ACCOUNTING FOR RESPONSE BEHAVIOR HETEROGENEITY IN THE MEASUREMENT OF ATTITUDES:

AN APPLICATION TO DEMAND FOR ELECTRIC VEHICLES

Aurélie Glerum

Michel Bierlaire

12th Swiss Transport Research Conference 4th May 2012

OUTLINE

Introduction & motivation

Methodology

- HCM with discrete measurements
- Integration of dispersion effects
- Individuals with extreme answers

Application to demand for electric cars

- Case study
- Model specification
- Model estimation

Conclusion

Recent developments in discrete choice modeling (DCM)

- Choice cannot only be explained by economic indicators (travel duration, price or a trip, etc.)
- Attitudes & perceptions play important role in choice behavior: need to be integrated in an appropriate way into DCMs.
- Framework providing the solution to this issue: hybrid choice models (HCM) (Walker, 2001; Ben-Akiva et al., 2002)

Hybrid choice model (HCM): DCM with latent constructs.

Allows to capture attitudes et perceptions

Choice Model

Hybrid choice model (HCM): DCM with latent constructs.

In this research: focus on the integration of choice model and latent variable model

Choice Model

Several issues linked to the integration of latent variables into choice models:

• Measurement of latent variable

• Integration of the measurement into the choice model

Several issues linked to the integration of latent variables into choice models:

- Measurement of latent variable:
 - Use of psychometric indicators
 Five-point Likert scale

Usual way in literature

Integration of the measurement into the choice model

Several issues linked to the integration of latent variables into choice models:

- Measurement of latent variable:
 - Use of psychometric indicators
 - Five-point Likert scale

Usual way in literature

- Integration of the measurement into the choice model
 - Discrete versus continuous measurements

Several issues linked to the integration of latent variables into choice models:

- Measurement of latent variable:
 - Use of psychometric indicators
 - Five-point Likert scale

Usual way in literature

- Integration of the measurement into the choice model
 - Discrete versus continuous measurements
 - Integration of **dispersion effects**:
 - Heterogeneity of response behavior to psychometrics

Several issues linked to the integration of latent variables into choice models:

- Measurement of latent variable:
 - Use of psychometric indicators
 - Five-point Likert scale

Usual way in literature

- Integration of the measurement into the choice model
 - Discrete versus continuous measurements
 - Integration of dispersion effects:
 - Heterogeneity of response behavior to psychometrics

→ Focus of this presentation

Motivation for integration of dispersion effects:

- Exaggeration effects in experiments on survey design in social science literature (Schuman and Presser, 1996)
- Some individuals tend to report responses at extremities of scale of agreement though their commitment to the opinion statement is not strong.
- Need to account for heterogeneity of response behavior

HCM WITH DISCRETE MEASUREMENTS

Hybrid choice model with discrete indicators

Structural equations:

Choice model: $U_{in} = V(X_{in}, X_n^*; \beta) + \varepsilon_{in}$ with

$$\varepsilon_{in} \sim EV(0,1)$$

Latent variable model: $X_n^* = h(X_{in}; \lambda) + \omega_n$ with

$$\omega_n \sim N(0, \sigma_\omega)$$

Measurement equations: $I_n^* = m(X_n^*; \alpha) + \upsilon_n$ $\upsilon_n \sim Logistic(0, \sigma_{\upsilon_n})$

$$I_{n} = \begin{cases} 1 \text{ if } -\infty < I_{n}^{*} \le \tau_{1} \\ 2 \text{ if } \tau_{1} < I_{n}^{*} \le \tau_{2} \\ 3 \text{ if } \tau_{2} < I_{n}^{*} \le \tau_{3} \\ 4 \text{ if } \tau_{3} < I_{n}^{*} \le \tau_{4} \\ 5 \text{ if } \tau_{4} < I_{n}^{*} \le +\infty \end{cases}$$

INTEGRATION OF DISPERSION EFFECTS

Hybrid choice model with discrete indicators

Structural equations:

