Integrated berth allocation and yard assignment problem using column generation

Tomáš Robenek

Transp-OR, École Polytechnique Fédérale de Lausanne

> DTU Transport, Technical University of Denmark

> > May 2, 2012

Introduction 000	Problem Definition	Branch and Price	 Conclusion

Agenda

1 Introduction

- **2** Problem Definition
- 3 Branch and Price

4 Results

Introduction	Problem Definition	Branch and Price	 Conclusion

- Berth Allocation Problem
- Yard Assignment Problem
- Motivation

2 Problem Definition

3 Branch and Price

4 Results

5 Conclusion

Problem Definition

Branch and Price Results

Conclusion

Berth Allocation Problem

Berth Allocation Problem

Figure: Lacon ltd.'s plan for extension of the Riga's port, Latvia

Tomáš Robenek (EPFL, DTU)

Introduction ••••

Problem Definition

Branch and Price Resu

Conclusion

Yard Assignment Problem

Yard Assignment Problem

Figure: Port of Weipa, Queensland, Australia

Tomáš Robenek (EPFL, DTU)

Problem Definition

Branch and Price Result

Conclusion

Motivation

Motivation

Figure: Vessels queueing at Newcastle port, Australia (queue hits 60 vessels as max)

Tomáš Robenek (EPFL, DTU)

Introduction	Problem Definition	Branch and Price	Results	Conclusion
000	00000	000000000000000000000000000000000000000	0000	

2 Problem Definition

- Input
 - Vessel
 - Port
 - General Data
- Output

3 Branch and Price

4 Results

5 Conclusion

Problem Definition

Branch and Price Results

C

Input

Input – Vessel

Information

- Number of Vessels
- Arrival Time
- Length
- Draft (omitted)
- Cargo
 - Quantity
 - Cargo Type

Input

Problem Definition

Branch and Price Resu

S

Conclusion

Input – Draft Omitted

Problem Definition

Branch and Price Results

Conclusion

Input

Input – Port

Information

- Number of Sections
 - Length
 - Draft (omitted)
 - Coordinates
 - Resources
- Number of Cargo Locations
 - Coordinates
 - Neighbouring Locations

Introd	uction
000	

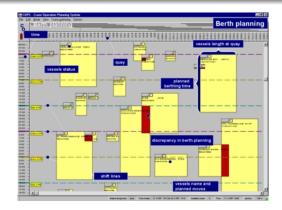
Input

Problem Definition

Branch and Price Result

Conclusion

Input – General Data


Information

- Time Horizon
- Number of Cargo Types
- Incompatible Cargo Types
- Distances
- Transfer Rate
- Crane Handling Rate
- Bulk Ports (No Containers)

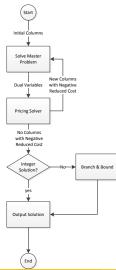
Introduction 000	Problem Definition ○○○○●	Branch and Price	Results 0000	Conclusion
Output				
Output				

Minimize

- Handling Time + Delay = Service Time
 - Paralell Handling

Tomáš Robenek (EPFL, DTU)

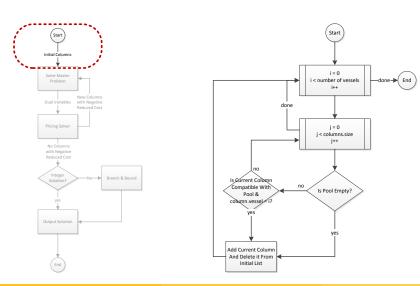
2 Problem Definition


3 Branch and Price

- Framework
- Initial Solution
- Master Problem
- Sub-Problem
- Branch and Bound

4 Results

5 Conclusion

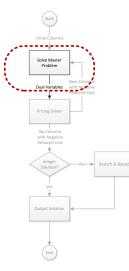

Introduction 000	Problem Definition	Branch and Price Re	esults Conclusion
Framework			
Framewo	rk		

Initial Solution

- Column Generation Lower Bound
- Branch and Bound Optimal Integer Solution

Introduction 000	Problem Definition	Branch and Price	Results 0000	Conclusion
Initial Solution				
Initial Sol	ution			

