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Recent developments in discrete choice modeling (DCM) 
 
 

• Choice cannot only be explained by economic indicators (travel 
duration, price or a trip, etc.) 
 

• Attitudes & perceptions play important role in choice behavior: 
need to be integrated in an appropriate way into DCMs. 
 

• Framework providing the solution to this issue:  
  hybrid choice models (HCM) (Walker, 2001; Ben-Akiva et al., 

2002) 
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Figure extracted from Walker and Ben-Akiva, 2002. 
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Hybrid choice model (HCM): DCM with latent constructs. 
 
Allows to capture attitudes et perceptions 
 
   
   

 



Figure extracted from Walker and Ben-Akiva, 2002. 

INTRODUCTION & MOTIVATION 5 

Hybrid choice model (HCM): DCM with latent constructs. 
 
In this research: focus on the integration of choice model and latent 
variable model 
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Several issues linked to the integration of latent variables into 
choice models: 

 
 

• Measurement of latent variable 
 
 
 

• Integration of the measurement into the choice model 
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Several issues linked to the integration of latent variables into 
choice models: 

 
 

• Measurement of latent variable: 
• Use of psychometric indicators 
• Five-point Likert scale 

 
• Integration of the measurement into the choice model 

• Discrete versus continuous measurements 
• Integration of dispersion effects:  

• Heterogeneity of response behavior to psychometrics 
•  
   

 
Focus of this presentation 
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Usual way in literature 
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Motivation for integration of dispersion effects: 

 
 

• Exaggeration effects in experiments on survey design in social science 
literature (Schuman and Presser, 1996) 
 

• Some individuals tend to report responses at extremities of scale of 
agreement though their commitment to the opinion statement is not strong. 
 

• Need to account for heterogeneity of response behavior 
 
  
   

 



Hybrid choice model with discrete indicators 
 
Structural equations: 
 
Choice model: 
                                            with 
 
Latent variable model: 
        with  
 
 
Measurement equations: 
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Hybrid choice model with discrete indicators 
 
Structural equations: 
 
Choice model: 
                                            with 
 
Latent variable model: 
        with  
 
 
Measurement equations: 
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INTEGRATION OF DISPERSION EFFECTS 

Individual-specific scale 
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Steps: 
 

 
1. Identify individuals with extreme answers, systematically stating: 

• Total disagreement (coded as 1) 
• Total agreement (coded as 5) 

 
 

2. Specify scale        which depends on response behavior of 
subject n 

 
•  
•   

 

METHODOLOGY 
INTEGRATION OF DISPERSION EFFECTS 
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Definition of index: 
 
 

• Definition of degree of extremity 
 

       with 
 
 
 
• En : number of occurrences of ‘total disagreement’ and ‘total 

agreement’ for individual n over all R opinion questions of the survey 
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Definition of scale parameter: 
 
 

• Measurement model: 
 
 

 
 
 

• Scale that captures heterogeneity in response behavior: 
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Definition of scale parameter: 
 
 

• Measurement model: 
 
 

 
 
 

• Scale that captures heterogeneity in response behavior: 
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Definition of scale parameter: 
 
 

• Measurement model: 
 
 

 
 
 

• Scale that captures heterogeneity in response behavior: 
 
 

METHODOLOGY 
INDIVIDUALS WITH EXTREME ANSWERS 

)()1(1 nEE EII
Extnnn νθθν σσ ⋅−+⋅= <<

γθθ ⋅⋅−+⋅= << nEE EII
nn

)1(1

nnn XmI υα += );( **

),0(~
n

Logisticn υσυ

Group-specific scale 



19 

Definition of scale parameter: 
 
 

• Measurement model: 
 
 

 
 
 

• Scale that captures heterogeneity in response behavior: 
 
 

METHODOLOGY 
INDIVIDUALS WITH EXTREME ANSWERS 
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Progressive scale:  
• The higher the degree of extremity, the higher the scale. 
• γ parameter to estimate 



Models developed based on case study: 
 
