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Caenorhabditis elegans segmentation using
texture-based models for motility phenotyping
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Abstract—With widening interests in using model organisms
for reverse genetic approaches and biomimmetic micro-robotics,
motility phenotyping of the nematode Caenorhabditis elegans is
expanding across a growing array of locomotive environments.
One ongoing bottleneck lies in providing users with automatic ne-
matode segmentations of C. elegans in image sequences featuring
complex and dynamic visual cues, a first and necessary step prior
to extracting motility phenotypes. Here, we propose to tackle
such automatic segmentation challenges by introducing a novel
Texture Feature Model (TFM). Our approach revolves around the
use of combined intensity- and texture-based features integrated
within a probabilistic framework. This strategy first provides a
coarse nematode segmentation from which a Markov Random
Field (MRF) model is used to refine the segmentation by inferring
pixels belonging to the nematode using an approximate inference
technique. Finally, informative priors can then be estimated and
integrated in our framework to provide coherent segmentations
across image sequences. We validate our TFM method across a
wide range of motility environments. Not only does TFM assure
comparative performances to existing segmentation methods
on traditional environments featuring static backgrounds, it
importantly provides state-of-the-art C. elegans segmentations
for dynamic environments such as the recently introduced wet
granular media. We show how such segmentations may be used to
compute nematode ‘‘skeletons” from which motility phenotypes
can then be extracted. Overall, our TFM method provides users
with a tangible solution to tackle the growing needs of C. elegans
segmentation in challenging motility environments.

Index Terms—model organism, Caenorhabditis elegans, com-
puter vision, segmentation, motility, phenotyping

I. INTRODUCTION

Due to its short life cycle [1]], knowledge of its complete cell
lineage [2], [3]], the simplicity of its nervous system [4], and a
fully-sequenced genome [5]], the nematode Caenorhabditis el-
egans has become a ubiquitous model organism to investigate
the genetics of development, neuroscience, and behavior. An
active area of research lies in behavioral motility phenotyping
for reverse genetic approaches, where specific genes of interest
are identified from whole-genome sequences [6].

Motility phenotyping of C. elegans generally aims at quanti-
fying locomotive traits of individual (or groups of) nematodes,
including but not limited to speed [7]], [8], wavelength and
frequency of body undulations [9]], [10], body curvature [[11]],
[12]], and posture reversals known as “omega turns” [|13]]. Most
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recently, nematode tissues properties have been estimated from
imaged nematode body postures [[14|-[|18]] as well as loco-
motive propulsive forces [19]-[23]]. Alternatively, nematode
imaging has been used to reconstruct basic body postures,
known as “eigenworms” [24], [25]], to define behavioral motifs
that allow clustering of mutants into related groups [26].

Unfortunately, linking locomotion phenotypes to genotypes
remains a cumbersome and time-consuming task. It requires
first imaging numerous assays of nematodes and then carefully
annotating hundreds, if not thousands, of nematodes from
image sequences. Traditionally, this latter point has often
been performed manually, imposing a labor-intensive and
error-prone process. To alleviate the burden of annotating
large image sets, automated analysis tools based on computer
vision and machine learning techniques have emerged in view
of designing high-throughput behavioural assays [6], [28],
[30[], [31]], including drug screening applications [32[]-[34]]. In
effect, they provide a roadmap for a systematic, reliable and
(semi-)automatic extraction of key phenotypic attributes.

Automated behavioral analysis tools almost unanimously
require first extracting C. elegans postures from binary images,
or segmentations, so as to separate the nematode from its
environment (background). This segmentation process has
been tackled using simple image intensity thresholds [8], [10],
[[12f], [35]-[37]], adaptive intensity thresholds [11]], [[13], [38]],
and more sophisticated statistical models [39]], [40]]. Central to
all these methods is their complete reliance on nematode and
background raw image intensities to guide the segmentation
process. While these methods have been shown to be effective
for automatic segmentation across a range of motility environ-
ments, such as locomotion on substrates [41]]-[44] (Fig. Eh),
in fluids [19], [27], [43], [45], [46] (Fig. m)), or in patterned
maze environments [28]], [47]-[55] (Fig. [Ik), they are ill-
suited, if not entirely compromised, when dealing with more
challenging backgrounds that contain complex textures and/or
are dynamic (e.g., Fig. [[d), where the background appear-
ance changes significantly as the nematode moves within the
surrounding medium [29], [56]]. In particular, these complex
environments are increasingly relevant in view of designing
artificial biomimmetic micro-robots [[57]—[59].