Tomáš Robenek (EPFL, DTU)


Problem Definition

Branch and Price Result

Conclusion

Master Problem

Master Problem – Parameters

Parameters

- Ω set of all feasible assignments
- $\blacksquare \ \Omega_1 \subset \Omega$ current pool of columns
- c_a cost of assignment $a \in \Omega(\Omega_1)$
- $N = \{1..n\}$ set of vessels
- $K = \{1..m\}$ set of sections
- $W = \{1..w\}$ set of cargo types
- $T = \{1..h\}$ set of time steps
- $L = \{1..q\}$ set of locations
- ct_w number of vessels carrying cargo type w

Problem Definition

Branch and Price Results

Conclusion

Master Problem

Master Problem – Parameters

Decision Varibles

- $\lambda_a \in (0,1) 1$ if assignment *a* is selected, 0 otherwise
- $\mu'_w \in (0,1) 1$ if location / is storing cargo of type w, 0 otherwise ■ relaxed

Problem Definition

Branch and Price Results

Conclusion

Master Problem

Master Problem – Parameters

Parameters

 $A_a^i = \begin{cases} 1 & \text{if vessel } i \text{ is assigned in assignment } a, \\ 0 & \text{otherwise.} \end{cases}$

 $B_a^{kt} = \begin{cases} 1 & \text{if section } k \text{ is occupied at time } t \text{ in assignment } a, \\ 0 & \text{otherwise.} \end{cases}$

$$C_a^{lw} = \begin{cases} 1\\ 0 \end{cases}$$

if cargo w is stored at location l in assignment a, otherwise.

 $D_a^{lt} = \begin{cases} 1 & \text{if cargo location } l \text{ is handling assignment } a \text{ at time } t, \\ 0 & \text{otherwise.} \end{cases}$

Problem Definition

Branch and Price Result

Conclusion

(1)

Master Problem

Master Problem – Objective Function

 $\textit{minimize } \sum_{a \in \Omega} c_a \cdot \lambda_a$

Problem Definition

Branch and Price Result

Conclusior

(2)

Master Problem

Master Problem – Constraints All Vessels Served

$$\sum_{\boldsymbol{a}\in\Omega_1}\boldsymbol{A}^i_{\boldsymbol{a}}\cdot\boldsymbol{\lambda}_{\boldsymbol{a}}=1,\qquad\forall i\in\boldsymbol{N},$$

Problem Definition

Branch and Price Result

Conclusio

(3)

Master Problem

Master Problem – Constraints Section Occupation

$$\sum_{a \in \Omega_1} B_a^{kt} \cdot \lambda_a \leq 1, \qquad \forall k \in K, \forall t \in T,$$

Figure: Illustration of Philadelphia Experiment

Tomáš Robenek (EPFL, DTU)

Port Optimization

May 2, 2012 21 / 42

Problem Definition

Branch and Price Result

Conclusion

(4)

Master Problem

Master Problem – Constraints Location Occupation

$$\sum_{\boldsymbol{a}\in\Omega_1} D_{\boldsymbol{a}}^{lt} \cdot \lambda_{\boldsymbol{a}} \leq 1, \qquad \forall l \in L, \forall t \in T,$$

Tomáš Robenek (EPFL, DTU)

Port Optimization

May 2, 2012 22 / 42

Problem Definition

Branch and Price Result

Conclusion

Master Problem

Master Problem – Constraints One Cargo per Location

$$\sum_{a \in \Omega_{1}} C_{a}^{lw} \cdot \lambda_{a} - ct_{w} \cdot \mu_{w}^{l} \leq 0, \qquad \forall l \in L, \forall w \in W,$$

$$\sum_{w \in W} \mu_{w}^{l} \leq 1, \qquad \forall l \in L,$$
(6)

Problem Definition

Branch and Price Result

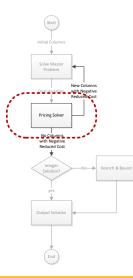
Conclusion

(7)