Choice model: $U_{in} = V(X_{in}, X_n^*; \beta) + \varepsilon_{in}$ with $\varepsilon_{in} \sim EV(0, 1)$ Latent variable model: $X_{n}^{*} = h(X_{in}; \lambda) + \omega_{n}$ with $\omega_n \sim N(0, \sigma_{\omega})$ $I_{n} = \begin{cases} 1 \text{ if } -\infty < I_{n}^{*} \le \tau_{1} \\ 2 \text{ if } \tau_{1} < I_{n}^{*} \le \tau_{2} \\ 3 \text{ if } \tau_{2} < I_{n}^{*} \le \tau_{3} \\ 4 \text{ if } \tau_{3} < I_{n}^{*} \le \tau_{4} \\ 5 \text{ if } \tau_{4} < I_{n}^{*} \le +\infty \end{cases}$ **Measurement equations:** $I_n^* = m(X_n^*; \alpha) + \upsilon_n$ $v_n \sim Logistic(0, \sigma_{v_n})$ Individual-specific scale

INTEGRATION OF DISPERSION EFFECTS

Steps:

- 1. Identify individuals with extreme answers, systematically stating:
 - Total disagreement (coded as 1)
 - Total agreement (coded as 5)
- 2. Specify scale σ_{v_n} which depends on **response behavior** of subject *n*

INDIVIDUALS WITH EXTREME ANSWERS

Definition of index:

• Definition of *degree of extremity*

$$E_n = \sum_{r=1}^{R} J_{rn} \quad \text{with} \quad J_{rn} = \begin{cases} 1 & \text{if } I_{rn} = 1 \text{ or } I_{rn} = 5\\ 0 & \text{otherwise} \end{cases}$$

• *E_n* : number of occurrences of 'total disagreement' and 'total agreement' for individual *n* over all *R* opinion questions of the survey

INDIVIDUALS WITH EXTREME ANSWERS

Definition of scale parameter:

• Measurement model:

 $I_n^* = m(X_n^*; \alpha) + \upsilon_n$ $\upsilon_n \sim Logistic(0, \sigma_{\upsilon_n})$

• Scale that captures heterogeneity in response behavior:

$$\sigma_{v_n} = I_{E_n < \theta} \cdot 1 + (1 - I_{E_n < \theta}) \cdot \sigma_{v_{Ext}}(E_n)$$

= $I_{E_n < \theta} \cdot 1 + (1 - I_{E_n < \theta}) \cdot E_n \cdot \gamma$

INDIVIDUALS WITH EXTREME ANSWERS

Definition of scale parameter:

• Measurement model:

 $I_n^* = m(X_n^*; \alpha) + \upsilon_n$ $\upsilon_n \sim Logistic(0, \sigma_{\upsilon_n})$

• Scale that captures heterogeneity in response behavior:

$$\sigma_{v_n} = I_{E_n \triangleleft \theta} \cdot 1 + (1 - I_{E_n \triangleleft \theta}) \cdot \sigma_{v_{Ext}}(E_n)$$
$$= I_{E_n \triangleleft \theta} \cdot 1 + (1 - I_{E_n \triangleleft \theta}) \cdot E_n \cdot \gamma$$

Define threshold θ above which individuals show extreme behavior

INDIVIDUALS WITH EXTREME ANSWERS

Definition of scale parameter:

• Measurement model:

 $I_n^* = m(X_n^*; \alpha) + \upsilon_n$ $\upsilon_n \sim Logistic(0, \sigma_{\upsilon_n})$

• Scale that captures heterogeneity in response behavior:

$$\sigma_{v_n} = I_{E_n < \theta} \cdot 1 + (1 - I_{E_n < \theta}) \cdot \sigma_{v_{Ext}}(E_n) \quad \text{Group-specific scale}$$
$$= I_{E_n < \theta} \cdot 1 + (1 - I_{E_n < \theta}) \cdot E_n \cdot \gamma$$

