streamwise) and vertical components, respectively. The
overbar denotes time mean values. Due to internal shear within
the measuring volume, acoustic Doppler instrument measure-
ments are less reliable in strong velocity gradient layers, such
as the one close to the bed (Lhermitte and Lemmin, 1994,
Dombroski and Crimaldi, 2007). This method is also sensitive
to deviations from 2D uniform flow (Nezu and Nakagawa,
1993; Kim et al., 2000; Nikora and Goring, 2000; Albayrak
and Lemmin, 2011) and a precise sensor alignment is required.
In rough-bed open-channel flow, Reynolds stress varies linearly
in the outer layer (Nezu and Nakagawa, 1993). These authors
and Nikora and Goring (2000) suggested using the extrapola-
tion of the Reynolds stress profile to the bed,

u� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� u0w 0�

� �r
z!0 (4)

In addition, this method allows verifying the 2D flow condi-
tions by a linear distribution of the Reynolds stress above the
maximum.
Turbulent kinetic energy (TKE) method

Bed shear stress can be obtained from turbulent velocity fluctu-
ations through TKE calculations. TKE is defined as:

TKE ¼ 1
2 u

02
�

þ v
02
�

þw
02
�� ��

(5)

where v0 is the fluctuating transversal velocity component.
Linear relationships between TKE and shear stress have been
formulated (Townsend, 1976). Soulsby (1980) found that the
average ratio of shear stress to TKE is constant

tj j ¼ C1 r TKE (6)

Therefore,

u�j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 TKE

p
(7)

where C1 is a proportionality constant. For oceanic conditions,
Soulsby (1980) suggested C1� 0.2 while Stapleton and Huntley
(1995) applied C1� 0.19 which is also used for atmospheric
boundary layers. The value C1� 0.19 was used by MacVicar
and Roy (2007) in a gravel bed river, by Rowinski et al.
(2005) in a rough-bed open-channel, and by Pope et al.
(2006) in river and laboratory studies. Wolf (1999) proposed C1

0�19 based on coastal ocean studies. Kim et al. (2000) found
C1� 0.21 in an estuary by best fit to the data, suggesting that
further studies are needed to confirm that this is can be consid-
ered as a universal constant in hydraulics.
Kim et al. (2000) assumed a linear relationship between

the TKE and the variances (hereinafter labeled TKE W0), and
suggested that shear stress may be related to the vertical
variance component

tj j ¼ C2 r w
02
�

(8)

u�j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 w

02
�q

(9)

Kim et al. (2000) proposed C2� 0.9 by comparing the results of
TKE W0 with the results from the other methods.
Copyright © 2013 John Wiley & Sons, Ltd.
Nezu and Nakagawa (1993) have shown that Reynolds stress
and TKE are correlated in open-channel flow. In the inner layer,
the correlation coefficient R ¼ �uw

�
=2 TKE

� 	
has a value

close to 0�1. This results in �uw
�� 0:2 TKE . As with the

Reynolds stress method, by an extrapolation of the TKE profile
to the bed, we obtain

u� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2 TKE

p
z!0: (10)

Wall similarity method

The wall similarity concept in turbulent boundary layer flow
under uniform flow conditions at high Reynolds numbers
implies that an extended depth range exists where turbulent
energy production and dissipation are nearly in equilibrium
and diffusion is negligible, independent of flow and bed rough-
ness conditions. In the equilibrium layer (0�15≤ z/h≤ 0�6), a
balance exists between production p and energy dissipation e
that is given by (Townsend, 1976)

�p þ e ¼ u
0
w

0�
@u=@zð Þ þ e ¼ 0 (11)

and the turbulent energy diffusion term is

@

@z
1
2

u
02 þ v

02 þw
02

� �
w

0
�
 �

� 0 (12)

Thus, the vertical flux of TKE 1
2 u

02 þ v
02 þw

02
� �

w
0

�
ffi const in

the equilibrium layer. Hurther and Lemmin (2000) have shown
that the vertical flux of TKE normalized by the cube of the shear
velocity is given by

1
2 u3�

�
u02 þ v 02 þw 02

� �
w 0 ¼ Fk (13)

This normalization takes into account the bed roughness effect.
The following equation for u* is then obtained:

u� ¼ 1
2 Fk

u
02 þ v

02 þw
02

� �
w

0
�� �1

3=

(14)

