Privacy-Preserving Schema Reuse

Nguyen Quoc Viet Hung, Do Son Thanh, Nguyen Thanh Tam, and Karl Aberer

Ecole Polytechnique Fédérale de Lausanne
{quocviethung.nguyen, sonthanh.do, tam.nguyenthanh, karl.aberer}@epfl.ch

Abstract. As the number of schema repositories grows rapidly and several web-
based platforms exist to support publishing schemas, schema reuse becomes a new
trend. Schema reuse is a methodology that allows users to create new schemas
by copying and adapting existing ones. This methodology supports to reduce
not only the effort of designing new schemas but also the heterogeneity between
them. One of the biggest barriers of schema reuse is about privacy concerns
that discourage schema owners from contributing their schemas. Addressing this
problem, we develop a framework that enables privacy-preserving schema reuse.
Our framework supports the contributors to define their own protection policies
in the form of privacy constraints. Instead of showing original schemas, the
framework returns an anonymized schema with maximal utility while satisfying
these privacy constraints. To validate our approach, we empirically show the
efficiency of different heuristics, the correctness of the proposed utility function,
the computation time, as well as the trade-off between utility and privacy.

1 Introduction

Schema reuse is a new trend in creating schemas by allowing users to copy and adapt
existing ones. The key driving forces behind schema reuse are the slight differences
between schemas in the same domain; thus making reuse more realistic. Reusing existing
schemas supports to reduce not only the effort of creating a new schema but also
the heterogeneity between schemas. Moreover, as the number of publicly available
schema repositories (e.g. schema.org[1]], Factual[2]) grows rapidly and several web-
based platforms (e.g. Freebase [3], Google Fusion Tables [4]) exists to support publishing
schemas, reusing them becomes a great interest in both academic and industrial worlds.
One of the biggest barriers of reuse is about privacy concerns that discourage contrib-
utors from contributing their schemas [5]]. In traditional approaches, all original schemas
and their own attributes are presented to users [6]. However, in practical scenarios,
the linking of attributes to their containing schemas, namely attribute provenance, is
dangerous because of two reasons. First, providing the whole schemas (and all of their
attributes) leads to privacy risks and potential attacks on the owner database. Second,
since some attributes are the source of revenue and business strategy, the schema con-
tributors want to protect their sensitive information to maintain the competitiveness. As
a result, there is a need of developing new techniques to cope with these requirements.
In this paper, we develop a privacy-preserving schema reuse framework that protects
the attribute provenance from being disclosed. To this end, our framework enables
schema owners to define their own protection policies in terms of privacy constraints.
Unlike previous works [6H8]], we do not focus on finding and ranking schemas relevant
to a user search query. Instead, our framework takes as input these relevant schemas and
visualizes them in a unified view, namely anonymized schema, which satisfies pre-defined

privacy constraints. Constructing such an anonymized schema is challenging because of
three reasons. First, defining the representation for an anonymized schema is non-trivial.
The anonymized schema should be concise enough to avoid overwhelming but also
generic enough to provide comprehensive understanding. Second, for the purpose of
comparing different anonymized schemas, we need to define a utility function to measure
the amount of information they carry. The utility value must reflect the conciseness and
the completeness of an anonymized schema. Third, finding an anonymized schema that
maximizes the utility function and satisfies privacy constraints is NP-complete.

The main goal of this paper is to construct an anonymized schema with maximal
utility while preserving the privacy constraints, which are defined to prevent an adversary
from linking the shown attributes back to the original schemas (and to the schema
owners). Our key contributions are summarized as follows.

— We model the setting of schema reuse with privacy constraints by introducing the
concept of affinity matrix (represents a group of relevant schemas) and presence
constraint (is a privacy constraint that translates human-understandable policies into
mathematical standards).

— We develop a quantitative metric for assessing the utility of an anonymized schema
by capturing two important aspects: (i) attribute importance—which reflects the
popularity of an attribute—and (ii) completeness—which reflects the diversity of
attributes in the anonymized schema.

— We show the intractability result for the problem of finding an anonymized schema
with maximal utility, given a set of privacy constraints. We propose a heuristic-based
algorithm for this problem. Through experiments on real and synthetic data, we
show the effectiveness of our algorithm.

The paper is organized as follows. Section [2| gives an overview of our approach. Section
[formally introduces the notion of schema group, anonymized schema and privacy
constraint. Section 4 demonstrates the intractability result and the heuristic-based algo-
rithm to the maximizing anonymized schema problem. Section [5|empirically shows the
efficiency of our framework. Section [6|and[7] present related work and conclusions.

2 Overview

System overview. Fig. [T)illustrates a schema reuse system, in which there is a repository
of schemas that are willingly contributed by many participants in the same domain. We
focus on the scenario in which end-users want to design a new database and reuse the
existing schemas as hints, by exploring the repository through search queries [[6-8] to
find schemas of relevance to their applications. In traditional approaches, all the relevant
schemas and their whole attributes are shown to users. Nevertheless, it is important to
support the contributors to preserve the privacy of their schemas [9] because of several
privacy issues. One possible issue is the threats of being attacked and unprivileged
accesses to the owner database systems. For example, knowing the schema information
(e.g. schema name, attribute names), an adversary can use SQL injection [[10] to extract
the data without sufficient privileges (details are described in the report [[11]]). Another
possible issue is the policies of schema owners that require hiding a part of schemas
under some circumstances. For instance, a hospital needs to hide the personal information
of its patient records due to legal concerns [12], or an enterprise makes an agreement
with its clients about the privacy of business practices [13]]. Since schema reuse only

en Schema group + Affinity matrix Affinity instances 1 Anonymized schemas
£, H

& - 4 [P Sefe)

2, i efacy

-.,,‘
utput :
D q ery N | =
a,: Name H]
] l o Num H byfal | @ {bscs}
- . - '
A /\ 3 { i Mo B o] 1 S
P N ‘~,, . by: Name coHoder | T a, | b, | ¢ |Z--mom G| —+— efci
A contribute A Contribute s G | by e | byl : ® {bacah
b,: Expiry ¢4t Expiry H !
- N by | ¢ HE
: N —— 0

o byci}
by c, : # {bscgt

Traditional approach: shows all Our approach: shows an
original schemas anonymized (unified) schema Query-relevant schemas Internal data structure Possible outputs

Fig. 1: System Overview. Fig.2: Solution Overview.

shares schema information, the scope of this paper is to preserve the privacy of schema
only.

