0000

[Introduction](#page-1-0) [Motivation](#page-3-0) [Demand model](#page-4-0) [Integrated model](#page-8-0) [Results](#page-12-0) [Heuristic](#page-14-0) [Conclusions](#page-18-0)

An integrated fleet assignment and itinerary choice model

for a new flexible aircraft

Bilge Atasoy Michel Bierlaire Matteo Salani

STRC 2012

May 2, 2012

- Flexible capacity
- Modular-detachable capsules
- Wing and capsule separation
- **•** Multi-modality
- **•** Passenger and cargo
- **•** Sustainability
	- **•** Gas emissions
	- **•** Noise
	- **•** Accident rates

- Analyze the potential performance of Clip-Air by developing appropriate models
- Introduce demand notion in optimization models through appropriate demand models
- Develop solution methodologies for the integrated model
- Application of the models and solution methods for Clip-Air.

Motivation: Demand responsive transportation systems

- Supply \Rightarrow Flexibility provided by Clip-Air
- Demand \Rightarrow integration of appropriate demand models

Demand model

- Simple models (e.g. linear, exp.) fail to represent the reality
- Integrated model becomes very sensitive to demand model parameters
- Appropriate models need to be developed

- Market segments, s, defined by the class and each OD pair
- Itinerary choice among the set of alternatives, I_s , for each segment s
- For each itinerary $i \in I_s$ the utility is defined by:

 $V_i = ASC_i + \beta_p \cdot \ln(p_i) + \beta_{time} \cdot \text{time}_i + \beta_{moving} \cdot \text{moving}_i$ $V_i = V_i(p_i, z_i, \beta)$

- $\,\mathrm{ASC}_{i}:$ alternative specific constant
- $-p$ is a policy variable and included as log
- p and time are interacted with non-stop/stop
- morning is 1 if the itinerary is a morning itinerary
- *No-revenue* represented by the subset $I_s' \in I_s$ for segment s.

 \bullet Demand for class h for each itinerary *i* in market segment *s*:

$$
\tilde{d}_i = D_s \frac{\exp(V_i(p_i, z_i, \beta))}{\sum_{j \in I_s} \exp(V_j(p_j, z_j, \beta))}
$$

 $-D_s$ is the total expected demand for market segment s.

• Spill and recapture effects: Capacity shortage \Rightarrow passengers may be recaptured by other itineraries (instead of their desired itineraries) • Recapture ratio is given by:

$$
b_{i,j} = \frac{\exp(V_j(p_j, z_j, \beta))}{\sum_{k \in I_s \setminus \{i\}} \exp(V_k(p_k, z_k, \beta))}
$$

- Revealed preferences (RP) data: Booking data from a major European airline
	- Lack of variability
	- Price inelastic demand
- RP data is combined with a stated preferences (SP) data
- Time, cost and morning parameters are fixed to be the same for the two datasets.
- A scale parameter is introduced for SP to capture the differences in variance.

Estimation results

• Price elasticity of demand:

$$
E_{price_i}^{P_i} = \frac{\partial P_i}{\partial price_i} \cdot \frac{price_i}{P_i}
$$

An example

- for a non-stop itinerary
	- price elasticity for economy is −2.03 and -1.86 for business
- for a one-stop itinerary
	- price elasticity for economy is -2.14 and -1.95 for business

Integrated schedule planning and revenue management

Integrated model - Schedule planning

$$
Max \sum_{h \in H} \sum_{s \in S^h} \sum_{i \in (I_s \setminus I'_s)} (d_i - \sum_{j \in I_s} t_{i,j} + \sum_{j \in (I_s \setminus I'_s)} t_{j,i} b_{j,i}) p_i - \sum_{\substack{k \in K \\ f \in F}} C_{k,f} x_{k,f} \colon \text{ revenue} - \text{cost} \tag{1}
$$

s.t.
$$
\sum_{k \in K} x_{k,f} = 1: \text{ mandatory flights}
$$
 $\forall f \in F^M$ (2)

$$
\sum_{k \in K} x_{k,f} \le 1: \text{ optional flights} \qquad \forall f \in F^O \qquad (3)
$$

$$
y_{k,a,t^-} + \sum_{f \in In(k,a,t)} x_{k,f} = y_{k,a,t^+} + \sum_{f \in Out(k,a,t)} x_{k,f} \quad \text{flow conservation} \qquad \forall [k,a,t] \in N \tag{4}
$$

$$
\sum_{a \in A} y_{k,a,min} = + \sum_{f \in CT} x_{k,f} \le R_k \quad \text{fleet availability} \tag{5}
$$

$$
y_{k,a,min} = y_{k,a,max} \neq \cdots
$$
 cyclic schedule\n
$$
\forall k \in K, a \in A
$$
\n(6)

$$
\sum_{h \in H} \pi_{k,f}^h = Q_k x_{k,f} \quad \text{seat capacity} \tag{7}
$$

$$
x_{k,f} \in \{0,1\} \qquad \qquad \forall k \in K, f \in F \qquad \qquad (8)
$$