It is in this latter context (i.e., Fig. [Id) that we propose
a novel statistical strategy for semi-supervised segmentation
of C. elegans. In order to initialize our algorithm, only a
single image is required to be manually annotated by a user.
Our method first learns a number of distinct image features
that capture texture and intensity information regarding the
nematode and the background, respectively. From the user-
provided segmented image, we determine those features that
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Fig. 1. Sample selection of environments for C. elegans’ motility assays. (a) Nematode crawling on an agar substrate (gene: dat — 1, strain: RM 2702,
allele: 0k157, chromosome: 111 genotype: dat — 1(ok157)I11; Supplementary Video in Brown er al. [EI]). (b) Nematode swimming in an aqueous drop
of M9 buffer solution (see example in Ghosh and Sznitman [27]). (¢) Nematode locomoting through a structured microfluidic maze of pillars (source:
nmeth.1630-S2.avi, Supplementary Video in Albrecht and Bargmann [28])). (d) Nematode locomoting through an unstructured domain made of polydisperse
granular media (source: Supplementary Material in Juarez er al. [29])). C. elegans shown in examples (a)-(d) are all approximately 1 mm long and illustrate

environments with variations in lighting conditions, spatial resolution, Field Of View (FOV) scale, and background complexity.

are informative and then segment pixel-by-pixel each image
of a sequence by using a probabilistic classification model and
the learned features. We show experimentally that our method
provides comparable, if not improved, segmentation results for
traditional environments relative to intensity-based methods.
Most importantly, our method delivers for the first time usable
phenotypic results in challenging granular environments where
state-of-the-art methods fail entirely.

Below, we begin by describing previous related works. In
Sec. [Tl we present our method in detail and outline both the
model assumptions and dependencies on the end-user. Next,
we present in Sec. [[V] in-depth experiments evaluating our
method and compare performances to existing state-of-the-art
methods. In Sec. [V] we briefly illustrate how such nematode
segmentations are typically utilized to extract motility pheno-
types and conclude with some remarks in Sec. [VI]

II. RELATED WORK

While a growing body of work on segmentation techniques
has surfaced in the last decade in the computer vision and
machine learning communities, methods adapted for the spe-
cific needs of nematode segmentation still remain somewhat
scarce. One bottleneck lies in the ongoing scarcity of exten-
sive, open-access datasets of annotated nematodes; these are
pivotal in using segmentation methods that rely on statistical
learning [[6], [60], [61].

When considering nematode segmentation with little train-
ing data, i.e., a handful of labelled images, the most
widespread approach relies on a simple intensity-based thresh-
old at any given pixel location [8], [10], [12], [35]-[37], where
a user manually selects an appropriate range of intensities
characterizing the imaged nematode. A variation to this ap-
proach has been suggested with the use of an adaptive thresh-
old, where nematode intensities, or appearance, are assumed
to significantly differ from the mean background intensities
(T1], [13]), [38]). One intrinsic drawback with intensity-based
thresholds lies in their limited versatility across the growing
selection of nematode motility environments and have
thus been traditionally limited to crawling assays on substrates

[4T]-[44] (Fig.[Th). The overarching bottleneck with intensity-
based thresholding remains that accurate segmentations require
a significant effort on the user-end to select appropriate
threshold values along with other noise canceling schemes
(e.g., median filters, morphological operators, background sub-
traction, etc.). These limiting factors ultimately jeopardize the
efficiency of such strategies for motility assays across diverse
environments (Fig. [Tp-d), and thus still impose a heavy burden
on the user.