Solution overview. To encourage schema reuse while preserving privacy, we propose
a novel approach that shows a unified view of original schemas, namely anonymized
schema, instead of revealing all of the schemas. In our approach, schema owners are
given the rights to protect sensitive attributes by defining privacy constraints. The
resulting anonymized schema has to be representative to cover original ones but opaque
enough to prevent leaking the provenance of sensitive attributes (i.e. the linking to
containing schemas). Towards our approach, we propose a framework that enables
privacy-preserving schema reuse. The input of our framework is a group of schemas
(which is relevant to user query as returned by a search engine) and a set of privacy
constraints. Respecting these constraints, the framework returns an anonymized schema
with maximal utility, which reflects the amount of information it carries. The problem of
constructing such an anonymized schema is challenging and its details will be described
in Section [] Fig. [2] depicts the simplified process of our solution for this problem,
starting with a schema group and generated correspondences (solid lines) that indicates
the semantic similarity between attributes. First, we represent a schema group by an
affinity matrix. In that, attributes in the same column belongs to the same schema,
while attributes in the same row have similar meanings. Next, we derive various affinity
instances by eliminating some attributes from the affinity matrix. For each affinity
instance, we construct an anonymized schema with many abstract attributes. Each
abstract attribute is a set of original attributes in the same row. Among constructed
anonymized schemas, we select the one that maximizes the utility function and then
present this “best” anonymized schema to user as final output. Table [I| summarizes
important notations, which will be described in the next section.

3 Model

In this section, we describe three important elements of our schema reuse approach:
(i) schema group — a set of schemas relevant to a user search query, (ii) anonymized
schema — a unified view of all relevant schemas in the group, and (iii) privacy constraint
— a mean to represent human-understandable policies by mathematical standards. All
these elements are fundamental primitives for potential applications built on top of
our framework. Right after defining the anonymized schema, we also propose a single
comprehensive notion to quantify its utility in Section [3.3]

3.1 Schema Group

We model a schema as a finite set of attributes A = {ay, ..., a,}, which is generic enough
for various types of schemas [[14]]. Let S = {sy, ..., s,} be a schema group that is a set

of schemas relevant to a specific search query. Let As denote the set of attributes in
S, ie. As = U; Ay,- Two schemas can share a same-name attribute; i.e. A;, N Ay, # 0
for some i, j. Given a pair of schemas 51,5, € S, an attribute correspondence is an
attribute pair (a € Ay,, b € Ay,)) that reflects the similarity of the two attributes’ semantic
meanings [15]]. The union of attribute correspondences for all pairs of schemas is denoted
as C, each of which can be generated by state-of-the-art schema matching techniques [|16}
17]. In schema reuse, the generated correspondences are useful for users to see possible
variations of attributes among schemas.

To model a schema group as well as gener- Table 1: Summary of Notations
ated correspondences between attributes of its Symbol Description
schemas, we define an affinity matrix M,x,. Each s — (s a group of schemas
of n columns represents an original schema and 4s aset of attributes of the schema s
. . C a set of attribute correspondences
its attributes. Each of m rows represents the set ,; affinity matrix, affinity instance
of equivalent attributes, each pair of which have .4 anonymized schema, abstract attribute
correspondences between them. An entry being ;i){y,-] 3‘ile‘f{)fggﬁiny"gmﬁ:ﬁj:hema
null means that the schema-column of that entry
does not have an equivalent attribute against the attributes of other schema-columns in
the same row.

Definition 1 Affinity Matrix. Given a schema group S and a set of correspon-
dences C, an affinity matrix is a matrix M,x, such that: (i) ¥i,j : M € A U {null},
(ii) Yi,j: My € Ay, (iii) i, ji # j2, My, # null, My, # null . (My;,,My,) € C, and (iv)
Bis # iz.j1.j2 : (Miyj,, M) € C.

In order to construct a unique affinity matrix, we define an order relation on Ag.
We consider each attribute a € As as a character. The order relation between any two
attributes is the alphabetical order between two characters. Consequently, a row M; of
the affinity matrix M is a string of n characters. An affinity matrix is valid if the string of
row ry is less than the string of row r, (r; < r;) w.r.t. the lexicographical order. Since the
alphabetical and lexicographical order are unique, a valid affinity matrix is unique.

Example 1. Consider a group of 3 schemas S = {s;,52,53} and their attributes A;, =
{a1, a2}, A5, = {b1,b2, b3}, A, = {c1, 2, c3}. We have 8 correspondences C = {(ay, by),
(ay, 1), (by,c1), (az, by), (az, c2), (b2, c2), (b3, c3)}. Assume that the lexicographical order
of all attributes is a; < a» < by < b, < b3 < ¢1 < ¢ < c¢3. Then we can construct a
unique affinity matrix M as in Fig. 2] The string of the first, second, third row of M is
“a1bic)”, “aybycy”, “bicy” respectively. M is valid because “a1bjc1” < “axbycy” < “bics’
w.r.t. the assumed lexicographical order.

1

3.2 Anonymized Schema

An anonymized schema should meet the following desirable properties: (i) representation,
and (ii) anonymization. First, the anonymized schema has to be representative to cover the
attributes of a schema group. It should show to end-user not only all possible attributes
but also the variations of each attribute. Second, the anonymized schema should be
opaque enough to prevent adversaries from reconstructing a part or the whole of an
original schema.