INDIVIDUALS WITH EXTREME ANSWERS

Definition of scale parameter:

• Measurement model:

 $I_n^* = m(X_n^*; \alpha) + \upsilon_n$ $\upsilon_n \sim Logistic(0, \sigma_{\upsilon_n})$

• Scale that captures heterogeneity in response behavior:

$$\sigma_{v_n} = I_{E_n < \theta} \cdot 1 + (1 - I_{E_n < \theta}) \cdot \sigma_{v_{Ext}}(E_n)$$

= $I_{E_n < \theta} \cdot 1 + (1 - I_{E_n < \theta}) \cdot E_n \cdot \gamma$

Progressive scale:

- The higher the degree of extremity, the higher the scale.
- γ parameter to estimate

APPLICATION TO DEMAND FOR ELECTRIC CARS²⁰

CASE STUDY

Models developed based on case study:

Stated preference survey to analyze vehicle choice

Customized choice situations

• Collection of psychometric data

APPLICATION TO DEMAND FOR ELECTRIC CARS²¹

CASE STUDY

Opinions on themes related to electric vehicles

- Environmental concern
 - An electric car is a 100% ecological solution.
- Attitude towards new technologies
 - A control screen is essential in my use of a car.
- Perception of the reliability of an electric vehicle
 - Electric cars are not as secure as gasoline cars.
- Perception of leasing
 - Leasing is an optimal contract which allows me to change car frequently.
- Attitude towards design
 - Design is a secondary element when purchasing a car, which is above all a practical transport mode.

Ratings

- Total disagreement (1)
- Disagreement (2)
- Neutral opinion (3)
- Agreement (4)
- Total agreement (5)
- I don't know (6)

APPLICATION TO DEMAND FOR ELECTRIC CARS²²

MODEL SPECIFICATION

Latent variable model:

APPLICATION TO DEMAND FOR ELECTRIC CARS²³

MODEL SPECIFICATION

Latent variable model:

APPLICATION TO DEMAND FOR ELECTRIC CARS²⁴

MODEL SPECIFICATION

Issue: how to select θ ?

- Estimation of latent variable models for all thresholds between 1 and 25
- Computation of $\overline{\rho}^2 = 1 \frac{L(\mu) Q}{L(0)}$

•
$$\rho^2$$
 highest for $\theta = 7$

• Latent variable model with $\theta = 7$ selected to be integrated into HCM

APPLICATION TO DEMAND FOR ELECTRIC CARS²⁵

MODEL SPECIFICATION

Issue: how to select θ ?

- Estimation of latent variable models for all thresholds between 1 and 25
- Computation of $\overline{\rho}^2 = 1 \frac{L(\mu) Q}{L(0)}$
- ρ^2 highest for $\theta = 7$
- Latent variable model with $\theta = 7$ selected to be integrated into HCM

APPLICATION TO DEMAND FOR ELECTRIC CARS²⁶

MODEL SPECIFICATION

Issue: how to select θ ?

- Estimation of latent variable models for all thresholds between 1 and 25
- Computation of $\rho^{-2} = 1 \frac{L(\mu) Q}{L(0)}$

•
$$\rho^2$$
 highest for $\theta = 7$

• Latent variable model with $\theta = 7$ selected to be integrated into HCM

APPLICATION TO DEMAND FOR ELECTRIC CARS²⁷

MODEL SPECIFICATION

APPLICATION TO DEMAND FOR ELECTRIC CARS²⁸

MODEL ESTIMATION

Estimation of the model

- Simultaneous estimation
- Extended version of Biogeme (Bierlaire and Fetiarison, 2009)