Fk was found to be a constant with a mean value of 0�3 for the
range 0�15≤ z/h≤0�6 (Lopez and Garcia, 1999; Hurther and
Lemmin, 2000). Therefore, an estimate of the bottom friction ve-
locity can be obtained from a single determination of the vertical
turbulent energy flux at any level within the range 0�15≤ z/
h≤0�6. Since this range is fairly wide, a precise knowledge of
the measurement depth or the bed reference level is not neces-
sary for determining u* by this method. Due to the one-third
power relationship, the wall similarity method is not overly sensi-
tive to errors in the determination of the energy flux. It is therefore
well suited for field measurements. The wall similarity method
can be further simplified by only measuring a time series of u0,
if the empirical relations between the turbulence intensities exist

(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v 02
�

=u
02
�q

¼ 0:75 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w 02
�

=u
0 2
�q

¼ 0:35 ; Raupach, 1981,
Hurther et al., 2007). We will investigate the validity of these
relationships in our analysis.
Spectral method

Shear velocity can be obtained from the spectra of the turbulent
velocity fluctuations. In the log-law layer, where the spectral
range of production, p, is well separated from that of energy
Earth Surf. Process. Landforms, Vol. 38, 1714–1724 (2013)



1717SHEAR VELOCITY ESTIMATES
dissipation e, an inertial subrange is established between the
two. If there are no sources or sinks of energy in the inertial
subrange, then the spectrum of a velocity component in the
inertial subrange has the following form (Hinze, 1975,
Stapleton and Huntley, 1995, Kim et al., 2000):

fii kð Þ ¼ ai e2=3 k�5=3 (15)

where fii (k) is the spectral density of the ith velocity
component at wavenumber k, and ai is the one-dimensional
(1D) Kolmogorov constant. For locally isotropic turbulence,
a1�0.51 (Kaimal et al., 1972) and a2� a3 = 4/3 a1�0.69
(Tennekes and Lumley, 1972). These values were used in the
ocean (Stapleton and Huntley, 1995) and by Kim et al. (2000)
in the estuary. Grant et al. (1984) suggested a3� 0.50 in
their continental shelf study. For velocity data obtained in
the time domain, frequency spectra have to be transferred
into wavenumber spectra with k=2p f/u; f is the frequency
and u the convection velocity. Under the condition of
k fii (k)/u

2<< 1, Taylor’s ‘frozen turbulence’ hypothesis can
be applied (Kim et al., 2000).
For a logarithmic profile region with a constant stress layer,

one can obtain u* from Equation 11 together with Equation 3
and @ u/@ z=u*/kz (Kim et al., 2000) as

u� ¼ e k zð Þ1=3 (16)

By combining Equations 15 and 16, u* for the vertical velocity
component is given by

u� ¼ k zð Þ1=3 f33 kð Þ k5=3
a3

� �1=2

: (17)

This method of estimating shear velocity u* has mainly been used
in oceanography. It can provide estimates based on measure-
ments at a single depth and it is less sensitive to errors in sensor
alignment than the Reynolds stress method. We will investigate
the suitability of this method in open-channel flow.
Figure 1. Schematics of (a) the hydraulic open channel, and (b) the ADVP

Copyright © 2013 John Wiley & Sons, Ltd.
Experiments

Experimental set-up

Experiments were carried out in a 2�4m wide by 27m long
open-channel with a 10 cm thick bed of loose mixed gravel
with D50 = 1�5 cm (Figure 1a), representing gravel beds found
in rivers. There is no sand in the mixture. Initially, the perme-
able gravel bed was created and leveled by hand along the
channel. It did not move during the experiments. This was
manually controlled during the series of experiments at several
locations along the channel. However, small local level
changes were observed between experiments. Measurements
were made 12m from the channel entrance where the turbu-
lent flow is fully developed for two flow depths (h=19 and
20 cm, respectively) and with Reynolds numbers ranging from
3�24� 104 to 1�07� 105. The flow depth was maintained by
a manually operated tailgate. The channel has a zero slope
angle.
Acoustic Doppler Velocity Profiler (ADVP)

The ADVP measures quasi-instantaneous profiles of all
three velocity components over most of the water depth of an
open-channel flow along a single straight vertical line of con-
secutive scattering volumes (Shen and Lemmin, 1997). Thus,
all points in the profiles were nearly simultaneously measured
during a single recording. Four wide-angle receiver transducers
are placed symmetrically around a central emitter (Figure 1b).
The transducers are arranged in two perpendicular planes,
each of which allows resolving profiles of one horizontal com-
ponent and the vertical velocity component. Thus, two simulta-
neous profiles of the vertical component are taken in the same
measuring volumes. The redundancy of the vertical component
profiles allows controlling the quality of the geometrical align-
ment of the transducers, both in the horizontal and the vertical
plane (Hurther and Lemmin, 2001). This is important for the
application of the Reynolds stress and the TKE methods.
instrument.