Our approach is inspired by the generalization technique [|18]], with some modifica-
tions, to protect the owners of original schemas. The core idea is that by not showing

all the attributes but only a subset of them (e.g. remove one or many cells of the affinity
matrix), we preserve the privacy of important attributes. However, hiding too many
attributes would lead to poor information presented to end-users. Thus, the problem of
selecting which attributes and how many of them is challenging and will be formulated
in Sectiond] Here we provide the basic notion of an anonymized schema by represent-
ing it as an affinity instance. An affinity instance I,,x, is constructed from an affinity
matrix M, by removing one or many cells; i.e. Vi,j : I = Mj; V I;; = null. Formally,
an anonymized schema S is transformed from an affinity instance I,,x, as follows.

S =HAi,....An| A= |] 1) ()

where A is an abstract attribute (a set of attributes at the same row). In other words, an
abstract attribute of an anonymized schema is a set of equivalent attributes (i.e. any pair
of attributes has a correspondence). Following the running example in Fig. 2l a possible
afﬁnlty instance is /; and the correspondmg anonymized schema is S; = {A 1A A 3}
with A] ={cy}, A2 = {ay, c»}, and A3 = {bs3,c3}.

With this definition, the anonymized schema meets two aforementioned properties—
representation and anonymization. First, the representation property is satisfied because
by showing abstract attributes, users can observe all possible variations to design their
own schemas. Second, the anonymization property is satisfied because it is non-trivial
to recover the original affinity matrix from a given anonymized schema. By knowing
only the anonymized schema (as a set of abstract attributes), brute-force might be the
only way for an adversary to disclose the ownerships of contributors, their schemas, and
schema attributes. In Section [3.4] we will illustrate this property in terms of probability
theory.

3.3 Anonymized Schema Utility

The utility of an anonymized schema § is measured by a function u : S — R, where
S is the set of all possible anonymized schemas. The utility value reflects the amount
of information S carries. To define this utility function, we first introduce two main
properties of an anonymized schema: importance and completeness.

Importance. The importance of an anonymized schema is defined as a function o : § —
IR. We propose to measure o-(S) by summing over the popularity of attributes it contains;
ie.c8)= 2.ucé (@), where t(a) is the popularity of attribute a. The higher popularity of
these attributes, the higher is the importance of the anonymized schema. Intuitively, an
attribute is more popular than another if it appears in more original schemas. At the same
time, an original schema is more significant if it contains more popular attributes. To
capture this relationship between attributes and their containing schemas, we attempt to
develop a model that propagates the popularity along attribute-schema links. We notice
some similarities to the world-wide-web setting, in which the significance of a web page
is determined by both the goodness of the match of search terms on the page itself and
the links connecting to it from other important pages. Adapting this idea, we apply the
hub-authority model [19] to quantify the popularity of an attribute and the significance
of related schemas, whose details are described in our report [11] for the sake of brevity.

Completeness. The completeness reflects how well an anonymized schema collectively
covers the attributes of original schemas, where each abstract attribute is responsible for

original attributes it represents. This coverage is necessary to penalize trivial anonymized
schemas that contain only one attribute appearing in all original schemas. To motivate
the use of this property, we illustrate some observations in Fig. I 2] In this running
example S, has more abstract attributes than S 3 (S » has three while § 3 has two). As
S 3 lacks information about CCNum or CC attributes, users would prefer S » in order to
have a better overview of necessary attributes for their schema design. Intuitively, an
anonymized schema is more preferred if it covers more information of original schemas.
In this paper, we measure the completeness of an anonymized schema by the number of
abstract attributes it contains. The more abstract attributes, the higher is the completeness.

Technically, the completeness is defined as a function 4 : § — R and /1(5’ y =S

Put It All Together. As mentioned above, there are two properties (importance and com-
pleteness) that should be considered for the purpose of comparing different anonymized
schemas. We attempt to combine these properties into a single comprehensive notion of
utility of an anonymized schema. Formally, we have:

uS)=w-o($)+ (1 —w)-A8))
where w € [0, 1] is a regularization parameter that defines the trade-off between complete-
ness and importance. In terms of comparison, an anonymized schema is more preferred
than another anonymized schema if its utility is higher. Back to the running example
in Fig. l consider three anonymized schemas 81, S, and §3. By definitions, we have
O'(S)=25, O'(Sz) = 0'(S3) =4 and /l(Sl) = /l(Sz) =3, /l(S3) =2. Assumrng w=20.5,
we have u(S 1) > u(S 5) > u(S 3). S| is more preferred than S, since S contains more
original attributes (importance property). While, S, is more preferred than S5 since $»
contains more abstract attributes (completeness property).

3.4 Privacy Constraint

Privacy constraint is a mean to represent human-understandable policies by mathematical
standards. In order to define a privacy constraint, we have to identify two elements:
sensitive information and privacy requirement. In our setting, the sensitive information is
attributes of a given schema. Each attribute has different levels of sensitivity (e.g. credit
card number is more sensitive than phone number) and some of them are the source of
revenue and business strategy and can only be shared under specific conditions. Whereas,
the privacy requirement is to prevent adversaries from linking sensitive attributes back
to original schemas. To capture these elements, we employ the concept of presence
constraint that defines an upper bound of the probability Pr(D € s|$) that an adversary
can disclose the presence of a set of attributes D in a particular schema s, if he sees an
anonymized schema $. Formally, we have:

Definition 2 Presence Constraint. A presence constraint vy is a triple (s, D, 0), where s
is a schema, D is a set of attributes, and 6 is a pre-specified threshold. An anonymized
schema S satisfies the presence constraint vy if Pr(D € s|S) < 6.

Intuitively, the presence constraint protects a given schema from being known what
attributes it has. The more chances of knowing the exact attribute(s) a schema contains,
the riskier an adversary can attack and exploit the owner database of that schema. Hence,
the presence threshold 8 is given to limit the possibilities of linking the attributes back
to original schemas by hiding the attributes whose provenances (i.e. attribute-schema

links) can be inferred with probabilities higher than 6. Choosing an appropriate value for
6 depends on the domain applications and beyond the scope of this work.

