Introduction

Motivation

Demand model 0000 Integrated model

Results

Heuristic Conclusions

An integrated fleet assignment and itinerary choice model

for a new flexible aircraft

Bilge Atasoy Michel Bierlaire Matteo Salani

STRC 2012

May 2, 2012

Introduction	Motivation	Demand model	Integrated model	Results	Heuristic	Conclusions
Clip-Ai	r concep	t				

- Flexible capacity
- Modular-detachable capsules
- Wing and capsule separation
- Multi-modality
- Passenger and cargo
- Sustainability
 - Gas emissions
 - Noise
 - Accident rates

Introduction	Motivation	Demand model 0000	Integrated model	Results	Heuristic	Conclusions
Object	ives					

- Analyze the potential performance of Clip-Air by developing appropriate models
- Introduce demand notion in optimization models through appropriate demand models
- Develop solution methodologies for the integrated model
- Application of the models and solution methods for Clip-Air.

Introduction	Motivation	Demand model	Integrated model	Results	Heuristic	Conclusions
1			1.1			

Integration of demand model

Motivation: Demand responsive transportation systems

- Supply \Rightarrow Flexibility provided by Clip-Air
- Demand \Rightarrow integration of appropriate demand models

Demand model

- Simple models (e.g. linear, exp.) fail to represent the reality
- Integrated model becomes very sensitive to demand model parameters
- Appropriate models need to be developed

- Market segments, s, defined by the class and each OD pair
- Itinerary choice among the set of alternatives, I_s , for each segment s
- For each itinerary $i \in I_s$ the utility is defined by:

 $\begin{aligned} \mathbf{V}_{i} &= \mathbf{ASC}_{i} + \beta_{p} \cdot \mathsf{ln}(p_{i}) + \beta_{time} \cdot \mathsf{time}_{i} + \beta_{morning} \cdot \mathsf{morning}_{i} \\ \mathbf{V}_{i} &= \mathbf{V}_{i}(p_{i}, z_{i}, \beta) \end{aligned}$

- ASC_i : alternative specific constant
- p is a policy variable and included as log
- p and time are interacted with non-stop/stop
- $\operatorname{morning}$ is 1 if the itinerary is a morning itinerary
- No-revenue represented by the subset $I'_s \in I_s$ for segment s.

Introduction	Motivation	Demand model ○●○○	Integrated model	Results	Heuristic	Conclusions
Itinerary	y choice	model				

• Demand for class *h* for each itinerary *i* in market segment *s*:

$$\tilde{d}_i = D_s \frac{\exp(V_i(p_i, z_i, \beta))}{\sum_{j \in I_s} \exp(V_j(p_j, z_j, \beta))}$$

- D_s is the total expected demand for market segment s.

 Spill and recapture effects: Capacity shortage ⇒ passengers may be recaptured by other itineraries (instead of their desired itineraries)
 Recapture ratio is given by:

$$b_{i,j} = \frac{\exp(V_j(p_j, z_j, \beta))}{\sum_{k \in I_s \setminus \{i\}} \exp(V_k(p_k, z_k, \beta))}$$

Introduction	Motivation	Demand model 00●0	Integrated model	Results	Heuristic	Conclusions
Estima	tion					

- **Revealed preferences (RP) data:** Booking data from a major European airline
 - Lack of variability
 - Price inelastic demand
- RP data is combined with a stated preferences (SP) data
- Time, cost and morning parameters are **fixed** to be the same for the two datasets.
- A scale parameter is introduced for SP to capture the differences in variance.

Introduction	Motivation	Demand model	Integrated model	Results	Heuristic	Conclusions
		0000	000			

Estimation results

	β_{f_s}	are	β_{time}		
	non-stop	one-stop	non-stop	one-stop	$\beta_{morning}$
economy	-2.23	-2.17	-0.102	-0.0762	0.0283
business	-1.97	-1.97	-0.104	-0.0821	0.079

• Price elasticity of demand:

$$E_{price_i}^{P_i} = \frac{\partial P_i}{\partial price_i} \cdot \frac{price_i}{P_i}$$

An example

- for a non-stop itinerary
 - $\bullet\,$ price elasticity for economy is -2.03 and -1.86 for business
- for a one-stop itinerary
 - $\bullet\,$ price elasticity for economy is -2.14 and -1.95 for business

Introduction	Motivation	Demand model	Integrated model	Results	Heuristic	Conclusion
		0000	000			

Integrated schedule planning and revenue management

Introduction	Motivation	Demand model	Integrated model	Results	Heuristic	Conclusions
		0000	000			