Stated preference survey to analyze vehicle choice 
• Customized choice situations 

 
 
 
 
 
 
 
 
 
 

• Collection of psychometric data 
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Choice 

Gasoline / diesel 
 

New alternative: 
Electric 
 

Competitors 
 

Renault 
 

Renault 
 

CASE STUDY 



APPLICATION TO DEMAND FOR ELECTRIC CARS 

Opinions on themes related to electric vehicles 
• Environmental concern 

• An electric car is a 100% ecological solution. 
• Attitude towards new technologies 

• A control screen is essential in my use of a car. 
• Perception of the reliability of an electric vehicle 

• Electric cars are not as secure as gasoline cars. 
• Perception of leasing 

• Leasing is an optimal contract which allows me to change car frequently. 
• Attitude towards design 

• Design is a secondary element when purchasing a car, which is above all a 
practical transport mode. 
 

Ratings 
• Total disagreement (1) 
• Disagreement (2) 
• Neutral opinion (3) 
• Agreement (4) 
• Total agreement (5) 
• I don’t know (6) 
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CASE STUDY 



APPLICATION TO DEMAND FOR ELECTRIC CARS 

Latent variable model: 
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MODEL SPECIFICATION 
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Pro-convenience 
attitude 

Indicators 

Design is a secondary element when purchasing a 
car, which is above all a practical transport mode. 

I give more importance to my vehicle’s spaciousness 
or capacity to transport people and luggages than to 
its look. 

I prefer having a car with a new propulsion technology 
to a car with a nice look. 

Explanatory 
variables 

Gender 

Number of people 
in household 

Age 

Retired 

Owner 
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Latent variable model: 
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Issue: how to select θ ? 
 

• Estimation of latent variable models 
for all thresholds between 1 and 25 
 

• Computation of 
 
 

•      highest for θ = 7  
 
 

• Latent variable model with θ = 7 
selected to be integrated into HCM 
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Issue: how to select θ ? 
 

• Estimation of latent variable models 
for all thresholds between 1 and 25 
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Figure based on Walker and Ben-Akiva, 2002. 

Battery lease 

Incentive 

Gasoline / electricity 
costs 

Purchase price 

Utility 

Renault electric 

Explanatory variables 

Competitors gasoline 

Renault gasoline 

Choice 

Socio-economic 
characteristics 

Purchase price 

Interaction 

Target group 

Electric car model 

Interaction 

Target group 

Interaction Pro-convenience 
attitude 

Indicators 

Design is secondary, 
a car is a practical 
transport mode. 

Spaciousness / 
capacity more 
important than look. 

New propulsion 
technology more 
important than look. 

Explanatory 
variables 

Interaction 

Socio-economic 
characteristics 

MODEL SPECIFICATION 
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Estimation of the model 

 
 

• Simultaneous estimation 
 
 

• Extended version of Biogeme (Bierlaire and Fetiarison, 2009) 
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MODEL ESTIMATION 



Results from the latent variable model 
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Results from the latent variable model 
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Results from the latent variable model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To observe dispersion effects, we need               for the ‘extreme’ group.  
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Results from the latent variable model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To observe dispersion effects, we need               for the ‘extreme’ group.  
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Results from the choice model 
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MODEL ESTIMATION 

Pro-convenience attitude significantly affects car choice. 



 
 
 
Improvement of fit over model without dispersion effects 
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MODEL ESTIMATION 



CONCLUSION 

 
Main findings:  
• Heterogeneity of response behavior exists and can be captured by 

individual-specific scale of measurement model 

• Scale increases as degree of extremity increases 
 

 
 
Further research: 
• Indicator-specific scales instead of generic scale 

• Latent class model to characterize individuals with extreme vs moderate 
scales (by socio-economic characteristics) 
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CONCLUSION 

 

 

Perspectives: 
 

• More importance should be given to measurement model of HCM 

 

• In particular: measurement equation should reflect more individual-
specific information, e.g. linked to response behavior 

36 



 
 
 
 
 
 

Thanks! 
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