Checking presence constraint. Given an anonymized schema $ constructed from the
affinity instance / and a presence constraint y = (s, D,6), we can check whether §
satisfies y by computing the probability Pr(D € s | §) as follows:

1 e 2 A
A —A,lfA,...,A 7’—'0
Pr(D e s|8) =4 T A =~ bk 3)
0, otherwise
where D = {ay,...,a;} is a subset of attributes of s and Ai € § is the abstract attribute

(a group of attributes at the same row of /) that contains a;. In case there is no abstract
attribute which contains a;, we consider A; = 0. Eq. [3| comes from the assumption
that to check an attribute a; belongs to s, an adversary has to exhaustively try every
attribute of A;, thus the probability of a successful disclosure is Pr(a; € SIS’) = 1/|4;.
Consequently, the probability of checking a subset of attributes is simply a product of
elemental probabilities, since the anonymized schema generated by our model does not
imply any dependence between abstract attributes.

Example 2. Continuing our running example in Fig. [2} we consider an anonymized

schema § = {A;,A»}, where A; = {a;,c1} and Ay = {a»,b,}. An adversary wants to

check if two attributes a; and a, belongs to s; but he can only see . Based on Eq.

we have Pr({a;,a} € s1 | S) = m = 0.25. If we consider a presence constraint
N

v = (s1,1{a1, a»},0.6), the anonymized schema S can be accepted as system output.

Privacy vs. utility trade-off. It is worth noting that there is a trade-off between privacy
and utility [20]. In general, anonymization techniques reduce the utility of querying
results when trying to provide privacy protection [21]]. On one hand, the utility of an
anonymized schema is maximal when there is no presence constraint (i.e. 8 = 1). On
the other hand, when a contributor set the threshold 8 of a presence constraint (s, D,)
very small (closed to 0), D will not appear in the anonymized schema. Consequently,
the utility of this anonymized schema is low since we loss the information of these
attributes. As a result, privacy should be seen as a spectrum on which contributors can
choose their place. From now on, we use two terms—privacy constraint and presence
constraint—interchangeably to represent the privacy spectrum defined by contributors.

4 Maximizing Anonymized Schema

Maximizing anonymized schema is the selection of an optimal (w.r.t. utility function)
anonymized schema among potential ones that satisfy pre-defined privacy constraints.
Formally, the maximization problem of our schema reuse setting is defined as follows.

Problem 1 (Maximizing Anonymized Schema) Given a schema group S and a set
of privacy constraints I, construct an anonymized schema S such that S satisfies all
constraints I', i.e. S = I, and the utility value u(S) is maximized.

Theorem 1 Let S be a schema group and I' be a set of privacy constraints. Then, for
a constant U, the problem of determining if there exists an anonymized schema S = T,
whose utility value u(S) is at most U, is NP-complete.

The key of the proof is to transform the problem to Maximum Independent Set
problem, which is known to be NP-complete [[22]]. For brevity sake, further details are
referred to our report [11]]. In this section, we consider the heuristic-based approach to
relax optimization constraints and find the approximate solution in polynomial time.

4.1 Algorithm

In light of Theorem |1} we necessarily consider heuristic approaches to the maximizing
anonymized schema problem. Our heuristic-based algorithm takes two parameters as
input: a schema group modeled by an affinity matrix M and a set of presence constraints
I'. It will efficiently return an approximate solution—an anonymized schema § which
satisfies I'—with the trade-off that the utility value u(S) is not necessarily maximal.
The key difficulty is that during the optimization process, repairing the approximation
solution to satisfy one constraint can break another. At a high level, our algorithm makes
use of greedy and local-search heuristics to search the optimal anonymized schema in
the space of conflict-free candidates (i.e. anonymized schemas without violations). The
details are illustrated in Algorithm [I]and described in what follows.

Technically, we begin by constructing a valid affinity instance from the original
affinity matrix (line[2]to line[7). The core idea is we generate an initial affinity instance
I = M and then continuously remove the attributes of / until all constraints are satisfied
(I's = I'). The challenge then becomes how to choose which attributes for deletion
such that the resulting instance has maximal utility. To overcome this challenge, we
use a repair routine (line 3| to line [/) which greedily removes the attributes out of
to eliminate all violations. The greedy choice is that at each stage, we remove the
attribute a with lowest utility reduction (line E]); i.e. choose an attribute a such that
the utility of [after removing a is maximized. However, this greedy strategy could
make unnecessary deletions since some constraints might share common attributes, thus
making the utility not maximal. For example in Fig. [2] consider the anonymized schema
S = {{ay, 1}, {aa, b>}} with two predefined constraints y; = Pr(a; € s | §) <04 and
v2 = Pr({a;,az} € sy | S) < 0.1. The best way to satisfy these constraints is removing
only attribute a,, but the algorithm will delete a; first and then a,. Hence, we need
to insert a, back into S to increase the utility. For this purpose, A, stores all deleted
attributes (line[6) for the following step.

The above observation motivates the next step in which we will explore neighbor
instances using local search and keep track of the instance with highest utility (line[9]to
line . Starting with the lower-bound instance from the previous step (1,, = 1), the local
search is repeated until the termination condition 4, is satisfied (e.g. k iterations or
time-out). In each iteration, we incrementally increase the utility of the current instance
I by reverting unnecessary deletions from the previous step. The raising issue is how
to avoid local optima if we just add an attribute with highest utility gain; i.e. choose an
attribute a such that the utility of / is maximized after adding a. To tackle this issue,
we perform two routines. (1) Insertion: Each attribute a € A, is a possible candidate
to insert into 7 (line[TT). We use Roulette-wheel selection [23]] as a non-deterministic
strategy, where an attribute with greater utility has higher probability to add first (line
[12). (2) Repair: When a particular attribute is inserted, it might make some constraints
unsatisfied (I'y # I'). Thus, the repair routine is invoked again to eliminate new violations
by removing the potential attributes out of / (line[I3]to line[T9).