Earth Surf. Process. Landforms, Vol. 38, 1714–1724 (2013)
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Complete three-dimensional (3D) Doppler phase profiles are
sampled at 1000Hz. Velocity profiles are obtained from these
data by the pulse-pair method (Lhermitte and Lemmin, 1994)
averaged over 32 pairs. The resulting spatio-temporal resolu-
tion (3�2mm and 0�032 seconds, respectively) is sufficient to
quantitatively estimate turbulence parameters in the productive
and inertial ranges of the spectral space.
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Procedure

In this study, a series of nine experiments at different Reynolds
numbers for two slightly different flow depths was conducted
(Table I). Due to the zero bed slope, the flow is in a state that
Yaglom (1979) has termed as ‘moving equilibrium.’ In this state,
the variation of water depth and shear velocity in the down-
stream direction is sufficiently slow and can be ignored. A
zero-pressure gradient condition (or uniform flow condition)
was verified in the working section by taking profiles over a
range of 2�5m along the channel axis. In this case, u* can be
considered as a local value for a given location. Both flow
depths have approximately the same relative roughness (D50/h
0�075). We observed that relative roughness had no effect on
the validity of the results presented here down to D50/h� 0�125.
ForD50/h� 0�075, ADVPmeasurements resulted in profiles with
approximately 50 sampling volumes in the water column, thus
allowing for a detailed profile analysis. Data were collected for
three minutes in the center of the channel.
Measured profiles were cut at z/h=0�9, since a thin bound-

ary layer in the near surface water layer is generated by the
instrument housing (Figure 1b; Hurther et al., 2007). The
bottom level was identified from the velocity information
(u=0), and confirmed by the corresponding change of back-
scatter intensity. The sampling volume height is Δ z=3.2 mm.
The origin of the coordinate system was placed at 1/2 Δ z of
the lowest sampling volume (1/2 Δ z�0.1 D50). Water depth
was measured as the distance between this level and the hous-
ing at the surface. The collected data were first de-aliased
(Franca and Lemmin, 2006) to remove spikes and subsequently
de-noised using the redundant information of the vertical
velocity in the two planes (Hurther and Lemmin, 2001). Mea-
sured velocities have an error of the order O(2	 3 mms� 1)
(Blanckaert and Lemmin, 2006, Hurther et al., 2007). For the
present analysis, the vertical velocity that was measured in
the longitudinal plane was used. The measured velocities were
decomposed into a mean (u for streamwise, w for vertical) and
a fluctuating component (u0 for streamwise, w0 for vertical) by
Reynolds decomposition.
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Results

Logarithmic profile method

Representative profiles for the lower 0�4 z/h are given in semi-
logarithmic form (Figure 2). The linear least-square fit of
Equation 2 to these data is shown as a solid line and it can be
seen that the fit closely follows the measured mean longitudinal
velocity profiles. Very close to the bed, typically for the lowest
two or three points in the profile, a deviation from the logarith-
mic law is observed due to the presence of the roughness layer.
In the roughness layer, individual roughness elements may
affect the flow structure and the flow may become 3D (Nikora
and Goring, 2000). The thickness of the roughness layer
defined by three profile points is � 0�05 h, as was suggested
by Smart (1999). This layer thickness corresponds to about
Copyright © 2013 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, Vol. 38, 1714–1724 (2013)
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Figure 2. Logarithmic profile method for different experiments with water depth h=19cm. The range over which the data are fitted is indicated for each
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0�7D50 which is smaller than the 2D50 to 5D50 proposed by
Raupach et al. (1991) or the 3D50 proposed by Wilcock (1996).
The vertical extent of the height of the logarithmic layer was