APPLICATION TO DEMAND FOR ELECTRIC CARS²⁹

MODEL ESTIMATION

Results from the latent variable model

Structural equation			Measurement equation		
Name	Value	<i>t</i> -test	Name	Value	<i>t</i> -test
$\beta_{ m Mean}$	-6.03	-17.32	$ au_1$	-9.23	-33.72
$eta_{ ext{Male}}$	-0.256	-1.54**	γ	0.203	29.62
$\beta_{ m NbPeople}$	0.362	5.46	δ_1	4.76	32.36
β_{Age}	0.0166	5.55	δ_2	2.15	40.76
β_{Retired}	1.40	5.31	δ_3	3.45	41.46
$eta_{ ext{Homeowner}}$	0.673	4.31	α_2	0.552	31.53
σ_ω	3.21	28.04	α_3	0.574	22.61

APPLICATION TO DEMAND FOR ELECTRIC CARS³⁰

MODEL ESTIMATION

Results from the latent variable model

Structural equation			Measurement equation		
Name	Value	<i>t</i> -test	Name	Value	<i>t</i> -test
β_{Mean}	-6.03	-17.32	$ au_1$	-9.23	-33.72
$eta_{ ext{Male}}$	-0.256	-1.54**	γ	0.203	29.62
$\beta_{ m NbPeople}$	0.362	5.46	δ_1	4.76	32.36
$\beta_{ m Age}$	0.0166	5.55	δ_2	2.15	40.76
$\beta_{ m Retired}$	1.40	5.31	δ_3	3.45	41.46
$eta_{ ext{Homeowner}}$	0.673	4.31	α_2	0.552	31.53
σ_ω	3.21	28.04	α_3	0.574	22.61

 $\sigma_{\nu_n} = I_{E_n < \theta} \cdot 1 + (1 - I_{E_n < \theta}) \cdot E_n \cdot \gamma$

APPLICATION TO DEMAND FOR ELECTRIC CARS³¹

MODEL ESTIMATION

Results from the latent variable model

Structural equation			Measurement equation		
Name	Value	<i>t</i> -test	Name	Value	<i>t</i> -test
$\beta_{ m Mean}$	-6.03	-17.32	$ au_1$	-9.23	-33.72
$eta_{ ext{Male}}$	-0.256	-1.54**	γ	0.203	29.62
$\beta_{ m NbPeople}$	0.362	5.46	δ_1	4.76	32.36
β_{Age}	0.0166	5.55	δ_2	2.15	40.76
β_{Retired}	1.40	5.31	δ_3	3.45	41.46
$eta_{ ext{Homeowner}}$	0.673	4.31	α_2	0.552	31.53
σ_ω	3.21	28.04	α_3	0.574	22.61

 $\sigma_{\nu_n} = I_{E_n < \theta} \cdot 1 + (1 - I_{E_n < \theta}) \cdot E_n \cdot \gamma$

To observe dispersion effects, we need $\sigma_{\nu_n} > 1$ for the 'extreme' group.

APPLICATION TO DEMAND FOR ELECTRIC CARS³²

MODEL ESTIMATION

Results from the latent variable model

Structural equation			Measurement equation		
Name	Value	<i>t</i> -test	Name	Value	<i>t</i> -test
$\beta_{ m Mean}$	-6.03	-17.32	$ au_1$	-9.23	-33.72
$eta_{ ext{Male}}$	-0.256	-1.54**	γ	0.203	29.62
$\beta_{ m NbPeople}$	0.362	5.46	δ_1	4.76	32.36
β_{Age}	0.0166	5.55	δ_2	2.15	40.76
β_{Retired}	1.40	5.31	δ_3	3.45	41.46
$eta_{ ext{Homeowner}}$	0.673	4.31	α_2	0.552	31.53
σ_ω	3.21	28.04	α_3	0.574	22.61

 $\sigma_{\nu_n} = I_{E_n < \theta} \cdot 1 + (1 - I_{E_n < \theta}) \cdot E_n \cdot \gamma$

To observe dispersion effects, we need $\sigma_{\nu_n} > 1$ for the 'extreme' group.