In an iteration of local-search, an attribute could be inserted into an affinity instance
and then removed immediately by the repair routine, making this instance unchanged

Algorithm 1: Heuristics-based Algorithm

input : (M,I')// An affinity matrix M and a set of predefined constraints I”
output: 7, // Maximal Affinity Instance
denote: u(/™“): utility of I after removing attribute a out of /

u(1*): utility of I after adding attribute a into 1
Ager = 0 // Set of deleted attributes; I'y = 0 // Set of satisfied constraints
I=M

1
2 =
3 while I’y # " do

4 /* Violation Repair: greedy deletion until satisfying constraints */
5

6

7

a= argmaXx ey,) u(I~)
Ldelete(a); Ager = Ager U (@}
| I's = I.checkConstraints()
8 1,, = I; T = Queuelk] // a queue with fixed size k
9 while 4, do
10 /* Local search by non-deterministic insertion */
1 Q= {a,u(I")) : a € Agar})
12 a = Q.rouletteS election()
13 L.add(a) ; T.add(a)
14 I’y = I.checkConstraints()
15 while I'; # I" do
16 /* Violation Repair: greedy deletion until satisfying constraints */
17 a= aArgMaXx ey, jr u(I~)
18 L.delete(a)
19 I’y = I.checkConstraints()
20 | ifull) > u(l,)) then l,, =1

21 return [,,

and leading to being trapped in local optima. For this reason, we employ the Tabu search
method [24] that uses a fixed-size “tabu” (forbidden) list T of attributes so that the
algorithm does not consider these attributes repeatedly. In the end, the maximal affinity
instance I, is returned by selecting the one with the highest utility among explored
instances (line 20).

4.2 Algorithm Analysis

Our algorithm is terminated and correct. Termination follows from the fact that the
stopping condition 4, can be defined to execute at most k iterations (k is a tuning
parameter). The correctness follows from the following points. (1) When a new attribute
a added into 7 (line[T3) violates some constraints, / is repaired immediately. This repair
routine takes at most O(|M|), where |M| is the number of attributes of the schema group
represented by M. (2) The newly added attributes are not removed in the repair routine
since they are kept in the “tabu” list T'. The generation of Q takes at most O(|M|). (3) I,
always maintains the instance with maximal utility (line[20). Sum it up, the worse-case
running time is O(k x |M|*)—which is reasonably tractable for real datasets.

Looking ahead for repair cost. We have a heuristic to improve the repair technique.
The idea of this heuristic is to avoid bad repairs (that cause many deletions) by adding
some degree of lookahead to the repair cost (i.e. number of deletions). In Algorithm I]
the utility value u(/~¢) is used as an indicator to select an attribute for deletion. Now we
modify this utility value to include a look-ahead approximation of the cost of deleting
one further attribute. More precisely, when an attribute a is considered for deletion
(first step), we will consider a next attribute a’ given that a is already deleted (second
step). Our look-ahead function will be the utility of the resulting instance after these two
steps. In other words, we prevent a bad repair by computing the utility of the resulting
instances one step further. Due to space limit, further heuristics for improve the algorithm
performance are omitted and can be found in the report version of this work [[11]].

S Experiments

To verify the effectiveness of the proposed framework in designing and constructing
the anonymized schema, following experiments are performed: (i) effects of different
heuristics for the maximizing anonymized schema problem, (ii) the correctness of utility
function, (iii) the computation time of our heuristic-based algorithm in various settings,
and (iv) the tradeoff between utility and privacy. We proceed to report the results on real
datasets and synthetic data.

5.1 Experimental Settings

Datasets. Our experiments are conducted on two types of data: real data and synthetic
data. While the real data provides a pragmatic view on real-world scenarios, the synthetic
data helps to evaluate the performance with flexible control of parameters.
— Real Data. We use a repository of 117 schemas that is available at [25]]. To generate
attribute correspondences, we used the well-known schema matcher COMA++ [16].
— Synthetic Data. We want to simulate practical cases in which one attribute is used
repeatedly in different schemas (e.g. ‘username’). To generate a set of n synthetic
schemas, two steps are performed. In the first step, we generate k core schemas, each
of which has m attributes, such that all attributes within single schema as well as
across multiple schemas are completely different. Without loss of generality, for any
two schemas a and b, we create all 1-1 correspondences between their attributes;
i.e. (a;, bi)1<i<m- In the second step, n — k remaining schemas are permuted from &
previous ones. For each schema, we generate m attributes, each of which is copied
randomly from one of k attributes which have all correspondences between them;
i.e. attributes at the same row of the affinity matrix.

Privacy Constraints. To generate a set of privacy constraints /" for simulation, we need
to consider two aspects:

— The number of attributes per constraint. To mix the constraints with different size,
we set a parameter «; as the number of constraints with i attributes. Since the chance
for an adversary to find the correct provenance of a group of four or more attributes
is often small with large abstract attributes (Eq. [3), we only consider constraints
with less than four attributes (i.e. @;>4 = 0). For all experiments, we set a; = 50%,
) = 30%, and a3 = 20%.

— Privacy threshold. We generate the privacy threshold 6 of all constraints according
to uniform distribution in the range [a, b], 0 < a,b < 1. In all experiments, we set
a = (1/n) and b = (2/n)’, where n is the number of schemas and i is the number of
attributes in the associated constraint.

In general, the number of constraints is proportional to the percentage of the total number
of attributes; i.e. |I'| «< m - n). In each experiment, we will vary the percentage value
differently.

Evaluation Metrics. Beside measuring the computation time to evaluate proposed
heuristics, we also consider two important metrics:
— Privacy Loss: measures the amount of disagreement between the two probability
distributions: actual privacy and expected privacy. Technically, given an anonymized
schema § and a set of presence constraints I" = {y1,...,y,} where vy; = (s;, D;, 6;),

Lookahead -
Greedy &

12
Lookahead -
Greedy &

Utility Loss
S

Selection Rate
3
—
j—
il
Comp. Time (log2 of ms.)

