AN ENHANCED MEASUREMENT MODEL OF PERCEPTION OF COMFORT IN PUBLIC TRANSPORTATION

Aurélie Glerum

Michel Bierlaire

LATSIS 2012

1st European Symposium on Quantitative Methods in Transportation Systems 6th September 2012

Introduction & motivation

The data

- RP survey
- Adjective quantification survey

The integrated model framework

- Discrete choice model
- Latent variable model
- Quantification model

Application example

- Quantification model
- Integrated model
- Validation of the integrated model

Conclusion

Recent developments in discrete choice modeling (DCM)

- Choice cannot only be explained by economic indicators (travel duration, price of a trip, etc.)
- Psychological constructs (attitudes, perceptions, etc.) play important role in choice behavior: need to be integrated in an appropriate way into DCMs.
- Framework handling this issue:
 hybrid choice model (HCM) framework
 (Walker, 2001; Ben-Akiva et al., 2002)

Hybrid choice model (HCM): DCM with latent constructs.

Hybrid choice model (HCM): DCM with latent constructs.

In this research: focus on the integration of choice model and latent

Issues related to the integration of latent variables into choice models:

1. Measurement of latent variable

How to obtain the most realistic and accurate measure of a perception?

2. Integration of the measurement into the choice model

How to incorporate this information in the choice modeling framework?

1. Measurement of latent variable:

Use of opinion statements
 Five-point Likert scale

Usual way in literature (Likert, 1932; Bearden and Netemeyer, 1999)

Recent technique developed in social sciences:

Respondents report **adjectives** characterizing a variable of interest (Kaufmann et al., 2001; Kaufmann et al., 2010)

Reflects **spontaneous** perceptions of individuals (\neq survey designer's conception of the perception)

2. Integration of the measurement into the choice model:

- Structural equation model (SEM) framework used to characterize latent variable and relate it to its measurement indicators (e.g. Bollen, 1989).
- Latent variable model embedded into DCM

 HCM framework
- Integration of measurements into HCM framework:
 - Easy for models with opinion statements
 - Needs an additional modeling step for model with adjectives

Purpose of the research:

Develop an HCM that uses adjectives as measurements of latent construct

Steps:

- Collection of choice data & psychometric data in the form of adjectives
- Quantification of adjectives:
 - 1. Survey to obtain ratings of adjectives
 - 2. Quantification model
 - 3. Integration of the quantification model into the HCM framework

Two surveys:

Revealed preferences (RP) survey

Survey with evaluators (adjective quantification survey)

RP SURVEY

RP survey

- Mode choice study
- Conducted between 2009-2010 in low-density areas of Switzerland
- Conducted with PostBus (major bus company in Switzerland, operates in low-density areas)
- Info on all trips performed by inhabitants in one day:
 - Transport mode
 - Trip duration
 - Cost of trip
 - Activity at destination
 - Etc.
- 1763 valid questionnaires collected

RP SURVEY

Adjective data for perception of transport modes:

For each of the following transport modes, give three adjectives that describe them best according to you.

		Adjective 1	Adjective 2	Adjective 3
1	The car is:			
2	The train is:			
3	The bus, the metro and the tram are:			
4	The post bus is:			
5	The bicycle is:			
6	The walk is:			

RP SURVEY

Adjective data for perception of transport modes:

For each of the following transport modes, give three adjectives that describe them best according to you.

		Adjective 1	Adjective 2	Adjective 3
1	The car is:	convenient	comfortable	expensive
2	The train is:	relaxing	punctual	restful
3	The bus, the metro and the tram are:	fast	frequent	cheap
4	The post bus is:	punctual	comfortable	cheap
5	The bicycle is:	stimulating	convenient	cheap
6	The walk is:	healthy	relaxing	independent

RP SURVEY

Extraction of information on perceptions

- 1. Classification into themes:
 - Perception of cost
 - Perception of time
 - Difficulty of access
 - Flexibility
 - · Comfort, etc.
- 2. Focused on adjectives related to one theme only and one mode only:
 - **Comfort in public transportation (PT)**

Comfort

hardly full

packed

bumpy

comfortable

hard

irritating

tiring

unsuitable with bags

uncomfortable

bad air

. . .

RP SURVEY

Extraction of information on perceptions

- 1. Classification into themes:
 - Perception of cost
 - Perception of time
 - Difficulty of access
 - Flexibility
 - · Comfort, etc.
- 2. Focused on adjectives related to one theme only and one mode only:

Comfort in public transportation (PT)

LATENT VARIABLE
WE STUDY

Comfort

hardly full

packed

bumpy

comfortable

hard

irritating

tiring

unsuitable with bags

uncomfortable

bad air

. . .