Master Problem

Master Problem – Constraints Compatible Neighbours

$$\mu'_{w} + \mu^{\overline{l}}_{\overline{w}} \le 1, \qquad \begin{array}{l} \forall l \in L, \forall \overline{l} \in \overline{L}, \\ \forall w \in W, \forall \overline{w} \in \overline{W}, \end{array}$$


Tomáš Robenek (EPFL, DTU)

Intro	duc	tion
000		

Branch and Price Results

Sub-Problem

Sub-Problem – Parameters

Idea

- run for each vessel separately
- get n columns (one per vessel)

Sets

- $K = \{1..m\}$ set of sections
- $W = \{1..w\}$ set of cargo types
- $T = \{1..h\}$ set of time steps
- $L = \{1..q\}$ set of locations

Dual Variables

$$\bullet \ \alpha, \beta_{kt}, \gamma_{lt}, \delta_{lw}$$

Tomáš Robenek (EPFL, DTU)

Port Optimization

May 2, 2012 25 / 42

Problem Definition

Branch and Price Results

Conclusio

Sub-Problem

Sub-Problem – Objective Function

$$\begin{array}{l} \text{minimize } (c+s-a) - (\alpha + \sum_{k \in K} \sum_{t \in T} \beta_{kt} \cdot beta_{kt} + \\ \sum_{l \in L} \sum_{t \in T} \gamma_{lt} \cdot gamma_{lt} + \sum_{l \in L} \sum_{w \in W} \delta_{lw} \cdot delta_{lw}) \end{array}$$
(8)

Parameters

a – arrival time

Decision Variables

- $c \ge 0$ handling time
- $s \ge 0$ start time of service
- related to duals:
 - $beta_{kt} \in (0,1) 1$ if vessel occupies section k at time t, 0 otherwise
 - **g** $gamma_{lt} \in (0,1) 1$ if vessel uses location l at time t, 0 otherwise
 - $delta_{lw} \in (0,1) 1$ if cargo type w is stored at location l, 0 otherwise

Introduction	Problem Definition	Branch and Price	Results
000	00000	000000000000000000000000000000000000000	0000

Conclusion

Sub-Problem

Sub-Problem – Constraints

$$s-a\geq 0, \tag{9}$$

$$c \geq ht_k \cdot fraction_{jk} - M \cdot (1 - ss_j), \quad \forall k, j \in K,$$
 (10)

Parameters

- fraction_{jk} fraction of cargo handled at section k, if the starting section of the vessel is section j
- *M* − large enough number (set to 1 000 000, could be the largest quantity multiplied by the longest service time)

Decision Variables

- $ht_k \ge 0$ handling time of section k
- $ss_j \in (0,1) 1$ if section j is the starting section of the vessel

Introd	uction
000	

Branch and Price Results

sults

Conclusion

Sub-Problem

Sub-Problem – Constraints

$$\sum_{j \in K} ss_j = 1, \tag{11}$$

$$\sum_{i \in K} ss_j \cdot sc_j + length \le ql, \tag{12}$$

Parameters

- sc_j starting coordinate of section j
- *length* length of the vessel
- ql quay length

Intro	duct	ion
000		

Branch and Price Results

Sub-Problem

Sub-Problem – Constraints

$$\sum_{l\in L} split_l \leq Z, \tag{13}$$

Parameters ■ Z - maximum number of locations used by vessel **Decision Variables**

•
$$split_l \in (0,1) - 1$$
 if vessel uses location l

Intr	od	uc	ti	on
00	0			

Branch and Price Results

Sub-Problem

Sub-Problem - Constraints

$$split_l \leq delta_{lw}, \quad \forall l \in L,$$
 (14)

$$\sum_{l \in L} cs_l = quantity, \tag{15}$$

$$cs_{l} \leq split_{l} \cdot quantity, \quad \forall l \in L,$$
 (16)

$$split_l \leq cs_l, \quad \forall l \in L,$$
 (17)

Parameters

Decision Variables • $cs_l \ge 0$ – quantity of cargo stored at location l Tomáš Robenek (EPFL, DTU) Port Optimization May 2, 2012 30 / 42