10 15 20 25 30 35 40 45 50

Constraint Size (% of total attributes) Rank Constraint Size (% of total attributes)

Fig. 3: Utility Loss (the lower, Fig.4: Correctness of Utility Fig.5: Computation Time vs.
the better) Function #Constraints

we denote p; = Pr(D; € si|S). Privacy loss is computed by the Kullback-Leiber
divergence between two distributions P = {p;} (actual) and © = {6;} (expected):

Di
Ap = KL(P @:E log = 4
p (Pl © 'pogei 4)

1
— Utility Loss: measures the amount of utility reduction with regard to the existence
of privacy constraints. Technically, denote uy is the utility of an anonymized schema
without privacy constraints and u, is the utility of an anonymized schema with
privacy constraints I, utility loss is calculated as:
Au =220 (5)
Up

We implement our schema reuse framework in Java. All the experiments ran on an Intel

Core i7 processor 2.8 GHz system with 4 GB of RAM.

5.2 Effects of Heuristics

This experiment will compare the utility loss of the anonymized schema returned by
different heuristics. In this experiment, we study the proposed algorithm with two
heuristics: without lookahead (Greedy) and with lookahead (Lookahead). We use a
synthetic data with a random number of schemas n € [50, 100] and each schema has a
random number of attributes m € [50, 100]. In that, the copy percentage is varied from
10% to 20%; i.e. k/n € [0.1,0.2]. The number of constraints is varied from 5% to 50% of
total number of attributes. The results for each configuration are averaged over 100 runs.
Regarding utility function, we set w = 0.5 which means the completeness is equally
preferred as the importance.

Fig. [3]depicts the result of two described heuristics. The X-axis shows the number of
constraints, while the Y-axis shows the utility loss (the lower, the better). A noticeable
observation is that the Lookahead heuristic performs better than the Greedy heuristic.
Moreover, when there are more constraints, this difference is more significant (up to
30% when the number of constraints is 50%). This is because the Lookahead heuristic
enables our algorithm to foresee and avoid bad repairs, which cause new violations when
eliminating the old ones, thus improves the quality of the result.

5.3 Correctness of Utility Function

In this experiment, we would like to validate the correctness of our utility function by
comparing the results of the proposed algorithm with the choices of users. Technically,
we expect that the ranking of anonymized schemas by utility function is equivalent to
their ranking by users. Regarding the setting, we construct 20 different schema groups
from the real data by extracting a random number of schemas and attributes. For each

group, we present five of constructed anonymized schemas (ranked #1,#2, #3, #4, #5
by the decreasing order of utility) to 10 users (users do not know the order). These
presented anonymized schemas are not top-5, but taken from the highest such that the
utility difference between two consecutive ranks is at least 10% to avoid insignificant
differences. Each user is asked to choose the best anonymized schema in his opinion
(200 votes in total). We fix the number of constraints at 30% of total attributes. Since
the Lookahead strategy is better than the Greedy strategy as presented in the previous
experiment (Section[5.2)), we use it to construct anonymized schemas.

The results are depicted in Fig.] X-axis shows top-5 anonymized schemas returned
by our algorithm. Y-axis presents the selection rate (percentage of users voting for
an anonymized schema), averaged over all schema groups. A key finding is that the
order of selection rate corresponds to the ranking of solutions by the utility function.
That is, the first-rank anonymized schema (#1) has highest selection rate (55%) and the
last-rank anonymized schema (#5) has lowest selection rate (1%). Moreover, most of
users opt for the first-rank solution (55%) and second-rank solution (33%), indicating
that our algorithm is able to produce anonymized schemas similar to what users want in
real-world datasets.

5.4 Computation Time

In this experiment, we design various settings to study the computation time with two
above-mentioned strategies (Greedy vs. Lookahead) using synthetic data. In each setting,
we measure the average computation time over 100 runs.

Effects of Input Size. In this setting, the com-

A . : - . Table 2: Computation Time (log2 of msec.)
putation time is recorded by varying the in-

. . LT Size of M * Greedy LookAhead
put size of the affinity matrix; i.e. the number
. 10 X 20 2.58 5.04
of schemas and the number of attributes per 45 59 513 10.29
schema. A significant observation in Table 20 x 50 7.30 13.36
. 20 % 100 9.95 17.60
is that the Greedy strategy outperforms the 555 199 1262 2158

Lookahead strategy. This is because the cost
of looking-ahead utility change is expensive
with the trade-off that the utility loss is smaller as presented in Section[5.2]

“m X n: m attributes (per schema) and n schemas

Effects of Constraints Size. In this setting, the computation time is recorded by varying
#constraints from 5% to 50% of total number of attributes. Based on results of the
previous setting, we fix the input size at 20 x 50 for a low starting point. Fig. [5]illustrates
the output, in which the X-axis is the constraint size and the Y-axis is the computation
time (ms.) in logarithmic scale of base 2. A noticeable observation is that the Lookahead
strategy is much slower than the Greedy strategy. In fact, adding degrees of look-ahead
into utility function actually degrades the performance. The running time of those extra
computations increases due to the large number of combinations of privacy constraints.