ADJECTIVE QUANTIFICATION SURVEY

Adjective quantification survey

- Asked external evaluators to rate the adjectives on scale of comfort.
- Two scales:
 - Discrete scale: ratings from -2 to 2.
 - Continuous scale: ratings from -1000 to 1000.
- Number of evaluators: 277

ADJECTIVE QUANTIFICATION SURVEY

-2

0

ADJECTIVE QUANTIFICATION SURVEY

Continuous scale

Purpose of the developed HCM:

Framework involves three components:

- Discrete choice model
- Latent variable model for the perception
- Quantification model for the indicators of the latent variable

DISCRETE CHOICE MODEL

Discrete choice model is standard:

$$U_{in} = V(X_{in}, X_n^*; \beta) + \varepsilon_{in}$$
 with

with $\varepsilon_{in} \sim EV(0,1)$

LATENT VARIABLE MODEL

Latent variable model of perception (SEM):

Structural equation:

$$X_n^* = h(X_n; \mu) + \omega_n,$$

with
$$\omega_n \sim \mathcal{N}(0, \sigma_\omega)$$

$$I_{kn}^* = r_k(X_n^*; \eta_k) + v_{kn},$$

with
$$v_{kn} \sim \mathcal{N}(0, \sigma_k)$$

LATENT VARIABLE MODEL

Latent variable model of perception (SEM):

Structural equation:

$$X_n^* = h(X_n; \mu) + \omega_n,$$

with
$$\omega_n \sim \mathcal{N}(0, \sigma_\omega)$$

Measurement equation:

$$I_{kn}^* = r_k(X_n^*; \eta_k) + \upsilon_{kn},$$

with
$$v_{kn} \sim \mathcal{N}(0, \sigma_k)$$

Unobservable score of indicator *k* for individual *n*

Indirect measurement of perception X_n*, which is treated as a latent variable

QUANTIFICATION MODEL

Quantification model (SEM):

Structural equation: individual *m*

$$J_{lm}^* = c_l + \delta_{\gamma}, \quad \text{with } \delta_{\gamma} \sim \mathcal{N}(0, \sigma_{\gamma})$$

Discrete:
$$\tilde{J}_{lm}^D = \lambda_D \cdot J_{lm}^* + \beta_{Xl}^D \cdot X_m + \delta_D$$
, with $\delta_D \sim \text{Logistic}(0,1)$

$$J_{lm}^{D} = \begin{cases} -2 & \text{if } -\infty < \tilde{J}_{lm}^{*} \le \tau_{1l} \\ -1 & \text{if } \tau_{1l} < \tilde{J}_{lm}^{*} \le \tau_{2l} \\ 0 & \text{if } \tau_{2l} < \tilde{J}_{lm}^{*} \le \tau_{3l} \\ 1 & \text{if } \tau_{3l} < \tilde{J}_{lm}^{*} \le \tau_{4l} \\ 2 & \text{if } \tau_{4l} < \tilde{J}_{lm}^{*} \le +\infty \end{cases}$$

Continuous:
$$J_{lm}^C = \alpha_C + \lambda_C \cdot J_{lm}^* + \beta_{Xl}^C \cdot X_m + \delta_C$$
, with $\delta_C \sim \mathcal{N}(0, \sigma_C)$

QUANTIFICATION MODEL

Quantification model (SEM):

Adjective-specific

Structural equation: constant to be estimated

$$J_{lm}^* = c_l + \delta_{\gamma}, \quad \text{with } \delta_{\gamma} \sim \mathcal{N}(0, \sigma_{\gamma})$$

Discrete:
$$\tilde{J}_{lm}^D = \lambda_D \cdot J_{lm}^* + \beta_{Xl}^D \cdot X_m + \delta_D$$
, with $\delta_D \sim \text{Logistic}(0,1)$

$$J_{lm}^{D} = \begin{cases} -2 & \text{if } -\infty < \tilde{J}_{lm}^{*} \le \tau_{1l} \\ -1 & \text{if } \tau_{1l} < \tilde{J}_{lm}^{*} \le \tau_{2l} \\ 0 & \text{if } \tau_{2l} < \tilde{J}_{lm}^{*} \le \tau_{3l} \\ 1 & \text{if } \tau_{3l} < \tilde{J}_{lm}^{*} \le \tau_{4l} \\ 2 & \text{if } \tau_{4l} < \tilde{J}_{lm}^{*} \le +\infty \end{cases}$$

Continuous:
$$J_{lm}^C = \alpha_C + \lambda_C \cdot J_{lm}^* + \beta_{Xl}^C \cdot X_m + \delta_C$$
, with $\delta_C \sim \mathcal{N}(0, \sigma_C)$

QUANTIFICATION MODEL

Quantification model (SEM):