determined by stepwise extending the linear least square fitting
range. For each profile, a fitting loop was started from the first
point above the roughness layer and consecutively included
the next higher data point in the profile into the fitting proce-
dure. In each step, the shear velocity u* and the regression
coefficient of the fitting were determined. With each new data
point added, u* increases. Over the range 0�05–0�4 z/h, the in-
crease in u* is of the order O(10%). The regression coefficient
R2 is always relatively high (> 0�9). However, the regression
coefficient R2 goes through a maximum between z/h=0�25
and z/h=0�3. Around the maximum of R2, u* values remain
nearly constant and slightly increase again above z/h=0�35.
Even though a logarithmic fit still appears to be reasonable
beyond 0.3 z/h, the regression coefficient analysis indicates
that the height of the logarithmic layer should be limited to
z/h� 0�25. This value is larger than the limit of z/h=0�2
given for the validity of the logarithmic law (Monin and Yaglom,
1971; Nezu and Nakagawa, 1993). However, it is smaller than
z/h=0�5, as suggested by Smart (1999). For the determination
of u* and z0, the layer height corresponding to the maximum
of R2 was taken.
Smart (1999) indicated that a wide range of z0 can be

expected in rough-bed flows. In these flows, the roughness
length will be affected by the dimension of the bed material
at the base of the profile and the form of the roughness element
composition. It will also be affected by the bed conditions
upstream of the velocity profile location. The ratio between
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0

0.2

0.4
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z 
/h
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Figure 3. Reynolds stress profiles obtained from ADVP data with water dep
online at wileyonlinelibrary.com/journal/espl
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the physical roughness height z0 and D50 falls into the range
given by Smart (1999), but it is smaller than z0/D50�1/10, as
was suggested for flows over irregular rough surfaces (Monin
and Yaglom, 1971; Townsend, 1976).

No relative errors in z occur, since the ADVP takes full depth
velocity profiles in one recording. Thus, the profile fitting in this
study is more robust than in the case of individual point-by-
point measurements. Furthermore, the range of the profile that
is fitted to Equation 2 is composed of at least 10 points in all
experiments. This significantly reduces the error of the estimates
(Wilkinson, 1983).
Reynolds stress method

The Reynolds stress was calculated for all points in the profile
up to 0�9z/h. Typical Reynolds stress profiles (Figure 3) reason-
ably follow a linear distribution above the maximum, indicat-
ing that the flow is 2D. In order to determine u*, the profile
above the maximum was approximated by a linear fit that is
extrapolated to level z=0 (Nezu and Nakagawa, 1993; Nikora
and Goring, 2000). A maximum in the Reynolds stress distribu-
tion is observed at around 0�2z/h in all experiments, except
experiment 6 (Figure 3), where it is slightly shifted upwards.
This shift may be due to longitudinal secondary current cells
previously observed in this channel that may cause a deviation
from the 2D profile and also affect the shear velocity under
certain flow conditions (Nezu and Nakagawa, 1993; Albayrak
and Lemmin, 2011).
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TKE method

The TKE and the variance of the vertical component
(hereinafter labeled TKE W0) were calculated for all data points
and the profiles were again limited to 0�9z/h. TKE profiles peak
at around 0�1z/h (Figure 4), as has previously been observed for
less rough-bed conditions (Nicholas, 2001; Biron et al., 2004).
Above the maximum, TKE profiles closely follow the Reynolds
stress profiles in their linear form. For all experiments, the form
of the TKE W0 profile is different from that of the TKE method
(Figure 4). The short range above the maximum is not well
suited for linear fitting. Therefore, the estimates based on the
TKE W0 fitting have to be considered less reliable than full
TKE estimates. Kim et al. (2000) who suggested the TKE W0

method, applied it to single point measurements and not to
profiles.
Wall similarity method

Results using the wall similarity method with Fk=0�3 are
presented in Figure 5. It can be seen that over the range
0�25≤ z/h≤0�7, u* values remain almost constant. This
indicates a nearly constant vertical flux of TKE over this layer,
thus confirming the validity of the wall similarity method
in our fully rough flow. In the layer below, in particular below
z/h≤ 0�1, the values are erratic, indicating the effect of the
roughness layer. Therefore, measurements at any level between
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Figure 4. TKE and TKE W0 profiles obtained from ADVP data with water de
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0�25≤ z/h≤0�7 can be used for the determination of u*. It

was found that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v 02
�

=u
02
�q

< 0:75 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w 02
�

=u
02
�q

< 0:35 in all
flow cases studied here. As a consequence, using the relation,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v 02
�

=u
02
�q

¼ 0:75 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w 02
�

=u
02
�q

¼ 0:35 (Raupach, 1981,
Hurther et al., 2007), will result in estimates for u* that are
too high.
Spectral method

Energy density spectra were calculated for all sampling
volumes of the profiles. In all spectra, except for those close
to the bed (z/h≤ 0�054), an inertial range was well developed.
Shear velocity was calculated for the spectra of the longitudinal
and the vertical velocity components (Figure 6). It was found
that this method often gives poor results for the longitudinal
component, thus making it difficult to determine reliable values
for f11 (k) k5/3. Therefore, these results were omitted from the
analysis. In order to determine the reference depth for a repre-
sentative u*, shear velocity estimates were calculated from the
spectra of the vertical velocity component for all measurement
levels in each profile. Results for the lower 0�4z/h in Figure 7
show that u* continuously increases with height above the
bed throughout the logarithmic layer. This corresponds to a rise
in the spectral energy level with height above the bed. The
overall pattern is similar for all experiments. Kim et al. (2000)
made estimates for the heights of 14 and 44 cm above the
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bed, and observed a 22% increase in u* for the higher of the
two points.
In order to determine the height of representative u* values,

one may compare u* values obtained from the spectral method
at different heights above the bed within the log layer to
those obtained by the methods discussed earlier (Table I). For
experiment 1, a u* value at 0�2z/h is closest to the values given
in Table I. In the remaining experiments, best agreement is found
for u* values close to 0�1z/h. These values are included in Table I.
Discussion

In this study, we analyzed various profile methods to determine
shear velocity, taking advantage of the quasi-instantaneous
profiling capacity of the ADVP. For each flow case, all methods
were evaluated based on the same detailed profile data. The
shear velocity values obtained using the different methods for
all the experiments are summarized in Table I. The results cover
a wide range of Reynolds numbers and thus flow velocities.
As can be expected for such rough-bed flow, shear velocity
estimates obtained by different methods for a given flow case
rarely coincide and no systematic trend between the results of
the different methods is obvious. However, some tendencies are
observed in the results. Nezu and Nakagawa (1993) suggested
that the extrapolated Reynolds stress method gives the most
reliable estimates. Biron et al. (2004) and Rowinski et al. (2005)
Copyright © 2013 John Wiley & Sons, Ltd.
used the Reynolds stress method as a reference to compare
with results obtained by other methods. When results from
other methods are plotted against those from the Reynolds stress
method (Figure 8), no clear trend or tendency can be seen over
the range investigated here. Results fall randomly on both sides
of the 1:1 line.

The logarithmic profile method is often used, because it is
based on the mean velocity profile and has good accuracy in
simple flow cases (Wilcock, 1996). In four of the nine experi-
ments, logarithmic profile method estimates are higher, but in
the remaining cases they are lower than the Reynolds stress
method estimates (Figure 8). Rowinski et al. (2005) observed
systematically higher values for the logarithmic method and
they concluded that this method was not suitable for their
rough-bed flow conditions. Biron et al. (2004) found the highest
estimates for the logarithmic law method in the sand bottom
study. In our case, the relative roughness is D50/h�0�75 and
thus h� 13�3D50, which should allow the use of the logarith-
mic profile method (Katul et al., 2002). The high regression
coefficients found in the fitting procedure to the logarithmic
profile suggest that the data are of good quality and that a
logarithmic profile is well developed in the inner layer. Smart
(1999) pointed out that variation in the upstream bed condi-
tions might also influence the results.

The differences between the results of the TKE method
and the Reynolds stress method are generally less than 10%
(Figure 8). In five experiments, the two methods give similar
Earth Surf. Process. Landforms, Vol. 38, 1714–1724 (2013)
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results. For the slowest flow case (experiment 5), a noisy TKE
profile produced the greatest difference (about 40%). The coef-
ficient C1� 0�19 in the TKE method was taken from the
literature and applied to this rough-bed flow. Rowinski
et al. (2005) used the same coefficient and indicated good
agreement between those two methods. We found that the
profiles obtained by those two methods closely followed each
other over most of the water depth, thus confirming the
observations by Townsend (1976) of a constant ratio between
Reynolds stress and TKE. This indicates that C1�0�19 is a
suitable constant. The TKE W0 method was difficult to apply.
Profiles were reasonably linear in the outer layer, but showed
a slight maximum at around 0�3z/h and a marked decrease in
the inner layer. We cannot recommend the TKE W0 method
from our experience because the profile is linear only over a
short range, making the extrapolation too uncertain. Kim et al.
(2000) who suggested this method only confirm that the coeffi-
cient C2� 0.9 in their study by comparing the results with
those of the Reynolds stress method at one level above the bed.
For the wall similarity method, the results are comparable to