5.5 Trade-off between Privacy and Utility

In this experiment, we validate the trade-off between privacy and utility. Technically, we
relax each presence constraint y € I" by increasing the threshold 6 to (1 +)6, where r
is called relaxing ratio and varied according to normal distribution N'(0.3,0.2). Based
on previous experiments, we use the Lookahead strategy on the synthetic data with

different input size and fix the number of constraints at 30% of total attributes. For a
resulting anonymized schema, privacy is quantified by privacy loss (Eq.), while utility
is quantified by utility loss (Eq.[5). For comparison purposes, both utility loss and privacy
loss values are normalized to [0, 1] by the thresholding technique: 4u = % d
Ap—miny,
max,,—ming,
values of utility loss and privacy loss in this experiment.
Fig. [6] shows the distribution of all the

points whose x and y values are privacy loss e
and utility loss, respectively. Each point rep-
resents the resulting anonymized schema in a
specific configuration of the relaxing ratio and oz %iggy;g%
the input size. One can easily observe a trade-
off between privacy and utility: the utility loss
decreases when the privacy loss increases and ~ Fig- 6: Trade-off between privacy and utility
vice-versa. For example, the maximal privacy (privacy loss = 0) is achieved when the
utility is minimal (utility loss = 1). This is because the decrease of presence threshold
0 will reduce the number of presented attributes, which contributes to the utility of
resulting anonymized schemas.

Ap = , where max,, ming,, max,,, ming, are the maximum and minimum

Utility Loss

Privacy Loss

6 Related Work

We now review salient work in schema reuse, privacy models, anonymization techniques,
and utility measures that is related to our research.

Schema reuse. There is a large body of research on schema-reuse. Some of the works
focus on building large-scale schema repositories [4}, 6l 26, [27]], designing management
models to maintain them [28} [29]], and establishing semantic interoperability between
collected schemas in those repositories [|15, (16} |30]. While, some of the others support
to find relevant schemas according to a user query [7} |8} [31]], techniques to speed-up the
querying process [32], and visualization aspects [33| |34)]. Unlike these works, we study
the problem of preserving privacy of schema information when presenting the schema
attributes as hints for end-users to design new schemas.

Privacy Models. Privacy model is a mean to prevent information disclosure by rep-
resenting human-defined policies under mathematical standards. Numerous types of
information disclosure have been studied in the literature [35]], such as attribute disclo-
sure [36] and identity disclosure [37], and membership disclosure [38]]. In the context
of schema reuse, the linking of attribute to its containing schema can be considered as
an information disclosure. There is a wide body of work have proposed privacy models
at data level, including differential entropy [39]], k-anonymity [40], /-diversity [41]], and
t-closeness [42]). Different from these works, the model proposed in this paper employs
the concept of presence constraint defined at schema-level.

Anonymization Techniques To implement privacy models, there are a wide range
of techniques have been proposed in literature such as generalization, bucketization,
randomization, suppression, and differential privacy. In terms of schema reuse, these
techniques can be interpreted as follows. The generalization technique [/18]] replaces the
sensitive attribute with a common attribute, which still preserves the utility of attributes
shown to users (no noises). The bucketization technique [43]] extends the generalization

technique for multi-dimensional data through partitioning. The randomization technique
[44},!45]] adds a “noisy” attribute (e.g. ‘aaa’). The suppression technique [46| replaces
a sensitive attribute by a special value (e.g. ‘*’). The differential privacy technique
[37]] enhances both generalization and suppression techniques by balancing between
preserving the utility of attributes and adding noises to protect them. Similar to most
of other works, we adopt the generalization technique (which does not add noises) to
preserve the utility of attributes shown to users. This utility is important in schema design
since adding noisy attributes could lead to data inconsistencies.

Quality Measures. To quantify the quality of a schema unification solution, researchers
have proposed different quantitative metrics, the most important ones among which are
completeness and minimality [47, 48]. While the former represents the percentage of
original attributes covered by the unified schema, the latter ensures that no redundant
attribute appears in the unified schema. Regarding the quality of a schema attribute,
[49] also proposed a metric to determine whether it should appear in schema unifica-
tion. Combining these works and applying their insights in the schema-reuse context,
this paper proposed a comprehensive notion of utility that measures the quality of an
anonymized schema by capturing how many important attributes it contains and how
well it covers a wide range of attribute variations.

7 Conclusions

In this work, we addressed the challenge of preserving privacy when integrating and
reusing schemas in schema-reuse systems. To overcome this challenge, we introduced a
framework for enabling schema reuse with privacy constraints. Starting with a generic
model, we introduce the concepts of schema group, anonymized schema and privacy
constraint. Based on this model, we described utility function to measure the amount
of information of an anonymized schema. After that, we formulated privacy-preserving
schema reuse as a maximization problem and proposed a heuristic-based approach to find
the maximal anonymized schema efficiently. In that, we investigated various heuristics
(greedy repair, look-ahead, constraint decomposition) to improve the computation time of
the proposed algorithm as well as the utility of the resulting anonymized schema. Finally,
we presented an empirical study that corroborates the efficiency of our framework with
main results: effects of heuristics, the correctness of utility function, the guideline of
computation time, and the trade-off between privacy and utility.

Our work opens up several future research directions. One pragmatic direction is
to support a “pay-as-you-use” fashion in schema-reuse systems. In that, reuse should
be defined at a level finer than complete schemas, as schemas are often composed
of meaningful building blocks. Another promising direction is the scalability issues
of browsing, searching, and visualizing the anonymized schema when the number of
original schemas becomes very large. Moreover, our techniques can be applied to other
domains such as business process and component-based design.

Acknowledgment

The research has received funding from the EU-FP7 EINS project (grant number 288021)
and the EU-FP7 PlanetData project (grant number 257641).

References

(1]
(2]
(3]

(4]
[5]

(6]
(7]
(8]

(91

[10]
[11]

[12]
[13]
[14]

[15]
[16]
[17]

[18]
[19]
[20]
[21]

[22]
[23]
[24]

[25]
[26]
[27]

[28]

[29]
[30]
[31]
[32]

[33]
[34]
[35]
[36]
[37]
[38]
[39]

[40]
[41]
[42]
[43]
[44]

[45]
[46]
[47]
[48]
[49]

http://schema.org/.

http://www. factual.com/.

K. Bollacker et al. “Freebase: a collaboratively created graph database for structuring human knowledge”. In: SIG-
MOD. 2008, pp. 1247-1250.

H. Gonzalez et al. “Google fusion tables: web-centered data management and collaboration”. In: SIGMOD. 2010,
pp- 1061-1066.