Structural equation:

$$J_{lm}^* = c_l + \delta_{\gamma}, \quad \text{with } \delta_{\gamma} \sim \mathcal{N}(0, \sigma_{\gamma})$$

Discrete:
$$\tilde{J}_{lm}^D = \lambda_D \cdot J_{lm}^* + \beta_{Xl}^D \cdot X_m + \delta_D$$
, with $\delta_D \sim \text{Logistic}(0,1)$

$$J_{lm}^{D} = \begin{cases} -2 & \text{if } -\infty < \tilde{J}_{lm}^{*} \le \tau_{1l} \\ -1 & \text{if } \tau_{1l} < \tilde{J}_{lm}^{*} \le \tau_{2l} \\ 0 & \text{if } \tau_{2l} < \tilde{J}_{lm}^{*} \le \tau_{3l} \\ 1 & \text{if } \tau_{3l} < \tilde{J}_{lm}^{*} \le \tau_{4l} \\ 2 & \text{if } \tau_{4l} < \tilde{J}_{lm}^{*} \le +\infty \end{cases}$$

Continuous:
$$J_{lm}^C = \alpha_C + \lambda_C \cdot J_{lm}^* + \beta_{Xl}^C \cdot X_m + \delta_C$$
, with $\delta_C \sim \mathcal{N}(0, \sigma_C)$

- Socio-economic information of the evaluator is introduced into measurement equation.
- Heterogeneity in response behavior is handled.

QUANTIFICATION MODEL

Estimation of the quantification model alone:

Likelihood for an adjective I:

$$\mathcal{L}_{l} = \prod_{m=1}^{M} \int_{J_{lm}^{*}} f(J_{lm}^{C}|J_{lm}^{*}, X_{m}; \alpha_{C}, \lambda_{C}, \beta_{X}^{C}, \sigma_{C}) f(J_{lm}^{D}|J_{lm}^{*}, X_{m}; \lambda_{D}, \beta_{X}^{D}, \tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}) f(J_{lm}^{*}|c_{l}, \sigma_{\gamma}) dJ_{lm}^{*}$$

Score of adjective I by individual m is inferred.

$$\hat{J_{lm}^*} = c_l, \forall m$$

 The obtained scores are then introduced as measurements of the perceptional variable.

INTEGRATED MODEL

Integration of the 3 model components:

- Simultaneous estimation of the DCM and LVM of perception
- Likelihood

$$\mathcal{L} = \prod_{n=1}^{N} \int_{X_{n}^{*}} \prod_{i=1}^{I} P(y_{in}|X_{in}, X_{n}^{*}; \beta)^{y_{in}} \cdot f(X_{n}^{*}|X_{n}; \mu, \sigma_{\omega}) \cdot \prod_{k=1}^{K} f(\hat{I}_{kn}^{*}|X_{n}^{*}; \eta_{k}; \sigma_{k}) dX_{n}^{*}$$

QUANTIFICATION MODEL

Specification

Structural equation:

$$J_{lm}^* = c_l + \delta_{\gamma}, \quad \text{with } \delta_{\gamma} \sim \mathcal{N}(0, \sigma_{\gamma})$$

Measurement equations:

Discrete
$$\tilde{J}_{lm}^D = \lambda_D \cdot J_{lm}^* + \beta_{\mathrm{Educ},l}^D \cdot \mathrm{Educ}_m + \delta_D$$
, with $\delta_D \sim \mathrm{Logistic}(0,1)$

$$J_{lm}^{D} = \begin{cases} -2 & \text{if } -\infty < \tilde{J}_{lm}^{*} \le \tau_{1l} \\ -1 & \text{if } \tau_{1l} < \tilde{J}_{lm}^{*} \le \tau_{2l} \\ 0 & \text{if } \tau_{2l} < \tilde{J}_{lm}^{*} \le \tau_{3l} \\ 1 & \text{if } \tau_{3l} < \tilde{J}_{lm}^{*} \le \tau_{4l} \\ 2 & \text{if } \tau_{4l} < \tilde{J}_{lm}^{*} \le +\infty \end{cases}$$

Observation from exploratory analysis:

Evaluators with higher education level give higher scores.