Integrated model - Schedule planning

$$\max \sum_{h \in H} \sum_{s \in Sh} \sum_{i \in (I_s \setminus I'_s)} (d_i - \sum_{j \in I_s} t_{i,j} + \sum_{j \in (I_s \setminus J'_s)} t_{j,i} b_{j,i}) p_i - \sum_{\substack{k \in K \\ i \in F}} C_{k,i} \times_{k,f}: revenue - cost$$
(1)

s.t.
$$\sum_{k \in K} x_{k,f} = 1$$
: mandatory flights $\forall f \in F^M$ (2)

$$\sum_{k \in K} x_{k,f} \le 1: \text{ optional flights} \qquad \forall f \in F^O \qquad (3)$$

$$y_{k,a,t^-} + \sum_{f \in ln(k,a,t)} x_{k,f} = y_{k,a,t^+} + \sum_{f \in Out(k,a,t)} x_{k,f}: flow conservation \qquad \forall [k,a,t] \in N$$
(4)

$$\sum_{a \in A} y_{k,a,minE_a^-} + \sum_{f \in CT} x_{k,f} \le R_k: \text{ fleet availability} \qquad \forall k \in K$$
(5)

$$y_{k,a,minE_a^-} = y_{k,a,maxE_a^+}: \text{ cyclic schedule} \qquad \forall k \in K, a \in A \qquad (6)$$

$$\sum_{h \in H} \pi^h_{k,f} = Q_k x_{k,f}: \text{ seat capacity} \qquad \forall f \in F, k \in K \qquad (7)$$

$$x_{k,f} \in \{0,1\} \qquad \qquad \forall k \in K, f \in F$$
(8)

$$y_{k,a,t} \ge 0 \qquad \qquad \forall [k,a,t] \in N \qquad (9)$$

Introduction	Motivation	Demand model	Integrated model	Results	Heuristic	Conclusions
		0000	000			

Integrated model - Revenue management

$$\begin{split} \sum_{s \in S^{h}} \sum_{i \in (I_{s} \setminus I'_{s})} \delta_{i,f} d_{i} - \sum_{j \in I_{s}} \delta_{i,f} t_{i,j} + \sum_{j \in (I_{s} \setminus I'_{s})} \delta_{i,f} t_{j,i} b_{j,i} \leq \sum_{k \in K} \pi_{k,f}: \ capacity \qquad \forall h \in H, f \in F \quad (10) \\ \end{split}$$

$$\begin{aligned} \sum_{\substack{j \in I_{s} \\ i \neq j}} t_{i,j} \leq d_{i}: \ total \ spill \qquad \forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I'_{s}) \quad (11) \\ \widetilde{d}_{i} = D_{s} \sum_{\substack{j \in I_{s} \\ exp(V_{i}(p_{i}, z_{i}, \beta)) \\ \sum_{j \in I_{s}} \exp(V_{j}(p_{j}, z_{j}, \beta)) \\ \sum_{k \in I_{s} \setminus \{i\}} \exp(V_{k}(p_{k}, z_{k}, \beta)) : \ recapture \ ratio \qquad \forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I'_{s}), j \in I_{s} \quad (12) \\ \\ b_{i,j} = \frac{\exp(V_{i}(p_{i}, z_{i}, \beta))}{\sum_{k \in I_{s} \setminus \{i\}} \exp(V_{k}(p_{k}, z_{k}, \beta))} : \ recapture \ ratio \qquad \forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I'_{s}), j \in I_{s} \quad (13) \\ \\ d_{i} \leq \tilde{d}_{i}: \ realized \ demand \qquad \forall h \in H, s \in S^{h}, i \in I_{s} \quad (14) \\ 0 \leq p_{i} \leq UB_{i}: \ upper \ bound \ on \ price \qquad \forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I'_{s}), j \in I_{s} \quad (15) \\ \\ t_{i,j} \geq 0 \qquad \forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I'_{s}), j \in I_{s} \quad (16) \\ \\ b_{i,j} \geq 0 \qquad \forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I'_{s}), j \in I_{s} \quad (17) \\ \\ \pi^{h}_{k,f} \geq 0 \qquad \forall h \in H, k \in K, f \in F \quad (18) \\ \end{aligned}$$

Introduction	Motivation	Demand model	Integrated model ○○●	Results	Heuristic	Conclusions
Integra	ated mod	lel				

- We consider reference models to evaluate the integrated model
 - **Price-inleastic schedule planning**: M. Lohatepanont and C. Barnhart (2004)
 - **Sequential approach**: Revenue management considers fixed supply capacity
- The resulting model is a mixed integer nonlinear problem
- Nonlinearity is due to the explicit supply-demand interactions
- The model is implemented in AMPL and BONMIN solver is used
- BONMIN does not guarantee optimality