those of the TKE method. The estimates obtained for five exper-
iments fall close to the 1:1 line (Figure 8), and the remaining
four are within 10% of the line. For experiment 5, a larger
deviation is seen. Results from this experiment may therefore
be less reliable. The constant, Fk=0�3 that was initially
proposed for smooth wall flow and confirmed in transitional
rough beds (Hurther and Lemmin, 2000), can also be consid-
ered a suitable constant for the application of this method in
rough-bed flow. Thus, the characteristics of turbulence in the
intermediate layer (0�25≤ z/h≤ 0�7) are independent of the
bed roughness (Hurther and Lemmin, 2000). Due to the one-
third power relationship, this method is not sensitive to
even larger errors in the determination of the energy flux. Since
it is easy to apply this method in the intermediate layer
(0�25≤ z/h≤0�7) which is well above the roughness layer, it
may be a promising tool for estimating shear velocity under
rough-bed flow conditions and particularly in field studies.
For the spectral method applied to the vertical velocity com-

ponent, robust spectra with a well-defined inertial subrange
were found at all levels. Compared to the Reynolds stress
method, five estimates obtained by this method are higher
(Figure 8), and two are lower. The vertical increase in u* with
distance from the bed (Figure 7) indicates that the choice of
the reference level for the determination of the shear velocity
is important. Kim et al. (2000) found an increase of 22%
between the values at 14 cm and 44 cm above the bed. This
was their largest difference between the estimates at the two
levels for all methods that they applied. They indicate that the
level of 44 cm was close to the upper boundary of the
Copyright © 2013 John Wiley & Sons, Ltd.
logarithmic layer. In our study, the increase over the logarith-
mic layer height is higher and may reach up to 50%. The pro-
files of the TKE W0 method also strongly increase over this
layer (Figure 4). We could not establish an objective criterion
for the determination of a reference level. Comparing results
obtained by this method at different levels above the bed with
those obtained by the other methods (Table I), it appears that
an estimate at � 0.1 z/h comes closest to those resulting from
other methods (Figure 8). We also found a maximum in the
TKE profiles at around 0�1z/h (Figure 4). Therefore a reference
level near 0�1z/h may be suitable for this method. However,
roughness layer effects may come into play. Assuming that a
level at around 0�1z/h is most representative for spectral
method estimates, the flow may be non-isotropic under these
bed roughness conditions, thus deviating from the assumptions
made in the derivation of Equation 17. Too close to the bed, the
ranges of energy production and dissipation may not be fully
separated (Kim et al., 2000). In our study, we found that the in-
ertial subrange was well developed in the spectra at 0�1z/h, in-
dicating a clear range separation. Townsend (1976) pointed out
that in shear flows over a solid boundary layer, an equilibrium
layer of wall turbulence exists near the solid wall. Under com-
parable flow conditions in the same channel investigated here,
Hurther et al. (2007) showed that an equilibrium layer exists in
the near-wall layer, where generation and dissipation are about
six times higher than in the outer layer. Further open-channel or
river flow investigations should be carried out before this
method can be recommended as a reliable tool for estimating
shear velocity in rough-bed open-channel flow.

In this study, � 90% of all u* estimates fall into a range of
�20%. A similar range of variability between estimates obtained
by different methods was reported by Kim et al. (2000) over a soft
bottom in tidal estuary flows. Nezu and Nakagawa (1993)
mention a range of �30% when comparing results from the
logarithmic profile method and the Reynolds stress method with
the force balance method (Equation 1). They indicate that this
range increased with increasing roughness size, whereas we
found a smaller range from our detailed profile measurements.