Continuous
$$J_{lm}^C = \alpha_C + \lambda_C \cdot J_{lm}^* + \beta_{\mathrm{Educ},l}^C \cdot \mathrm{Educ}_m + \delta_C$$
, with $\delta_C \sim \mathcal{N}(0, \sigma_C)$

QUANTIFICATION MODEL

Model estimated for all 22 adjectives:

- Separate estimation for each adjective
- Results consistent with expectations

Example: empty

Name	Value	<i>t</i> -test
C empty	0.348	29.52
β ^C Educ, empty	0.245	24.29
β ^D Educ, empty	0.372	2.08
σ^{C}_{empty}	-2.74	-29.32
τ _{1, empty}	-2.72	-7.3
$\delta_{1, \text{ empty}}$	1.23	3.99
$\delta_{2, \text{ empty}}$	1.16	5.49
$\delta_{3, \; \text{empty}}$	2.85	10.21

Loglikelihood: - 373

- Constants have expected signs: adjectives related to comfort have + signs.
- Results from exploratory analysis confirmed:
 the higher the level of education, the higher the scores in absolute value.

QUANTIFICATION MODEL

Model estimated for all 22 adjectives:

- Separate estimation for each adjective
- Results consistent with expectations

Example: packed

Name	Value	<i>t</i> -test
C _{packed}	-0.547	-25.46
β ^C _{Educ, packed}	-0.237	-18.34
β ^D Educ, packed	-0.447	-2.54
σ^{C}_{packed}	-2.62	-24.2
τ _{1, packed}	-1.43	-6.36
$\delta_{ extsf{1}, ext{ packed}}$	1.23	6.64
$\delta_{2,\mathrm{packed}}$	1.68	6.77
$\delta_{3,\mathrm{packed}}$	1.93	3.99

Loglikelihood: - 380

- Constants have expected signs: adjectives related to discomfort have signs.
- Results from exploratory analysis confirmed:
 the higher the level of education, the higher the scores in absolute value.

INTEGRATED MODEL

Estimation results for the DCM and LVM of perception

Discrete choice model

Discrete choice model			
Name	Value	<i>t</i> -test	
ASC _{PT}	-0.161	-0.8	
ASC _{PMM}	0.42	2.28	
β_{Cost}	-0.0653	-8.1	
β_{TimePT}	-0.0208	-7.1 <u>5</u>	
$\beta_{TimeCar}$	-0.0323	-9.4 <u>5</u>	
β _{Distance}	-0.235	-11.44	
$\beta_{Work, PT}$	-0.0441	-0.19	
β _{Work, PMM}	-0.575	-2.6	
β _{Language, PT}	-0.0507	-0.17	
β _{Language, PMM}	0.964	3.55	
β _{PerceptionComfortPT}	1.32	4.4	
1			

Latent variable model of perception (structural equation)

Name	Value	<i>t</i> -test	
b _{meanImageConfortTP}	7.59	10.41	
b _{regionLanguage}	-0.726	-2.51	
b _{age<50}	-1.15	-5.06	
b _{actif}	-1.15	-4.72	
b _{voiture}	-0.727	-3.2	

Loglikelihood of the HCM: - 4355

INTEGRATED MODEL

Estimation results for the DCM and LVM of perception

Discrete choice model

Name	Value	<i>t</i> -test	
ASC _{PT}	-0.161	-0.8	
ASC _{PMM}	0.42	2.28	
β_{Cost}	-0.0653	-8.1	
β_{TimePT}	-0.0208	-7.1 <u>5</u>	
$\beta_{TimeCar}$	-0.0323	<u>-9.45</u>	
β _{Distance}	-0.235	-11.44	
$\beta_{\text{Work, PT}}$	-0.0441	-0.19	
β _{Work, PMM}	-0.575	-2.6	
β _{Language, PT}	-0.0507	-0.17	
β _{Language, PMM}	0.964	3.55	
β _{PerceptionComfortPT}	1.32	4.4	

Latent variable model of perception (structural equation)

Name	Value	<i>t</i> -test	
b _{meanImageConfortTP}	7.59	10.41	
b _{regionLanguage}	-0.726	-2.51	
b _{age<50}	-1.15	-5.06	
b _{actif}	-1.15	-4.72	
b _{voiture}	-0.727	-3.2	

Loglikelihood of the HCM: - 4355

For individuals with a better perception of comfort in PT, the impact of an increase in travel time is less strong.

VALIDATION OF THE INTEGRATED MODEL

Model estimation on 80% data and application on 20% data.

Choice probabilities generally well predicted.

CONCLUSION

Main findings:

- Alternative approach to measure perceptions
- Main advantage over classical opinion statements: spontaneity of respondents captured.
- Difficulty: code and integrate these measurements in choice model.
 The proposed model:
 - 1. Quantifies adjectives
 - 2. Accounts for subjectivity inherent to quantification method:
 - Uses a fairly large sample of evaluators
 - Account for bias linked to different education levels
- Importance of including individual-level information in measurement component of an LVM in HCM.

CONCLUSION

Next steps:

- Further validation: comparison of the prediction power of the presented HCM with HCMs including ratings of individual evaluators.
- Estimate the quantification model parts relative to each adjective simultaneously.

Thanks!