Intr	odu	ctio	n
III LI			

Motivation

Demand model 0000

Integrated model

Results

Heuristic

Conclusions

Impact of the integrated model

Number of airports:		3	
Number of flights:		26	
Average demand:	56.12 p	assengers per flight	
Cabin classes:	Eco	onomy and business	
Level of service:	All itir	neraries are nonstop	
Available fleet: 3 t	types of aircraft (10	0, 50 and 37 seats)	
	Price-inelastic	Integrated	Internated
	schedule	model -	model
	planning model	limited prices	model
Revenue	204,553	214,380	244,924
Operating costs	150,603	160,003	173,349
Profit	53,949	54,377 (+ 0.8%)	71,575 (+ 32.7%)
Number of flights	22	22	24
Transported passengers	943	1031 (+ 9.3%)	1064 (+ 12.7%)
Economy-Business	882 E - 61 B	970 E - 61 B	997 E - 67 B
Allocated seats	274	324	324

l n+re	du	ction
murc	uu	CLIOII

Motivation

Demand model 0000

Integrated model

Results

Heuristic C

Conclusions

Sequential versus integrated

	Sequential approach				Integrat	ed model -	% Improv	vement
No	Profit	Pax.	Flights	Seats	Profit	Pax.	Flights	Seats
1	15,091	284	8	124	-	-	-	-
2	35,372	400	8	150	5.55%	33.50%	8	217
3	50,149	859	10	300	-	-	-	-
4	69,901	931	22	274	1.43%	14.18%	24	324
5	82,311	1145	16	333	-	-	-	-
6	904,054	1448	10	1148	0.30%	-	10	1312
7	135,656	1814	32	498	-	-	-	-
8	115,983	2236	26	691	-	-	-	-
9	854,902	1270	10	1016	0.43%	5.83%	10	1090
10	137,428	1517	34	391	0.83%	4.94%	34	476
11	93,347	1144	20	387	3.36%	1.40%	20	457
12	49,448	1050	12	370	-	-	-	-
13	27,076	448	10	207	-	-	-	-
14	52,369	599	10	267	1.45%	16.69%	12	267
15	26,486	504	6	185	-	-	-	-

Introduction	Motivation	Demand model	Integrated model	Results	Heuristic	Conclusions
Heurist	tic metho	bd				

- We are limited in terms of the computational time
- A heuristic based on two simplified versions of the model:
 - $\bullet~{\rm FAM}^{\textit{LS}}:$ price-inelastic schedule planning model
 - Explores new fleet assignment solutions based on a local search
 - Price sampling
 - Variable neighborhood search
 - REV^{LS}: Revenue management with fixed capacity
 - Optimizes the revenue for the explored fleet assignment solution

Introduction	Motivation	Demand model	Integrated model	Results	Heuristic	Conclusions
Heuristi	ic metho	bd				

$$\begin{array}{l} \mbox{Require: } \bar{x}_0, \bar{y}_0, \bar{d}_0, \bar{p}_0, \bar{t}_0, \bar{b}_0, \bar{\pi}_0, z^*, z_{opt}, k_{max}, \varepsilon, n_{min}, n_{max} \\ k := 0, n_{fixed} := n_{min} \\ \mbox{repeat} \\ \bar{p}_k := \mbox{Price sampling} \\ \{\bar{d}_k, \bar{b}_k\} := \mbox{Demonstrain} \mbox{Opt}(\bar{p}_k) \\ \{\bar{x}_k, \bar{y}_k, \bar{\pi}_k, \bar{t}_k\} := \mbox{solve } z_{\rm FAM}{\rm LS}(\bar{d}_k, \bar{b}_k, n_{fixed}) \\ \{\bar{p}_k, \bar{d}_k, \bar{b}_k, \bar{\pi}_k, \bar{t}_k\} := \mbox{solve } z_{\rm REV}{\rm LS}(\bar{d}_k, \bar{b}_k, n_{fixed}) \\ \{\bar{p}_k, \bar{d}_k, \bar{b}_k, \bar{\pi}_k, \bar{t}_k\} := \mbox{solve } z_{\rm REV}{\rm LS}(\bar{x}_k, \bar{y}_k) \\ \mbox{if improvement}(z_{\rm REV}{\rm LS}) \mbox{then} \\ \mbox{Update } z^* \\ \mbox{Intensification: } n_{fixed} := n_{fixed} + 1 \mbox{ when } n_{fixed} > n_{min} \\ \mbox{else} \\ \mbox{Diversification: } n_{fixed} := n_{fixed} - 1 \mbox{ when } n_{fixed} > n_{min} \\ \mbox{end if} \\ k := k + 1 \\ \mbox{until } ||z_{opt} - z^*||^2 \le \varepsilon \mbox{ or } k \ge k_{max} \end{array}$$