$$
y_{k,a,t} \geq 0 \qquad \qquad \forall [k,a,t] \in \mathbb{N} \qquad (9)
$$

Integrated model - Revenue management

$$
\sum_{s \in S} \sum_{i \in (I_{s} \setminus I_{s}')} \delta_{i,f} d_{i} - \sum_{j \in I_{s}} \delta_{i,f} t_{i,j} + \sum_{j \in (I_{s} \setminus I_{s}')} \delta_{i,f} t_{j,i} b_{j,i} \le \sum_{k \in K} \pi_{k,f} : capacity \qquad \forall h \in H, f \in F \qquad (10)
$$
\n
$$
\sum_{j \in I_{s}} t_{i,j} \le d_{i} : total split \qquad \forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I_{s}') \qquad (11)
$$
\n
$$
\tilde{d}_{i} = D_{s} \sum_{j \in I_{s}} \exp(V_{j}(p_{j}, z_{j}, \beta)) : logit demand \qquad \forall h \in H, s \in S^{h}, i \in I_{s} \qquad (12)
$$
\n
$$
b_{i,j} = \sum_{k \in I_{s} \setminus \{i\}} \exp(V_{j}(p_{j}, z_{j}, \beta)) : recall \text{ } (13)
$$
\n
$$
d_{i} \le \tilde{d}_{i} : realized demand \qquad \forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I_{s}'), j \in I_{s} \qquad (13)
$$
\n
$$
0 \le p_{i} \le UB_{i}: upper bound on price \qquad \forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I_{s}'), j \in I_{s} \qquad (14)
$$
\n
$$
0 \le p_{i} \le UB_{i}: upper bound on price \qquad \forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I_{s}'), j \in I_{s} \qquad (15)
$$
\n
$$
t_{i,j} \ge 0 \qquad \forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I_{s}'), j \in I_{s} \qquad (16)
$$
\n
$$
t_{i,j} \ge 0 \qquad \forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I_{s}'), j \in I_{s} \qquad (17)
$$

- We consider reference models to evaluate the integrated model
	- Price-inleastic schedule planning: M. Lohatepanont and C. Barnhart (2004)
	- Sequential approach: Revenue management considers fixed supply capacity
- The resulting model is a mixed integer nonlinear problem
- Nonlinearity is due to the explicit supply-demand interactions
- The model is implemented in AMPL and BONMIN solver is used \bullet
- BONMIN does not guarantee optimality

Impact of the integrated model

Sequential versus integrated

- We are limited in terms of the computational time
- A heuristic based on two simplified versions of the model:
	- FAM^{LS} : price-inelastic schedule planning model
		- Explores new fleet assignment solutions based on a local search
		- Price sampling
		- Variable neighborhood search
	- REV^{LS} : Revenue management with fixed capacity
		- Optimizes the revenue for the explored fleet assignment solution

Required:
$$
\bar{x}_0
$$
, \bar{y}_0 , \bar{d}_0 , \bar{p}_0 , \bar{t}_0 , \bar{b}_0 , $\bar{\pi}_0$, z^* , z_{opt} , k_{max} , ε, n_{min} , n_{max}
\n*k* := 0, n_{fixed} := n_{min}
\n**repeat**
\n \bar{p}_k := Price sampling
\n $\{\bar{d}_k, \bar{b}_k\}$:= Demand model(\bar{p}_k)
\n $\{\bar{x}_k, \bar{y}_k, \bar{\pi}_k, \bar{t}_k\}$:= solve $z_{FAMLS}(\bar{d}_k, \bar{b}_k, n_{fixed})$
\n $\{\bar{p}_k, \bar{d}_k, \bar{b}_k, \bar{\pi}_k, \bar{t}_k\}$:= solve $z_{REVLS}(\bar{x}_k, \bar{y}_k)$
\n**if** improvement(z_{REVLS}) **then**
\nUpdate z^*
\nIntensification: n_{fixed} := $n_{fixed} + 1$ when $n_{fixed} < n_{max}$
\n**else**
\nDiversification: n_{fixed} := $n_{fixed} - 1$ when $n_{fixed} > n_{min}$
\n**end if**
\n*k* := *k* + 1
\n**until** $||z_{opt} - z^*||^2 \le \varepsilon$ or *k* ≥ k_{max}

[Motivation](#page-3-0) [Demand model](#page-4-0) [Integrated model](#page-8-0) [Results](#page-12-0) [Heuristic](#page-14-0) [Conclusions](#page-18-0)
0000 000

Performance of the heuristic

[Motivation](#page-3-0) [Demand model](#page-4-0) [Integrated model](#page-8-0) [Results](#page-12-0) [Heuristic](#page-14-0) [Conclusions](#page-18-0)
0000 000

Performance of the heuristic

- Solution methods for the resulting mixed integer nonlinear problem
	- A Lagrangian relaxation based heuristic
	- Subgradient optimization
	- Performance of the heuristic for larger instances
- Clip-Air
	- Further analysis with the integrated model
	- **•** Multi-modality

Thank you for your attention!

• Finite and discrete set of alternatives

- Choice of transportation mode: car, bus, etc.
- Choice of brand: Leonidas, Lindt, Suchard, Toblerone, etc.
- Choice of flight: GVA-NCE 10:00, GVA-NCE 06:30, etc.
- \bullet Individual *n* associates a utility to alternative *i*
- Represented by a random function

$$
U_{in}=V_{in}+\varepsilon_{in}=\sum_{k}\beta_{k}x_{ink}+\varepsilon_{in}
$$

- Individual *n* chooses alternative *i* if $U_{in} \geq U_{in}$, for all *j*.
- Utility is random, so we have a probabilistic model

$$
P_n(i|C_n) = Pr(U_{in} \geq U_{in}) = Pr(V_{in} + \varepsilon_{in} \geq V_{in} + \varepsilon_{in})
$$

- Concrete models require
	- \bullet specification of V_{in}
	- assumptions about ε_{in}
	- estimation of the parameters from data