Int	troc	τı	on.
	00		

Branch and Price Results

Conc

Sub-Problem

Sub-Problem – Constraints

$$td_{k} = \left(\sum_{l \in L} d_{kl} \cdot cs_{l}\right) / quantity, \quad \forall k \in K,$$

$$ht_{k} = F / cranes_{k} + V_{w} \cdot td_{k}, \quad \forall k \in K,$$
(18)

Parameters

- d_{kl} distance between section k and location l
- $cranes_k$ number of cranes in section k
- F crane handling rate, V_w cargo transfer rate

Decision Variables

• $td_k \ge 0$ – total average distance for section k

Inti	rod	uc	ti	on
00	0			

Branch and Price Results

ilts

Conclusion

Sub-Problem

Sub-Problem – Constraints

$$\sum_{t\in T} time_t = c, \tag{20}$$

$$t + M \cdot (1 - time_t) \ge s + 1, \quad \forall t \in T,$$

$$t \le s + c + M \cdot (1 - time_t), \quad \forall t \in T,$$
(21)
(22)

Parameters

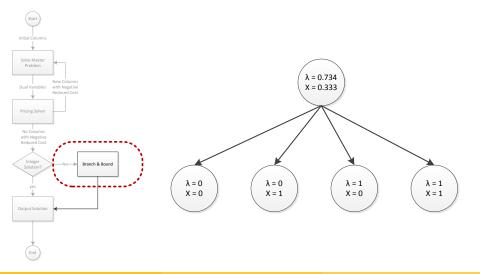
- M in 21 minimum value is s + 1
- *M* in 22 minimum value is T s + c

Decision Variables

• $time_t \in (0,1) - 1$ if the vessel is at time t served, 0 otherwise

Tomáš Robenek (EPFL, DTU)

Branch and Price


Sub-Problem

Sub-Problem – Constraints

$beta_{kt} \ge x_k + time_t - 1,$	$\forall k \in K, \forall t \in T,$	(23)
$beta_{kt} \leq x_k,$	$\forall k \in K, \forall t \in T,$	(24)
$beta_{kt} \leq time_t,$	$\forall k \in K, \forall t \in T,$	(25)

 $\forall l \in L, \forall t \in T$, (26) $gamma_{lt} \geq split_l + time_t - 1$, $\forall l \in L, \forall t \in T$, (27) $gamma_{lt} \leq split_l$ $\forall l \in L, \forall t \in T$, (28) $gamma_{lt} \leq time_t$,

Introduction	Problem Definition	Branch and Price	Results	Conclusion
000	00000	0000000000000000000000	0000	
Branch and Bound				
Branch and	Bound			

Introduction	Problem Definition	Branch and Price	Results	Conclusion
000	00000	000000000000000000000000000000000000000	0000	

- 2 Problem Definition
- 3 Branch and Price

4 Results■ Status

Tests

5 Conclusion

Introduction 000	Problem Definition	Branch and Price	Results •••••	Conclusion
Status				
-				

Status

Master problem:

- able to solve small instances
- finished

Sub - problem:

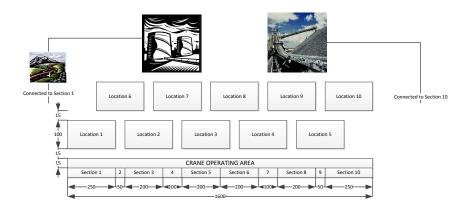
- validated with Opl and the minimum handling time of generated assignments
- running time < 3 sec.