Introduction

Motivation

Demand model 0000

Integrated model

Results

Heuristic

Conclusions

Performance of the heuristic

		Best solution	reported by	Heuristic					
		BONMIN			% deviation		Time(sec)		
Exp.	Flights	Profit	Time (sec)	min	avg.	max	min	avg.	max
1	10	15,091	11	-	0.00%	-	-	1	-
2	11	37,335	27	-	0.00%	-	-	2	-
3	12	50,149	56	-	0.00%	-	-	33	-
4	26	70,904	2,479	1.32%	1.77%	2.06%	288	1,510	3,129
5	19	82,311	1,493	0.00%	0.13%	0.22%	18	900	3,092
6	12	906,791	12,964	7.37%	7.37%	7.37%	25	279	1,434
7	33	135,656	23,662	13.88%	16.36%	18.84%	74	1,714	3,534
8	32	115,983	209	0.00%	0.01%	0.12%	643	1,955	3,432
9	11	858,544	7,343	3.42%	4.79%	6.92%	1	762	3,322
10	39	138,575	37,177	2.76%	3.94%	4.98%	929	1,775	2,891
11	23	96,486	17,142	0.00%	0.16%	0.90%	236	1,625	3,574
12		49,448	32		0.00%			1	
13	15	27,076	36	-	0.00%	-	-	5	-
14	14	53,128	141	-	0.00%	-	-	2	-
15	13	26,486	14	-	0.00%	-	-	4	-
16	77	194,598	42,360	-5.89%	-4.04%	-2.41%	293	1,652	2,990
17	56	191,091	39,447	0.48%	2.13%	4.46%	32	1,646	3,305
18	97	351,655	17,424	4.91%	7.94%	11.22%	840	2099	3331

Introduction

Motivation

Demand model

Integrated model

Results

Heuristic

Conclusions

Performance of the heuristic

		Best solution	reported by	Heuristic					
		BONMIN			% deviation		Time(sec)		
Exp.	Flights	Profit	Time (sec)	min	avg.	max	min	avg.	max
1	10	15,091	11	-	0.00%	-	-	1	-
2	11	37,335	27	-	0.00%	-	-	2	-
3	12	50,149	56	-	0.00%	-	-	33	-
4	26	70,904	2,479	1.32%	1.77%	2.06%	288	1,510	3,129
5	19	82,311	1,493	0.00%	0.13%	0.22%	18	900	3,092
6	12	906,791	12,964	7.37%	7.37%	7.37%	25	279	1,434
7	33	135,656	23,662	13.88%	16.36%	18.84%	74	1,714	3,534
8	32	115,983	209	0.00%	0.01%	0.12%	643	1,955	3,432
9	11	858,544	7,343	3.42%	4.79%	6.92%	1	762	3,322
10	39	138,575	37,177	2.76%	3.94%	4.98%	929	1,775	2,891
11	23	96,486	17,142	0.00%	0.16%	0.90%	236	1,625	3,574
12		49,448	32		0.00%			1	
13	15	27,076	36	-	0.00%	-	-	5	-
14	14	53,128	141	-	0.00%	-	-	2	-
15	13	26,486	14	-	0.00%	-	-	4	-
16	77	194,598	42,360	-5.89%	-4.04%	-2.41%	293	1,652	2,990
17	56	191,091	39,447	0.48%	2.13%	4.46%	32	1,646	3,305
18	97	351,655	17,424	4.91%	7.94%	11.22%	840	2099	3331

Introduction	Motivation	Demand model 0000	Integrated model	Results	Heuristic	Conclusions

Conclusions and future work

• Solution methods for the resulting mixed integer nonlinear problem

- A Lagrangian relaxation based heuristic
- Subgradient optimization
- Performance of the heuristic for larger instances
- Clip-Air
 - Further analysis with the integrated model
 - Multi-modality

Introduction	Motivation	Demand model	Integrated model	Results	Heuristic	Conclusions
		0000	000			

Thank you for your attention!

Introduction	Motivation	Demand model	Integrated model	Results	Heuristic	Conclusions
Discret	te choice	analysis				

• Finite and discrete set of alternatives

- Choice of transportation mode: car, bus, etc.
- Choice of brand: Leonidas, Lindt, Suchard, Toblerone, etc.
- Choice of flight: GVA-NCE 10:00, GVA-NCE 06:30, etc.
- Individual *n* associates a utility to alternative *i*
- Represented by a random function

$$U_{in} = V_{in} + \varepsilon_{in} = \sum_{k} \beta_k x_{ink} + \varepsilon_{in}$$

- Individual *n* chooses alternative *i* if $U_{in} \ge U_{jn}$, for all *j*.
- Utility is random, so we have a probabilistic model

$$P_n(i|C_n) = Pr(U_{in} \ge U_{jn}) = Pr(V_{in} + \varepsilon_{in} \ge V_{jn} + \varepsilon_{jn})$$

- Concrete models require
 - specification of V_{in}
 - assumptions about ε_{in}
 - estimation of the parameters from data