M. Bentounsi et al. “Anonyfrag: an anonymization-based approach for privacy-preserving BPaaS”. In: Cloud-1. 2012,
9:1-9:8.

K. Chen et al. “Exploring schema repositories with schemr”. In: SIGMOD Rec. (2011), pp. 11-16.

A. Das Sarma et al. “Finding related tables”. In: SIGMOD. 2012, pp. 817-828.

G. Limaye et al. “Annotating and searching web tables using entities, types and relationships”. In: VLDB. 2010,
pp. 1338-1347.

C. Clifton et al. “Privacy-preserving data integration and sharing”. In: Proceedings of the 9th ACM SIGMOD work-
shop on Research issues in data mining and knowledge discovery. ACM. 2004, pp. 19-26.

W. Halfond et al. “A classification of SQL-injection attacks and countermeasures”. In: IEEE. 2006, pp. 65-81.

Q. V. H. Nguyen et al. “Towards Enabling Schema Reuse with Privacy Constraints”. In: EPFL-REPORT-189971.
2013.

E.-C. Tsui et al. “Technical description of RODS: a real-time public health surveillance system”. In: Journal of the
American Medical Informatics Association 10.5 (2003), pp. 399-408.

A. 1. Antén et al. “A roadmap for comprehensive online privacy policy management”. In: Communications of the
ACM 50.7 (2007), pp. 109-116.

N. Hung et al. “On Leveraging Crowdsourcing Techniques for Schema Matching Networks”. In: DASFAA. 2013,
pp. 139-154.

P. Bernstein et al. “Generic Schema Matching, Ten Years Later”. In: VLDB. 2011, pp. 695-701.

D. Aumueller et al. “Schema and ontology matching with COMA++". In: SIGMOD. 2005, pp. 906-908.

E. Peukert et al. “AMC - A framework for modelling and comparing matching systems as matching processes”. In:
ICDE. 2011, pp. 1304-1307.

R. J. Bayardo et al. “Data privacy through optimal k-anonymization”. In: ICDE. 2005, pp. 217-228.

J. M. Kleinberg. ““Authoritative sources in a hyperlinked environment”. In: JACM (1999), pp. 604-632.

T. Li et al. “On the tradeoff between privacy and utility in data publishing”. In: SIGKDD. 2009, pp. 517-526.

J. Brickell et al. “The cost of privacy: destruction of data-mining utility in anonymized data publishing”. In: KDD.
2008, pp. 70-78.

R. M. Karp. “Reducibility Among Combinatorial Problems”. In: CCC. 1972, pp. 85-103.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989.

F. Glover et al. “The general employee scheduling problem: an integration of MS and AI”. In: COR (1986), pp. 563—
573.

http://1sirwww.epfl.ch/schema_matching/.

J. Madhavan et al. “Corpus-based schema matching”. In: /CDE (2005), pp. 57-68.

K. P. Smith et al. “Unity: Speeding the creation of community vocabularies for information integration and reuse”.
In: IRI. 2011, pp. 129-135.

M. Franklin et al. “From databases to dataspaces: a new abstraction for information management”. In: SIGMOD Rec.
(2005), pp. 27-33.

P. A. Bernstein et al. “Model management 2.0: manipulating richer mappings”. In: SIGMOD. 2007, pp. 1-12.

A. Das Sarma et al. “Bootstrapping Pay-As-You-Go Data Integration Systems”. In: SIGMOD. 2008, pp. 861-874.
M. J. Cafarella et al. “WebTables: exploring the power of tables on the web”. In: VLDB. 2008, pp. 538-549.

H. A. Mahmoud et al. “Schema clustering and retrieval for multi-domain pay-as-you-go data integration systems”.
In: SIGMOD. 2010, pp. 411-422.

B. Yost et al. “Visualizing Schema Clusters for Agile Information Sharing”. In: InfoVis. 2009, pp. 5-6.

K. Smith et al. “Exploring schema similarity at multiple resolutions”. In: SIGMOD. 2010, pp. 1179-1182.

D. Lambert. “Measures of disclosure risk and harm”. In: JOS (1993), pp. 313-313.

G. T. Duncan et al. “Disclosure-limited data dissemination”. In: JASA (1986), pp. 10-18.

C. Dwork. “Differential privacy”. In: ICALP. 2006, pp. 1-12.

M. E. Nergiz et al. “Hiding the presence of individuals from shared databases”. In: SIGMOD. 2007, pp. 665-676.

D. Agrawal et al. “On the Design and Quantification of Privacy Preserving Data Mining Algorithms”. In: PODS.
2001, pp. 247-255.

L. Sweeney. “k-anonymity: a model for protecting privacy”. In: IJUFKS (2002), pp. 557-570.

A. Machanavajjhala et al. “L-diversity: Privacy beyond k-anonymity”. In: TKDD (2007), pp. 24-24.

N. Li et al. “t-closeness: Privacy beyond k-anonymity and I-diversity”. In: ICDE. 2007, pp. 106-115.

X. Xiao et al. “Anatomy: Simple and effective privacy preservation”. In: VLDB. 2006, pp. 139-150.

N. R. Adam et al. “Security-control methods for statistical databases: a comparative study”. In: CSUR (1989), pp. 515—
556.

R. Agrawal et al. “Privacy-preserving data mining”. In: SIGMOD Rec. (2000), pp. 439-450.

V. S. Iyengar. “Transforming data to satisfy privacy constraints”. In: SIGKDD. 2002, pp. 279-288.

M. Batista et al. “Information Quality Measurement in Data Integration Schemas”. In: QDB. 2007, pp. 61-72.

F. Duchateau et al. “Measuring the quality of an integrated schema”. In: ER. 2010, pp. 261-273.

C. Yu et al. “Schema summarization”. In: VLDB. 2006, pp. 319-330.

http://schema.org/
http://www.factual.com/
http://lsirwww.epfl.ch/schema_matching/

	Privacy-Preserving Schema Reuse