• Column Generation:

- without sub-problem, just reduced cost, able to solve small instances
- strategies:
 - one column per turn not able to solve in 3 hours (and still working)
 - all negative columns per turn solved below 20 iterations
- sub-problem

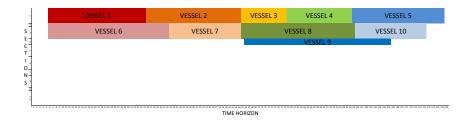
Branch and Bound:

- to be implemented
- probably existing function in CPLEX


Introd	uction
000	

Branch and Price Results

Conclusion


Tests

Test Instance

Introduction 000	Problem Definition	Branch and Price	Results ○○●○	Conclusion
Tests				
L D D				

Initial Berth Plan

Problem Definition

Branch and Price Results

lts

Conclusion

Tests

Debugging

To catch a bug, you've got to learn to think like a bug

Tomáš Robenek (EPFL, DTU)

Introduction	Problem Definition	Branch and Price	Results	Conclusion
000	00000	000000000000000000000000000000000000000	0000	

- 2 Problem Definition
- 3 Branch and Price

4 Results

5 Conclusion

Thank you for your attention.

$$\begin{array}{ccc} \min z & (1) \\ \min z & (1) \\ \text{s.t. } m_i - A_i \geq 0 & (2) \\ \sum_{k \in M} S_k^k = 1 & (3) \\ \sum_{k \in M} (S_k) + L_i \leq L & (4) \\ \sum_{k \in M} (\delta_{ik} S_i^k) = x_{ik} & \forall k \in M & (5) \\ \sigma_i^{tk} \geq x_{ik} + \theta_{ik} - 1 & \forall k \in M, \forall l \in H & (6) \\ \sigma_i^{tk} \leq x_{ik} & \forall k \in M, \forall l \in H & (7) \\ \sigma_i^{tk} \leq u_{ik} & \forall k \in M, \forall l \in H & (7) \\ \sigma_i^{tk} \leq \theta_{ik} & \forall k \in M, \forall l \in H & (7) \\ \sigma_i^{tk} \leq \theta_{ik} & \forall k \in M, \forall l \in H & (7) \\ \sigma_i^{tk} \leq \theta_{ik} & \forall k \in M, \forall l \in H & (11) \\ \sigma_{ik}^{tk} = \sigma_{ik}^{tk} & \forall w \in W_i, \forall k \in M & (11) \\ \sigma_{ik}^{tk} = T/n_{ik}^{tk} & \forall w \in W_i, \forall k \in M & (12) \\ \beta_{ik}^{tk} = U_w t_i^k & \forall w \in W_i, \forall k \in M & (13) \\ \sum_{k \in U} \sigma_{ki} \leq T/n_{ik}^{tk} & \forall w \in W_i, \forall k \in M & (15) \\ \sum_{k \in U} S_{ki}^{tk} = V_w t_k^k & \forall w \in W_i, \forall k \in M & (15) \\ \sum_{k \in U} S_{ki}^{tk} \leq u_k \leq U_k, \forall k \in M & (16) \\ \phi_{ki} \leq \phi_{ki} = \forall w \in W_i, \forall k \in M & (16) \\ \phi_{ki} \leq \phi_{ki} & \forall u \in W_i, \forall k \in L & (17) \\ \omega_i^{tk} \leq \phi_{ki} & \forall u \in U_i, \forall t \in H & (19) \\ \omega_i^{tk} \leq \theta_{ki} & \forall l \in L, \forall t \in H & (19) \\ \omega_i^{tk} \leq \theta_{ki} & \forall l \in L, \forall t \in H & (20) \\ \sum_{k \in U} S_{ki} = \phi_{ki} & \forall l \in H & (21) \\ t + B(1 - \theta_{ki}) \geq m_i + 1 & \forall t \in H & (22) \\ \delta_{ki} \leq \phi_{ki} \leq \beta_{ki} & \forall u \in W_i, \forall k \in L & (24) \\ \phi_{ki} \leq \phi_{ki} \leq \beta_{ki} & \forall u \in W_i, \forall k \in L & (25) \\ \phi_{ki} \leq \delta_{ki} & \forall u \in W_i, \forall k \in L & (25) \\ \phi_{ki} \leq \delta_{ki} & \forall u \in W_i, \forall k \in L & (26) \\ \lambda_{ki} \leq \sum_{w \in W_i} H & (1 - \pi_w^i)) & \forall k L & (27) \\ \lambda_{ki} \leq \sum_{w \in W_i} H & (1 - \pi_w^i)) & \forall k L & (27) \\ \end{pmatrix}$$