For each experiment, shear stress was calculated from
the mean u* values (Table I), and the results are plotted in
Figure 9 against the corresponding mean streamwise velocities.
A quadratic relationship with t� 4.59 u2 was fitted to the
points. Pope et al. (2006) found t� 2 u2 for fine sediments over
the same velocity range and suggested that steeper curves can
be expected with increasing roughness. Venditti et al. (2005)
reported a non-linear increase of the boundary shear stress with
increasing mean velocity over a sand bed. This calculation was
repeated for each of the different methods. The following
regression coefficients were determined: the highest coefficient
Earth Surf. Process. Landforms, Vol. 38, 1714–1724 (2013)
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(R2 = 0�98) was obtained for the wall similarity method,
followed by R2 = 0�90 for the Reynolds stress method,
R2 = 0�83 for the TKE method, and R2 = 0�69 for the log-law
method.
We found reasonable agreement between the different shear

velocity estimates for one fixed measurement location in the
channel. In fully rough-bed flows, the spatial roughness
distribution is irregular, and single location profiling may not
provide shear stress estimates representative for a section, in
particular for higher values of mean roughness and relative
roughness. However, sediment dynamics is strongly influenced
by local shear stress conditions and section mean values may
not be representative (Wilcock, 1996). Monin and Yaglom
(1971) pointed out that the form and mutual spacing of rough-
ness elements may play a key role in local shear velocity
dynamics.
Conclusion

In the present study, shear velocity was determined by five
different methods in a flow over a fully rough bed of coarse
gravel, where relative roughness is D50/h�0�075. The analysis
was based on ADVP measurements that provide quasi-
instantaneous velocity profiles with high temporal and
spatial resolution. The difficulties and advantages of the differ-
ent methods were investigated. In rough-bed flows, problems
may arise in precisely determining the location of the bed refer-
ence level or in the restricted range of validity of the different
methods due to the underlying assumptions. It appears best
to analyze velocity profile data by different methods. As indi-
cated in this study, in addition to the shear velocity estimate,
each method provides supplementary information about the
flow characteristics, such as the thickness of the roughness
layer, and the two-dimensionality of the mean flow. This infor-
mation may in turn help to better define and understand
the flow field conditions.
All methods provide comparable results for shear velocity.

For comparable flow conditions, significant variability in the
shear velocity estimates (Table I) by the logarithmic profile
method was observed. Local and temporal variation in the
loose bed roughness may contribute to the variability between
experiments. The Reynolds stress method gave consistent
results. For the TKE method, we found comparable results with
the coefficient C1 = 0�19. Reynolds stress profiles and normal-
ized TKE profiles closely follow each other over most of the
water column with a constant ratio between the two profiles.
The wall similarity concept was valid over a wide range of
Copyright © 2013 John Wiley & Sons, Ltd.
the water column (0�25≤ z/h≤ 0�7) using the constant Fk=0�3.
For the spectral method applied to the vertical velocity compo-
nent, we were unable to objectively identify the level at which
the method could be applied. Further studies are needed before
this method can be recommended for use in rough-bed open-
channel flow. Mean shear stress for all experiments follows a
quadratic relationship with the mean velocity in the flow.

Since the TKE profiles were found to be fairly smooth, it may
be of interest to explore the TKE method further for the determi-
nation of shear velocity in rough-bed flow studies and in rivers.
The wall similarity method seems to be well suited for estimat-
ing shear velocity in these flows. It provides for a simplification
with increased accuracy in the determination of shear velocity
in difficult flow conditions. This method allows for the determi-
nation of u* from a single point measurement at one level in the
intermediate range (0�3< h< 0�6).
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Notation
Dp
 =grain size for which the percentage p of
a sample of bed material is finer (cm)
D50
 =grain size for which 50% of a sample of bed
material is finer (cm)
h
 =water depth (cm)

ĸ
 =von Karman’s constant

p
 = turbulent energy production

u, v, w
 = local mean longitudinal, transverse

and vertical velocity (cm s–1)

u*
 = shear velocity (cm s–1)

u0, v0, w0
 = local fluctuating longitudinal, transverse

and vertical velocity (cm s–1)

overbar
 = time mean values

�U
 = 0.75 Umax (cm s–1)

Umax
 =maximum velocity in the profile (cm s–1)

z0
 =characteristic hydraulic friction length (cm)

z
 =vertical axis (cm)

f
 = frequency (s–1)

r
 =water density (kgm–3)

t
 =bed shear stress (kg s–2)

’ii(k)
 = spectral density of the ith velocity

component at wave number k
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ai
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=1D Kolmogorov constant

e
 = turbulent energy dissipation

sD
 = standard deviation of the bed roughness elements.
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