 \checkmark since $\sigma_{\nu_n} = 7 \cdot \gamma = 1.42$

APPLICATION TO DEMAND FOR ELECTRIC CARS³³

MODEL ESTIMATION

Results from the choice model

Name	Value	<i>t</i> -test	Name	Value	<i>t</i> -test	
Parameters in linear terms			Parameters in linear terms (ctd)			
ASC _{CG}	-2.54	-4.23	$\beta_{ m Battery}$	-4.73	-1.63**	
ASC_{RG}	-1.78	-2.98	$\beta_{\rm French_{CG}}$	0.347	2.77	
$eta_{ ext{UseCostGasoline}}$	-0.0706	-2.10	$\beta_{\rm French_{RG}}$	0.109	0.91**	
$\beta_{\rm UseCostElecHigh_{Fluence}}$	-0.282	-2.35	$\beta_{Age_{CG}}$	0.0206	4.37	
$\beta_{\rm UseCostElecHigh_{Zoé}}$	-0.818	-5.13	$\beta_{Age_{RG}}$	0.00487	1.09**	
$\beta_{\rm UseCostElecMed_{Zoé}}$	-0.483	-3.11	$\beta_{TG12_{CG}}$	1.66	4.35	
$\beta_{\text{IncentiveHigh}}$	0.748	5.80	$\beta_{\rm TG12_{RG}}$	0.681	1.80*	
$\beta_{\text{IncentiveMed}}$	0.0630	0.47**	$\beta_{TG3_{CG}}$	-0.984	-1.33**	
$\beta_{\text{IncentiveLow}}$	-0.0150	-0.11**	$\beta_{\mathrm{TG3}_{\mathrm{RG}}}$	1.29	3.10	
$\beta_{\mathrm{PT}_{\mathrm{CG},\mathrm{TG1245}}}$	-0.251	-1.86*	Parameters in	non-linear te	erms	
$\beta_{\mathrm{PT}_{\mathrm{RG},\mathrm{TG1245}}}$	-0.596	-4.03	$\beta_{\text{price}_{CG}}$	-4.15	-6.05	
$\beta_{\mathrm{PT}_{\mathrm{CG},\mathrm{TG3}}}$	-2.10	-2.88	$\beta_{\rm price_{RG,TG1245}}$	-1.97	-6.36	
$\beta_{\mathrm{PT}_{\mathrm{RG},\mathrm{TG3}}}$	-1.01	-4.63	$\beta_{\rm price_{RG,TG3}}$	-0.843	-3.51	
$\beta_{\rm NbCars_{CG}}$	-0.269	-3.65	$\beta_{\rm price_{\rm RE,TG12}}$	-1.01	-7.05	
$\beta_{ m NbCars_{RG}}$	-0.361	-5.48	$\beta_{\rm price_{RE,TG3}}$	-0.843	-3.51	
$\beta_{\mathrm{Income}_{\mathrm{CG}}}$	-0.272	-2.33	$\beta_{\rm price_{\rm PF,TG45}}$	-0.766	-4.62	
$\beta_{\mathrm{Income}_{\mathrm{RG}}}$	-0.281	-2.64	β_{X^*}	-0.0527	-4.81	

Pro-convenience attitude significantly affects car choice.

APPLICATION TO DEMAND FOR ELECTRIC CARS ³⁴ MODEL ESTIMATION

Improvement of fit over model without dispersion effects

Model	Q	$\mathscr{L}(0)$	$\mathscr{L}(\hat{\boldsymbol{\mu}})$	$ar{ ho}^2$
Without dispersion	46	-16'746	-14'030	0.16
With dispersion	47	-13'687	-18'083	0.24

Main findings:

- Heterogeneity of response behavior exists and can be captured by individual-specific scale of measurement model
- Scale increases as degree of extremity increases

Further research:

- Indicator-specific scales instead of generic scale
- Latent class model to characterize individuals with extreme vs moderate scales (by socio-economic characteristics)

Perspectives:

- More **importance** should be given to **measurement model of HCM**
- In particular: measurement equation should reflect **more individualspecific information**, e.g. linked to response behavior

Thanks!