To overcome some of these limitations, statistical learning
techniques have been recently applied to nematode segmen-
tation [[62], [63]l, where the strategy lies in systematically
learning how background intensity pixels are distributed. Here,
the learning process is done using a set of labeled images,
or training images, to statistically model the background
appearance by means of a Mixture of Gaussians (MOG) model
for each pixel, where the model parameters are estimated from
the complete training set of images [39]], [64]l, [65]. Unfortu-
nately, the number of MOGs used corresponds to the total
number of pixels in an image and consequently the number of
parameters required becomes rapidly overwhelming. Hence, a
large number of image frames is needed to estimate the MOG
parameters accurately. Moreover, the entire background scene
must be visible to estimate these parameters, since each image
is used to model only the background and not the nematode.
This latter condition is problematic when image sequences
contain a nematode at all times, as is frequently the case in
available data [17]], [29], [43]l, [43], [50], [52].

More recently, Sznitman et al. [40] proposed to decompose
the background into rectangular regions and learn a single
MOG per region. This decomposition requires a far smaller
number of MOGs to be learned compared to traditional
background modeling techniques [39], leading to significantly
reduced number of training images required. The authors then
use the likelihood of ratios to segment nematodes across
various motility environments. While effective in a number
of cases [40]], the method yet fails when faced with complex,
texture-rich scenarios; indeed, the central feature in the ap-
proach of revolves around the local average pixel intensity
and thus cannot disambiguate nematodes from background
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when both have similar intensities (e.g., Fig. [Id).

III. METHOD

Our goal is to provide users with nematode segmentations
across image sequences. To make our method as practical
and straightforward as possible for the end user, we restrict
the amount of training data, i.e., the number of manually
segmented nematodes, to be the first image in a sequence;
namely, this restriction considerably alleviates the burden
imposed on the expert user and delivers an attractive solution
within the nematode community.

Our method will be broken into two parts: a coarse seg-
mentation process and a second refinement stage. In the
coarse segmentation stage, we use a single annotated image to
compute a number of image texture features and learn those
that are informative for a given particular image sequence.
At test time, the informative features are treated as factors
within a Bayesian model to infer which pixels belong to
the nematode and which do not, providing first a coarse
image segmentation. To provide smooth and consistent image
segmentations, we perform the refinement stage which first
uses the coarse segmentation as observations of a Markov
Random Field (MRF) and then the Mean-Field variational
inference technique [66] to compute the Maximum Posterior
Marginals (MPM) of the pixel labels. To segment the resulting
images in a sequence, we then evaluate informative priors
from the computed MPMs, via Bayesian filtering, and provide
coherent estimates to where the nematode is located across the
image sequence. The details of our methods, which we refer
to as the Texture Factor Model (TFM), are described below.

A. Notation

Let I; be the t-th grayscale image from an image sequence
Z = (Ii,...,I7). Each pixel p in an image is associated
with a discrete class label, denoted LP € {0,1}, indicating
whether or not that pixel belongs to the nematode (L? = 1)
or the background (L? = 0). In addition, we consider LP
to be a discrete random variable with probability distribution
P(LP). We denote S; as the segmentation image of I, where
each pixel of S; has value 0 or 1 corresponding to the class
label of the associated pixel. We define our training data,
D = {I1,5:1}, as the first image and segmentation from the
image sequence Z, as depicted in Fig.[2} The remaining images
of the image sequence are set to be our test data. As such,
our goal is to infer So,..., S as accurately as possible. In
order to determine if a pixel label belongs to the nematode or
background, we will compute a set of K > 1 image features,
denoted FP = {F},...,F}}, where F{ € R" is a feature
vector for pixel p; note that we also consider F,f to be a
random vector. A summary of the notation used is presented
in Table [l

B. Nematode Image Features and Model

In order to provide usable nematode segmentations across
different experimental setups, we will introduce a number
of image features. As with Ensemble Classifiers [67], this

TABLE I
SUMMARY OF NOTATION.

Z=(I1,...,Ir) Image sequence

St Segmentation of image I

D={L,5} Training set

LP Class label of pixel p

FP Feature vector k for pixel p.

FP Feature concatenation vector for pixel p.

RP Ratio of class posterior probability of pixel p.
CcP Coarse segmentation of pixel p.

0 Sensitive threshold

strategy allows good coverage of the positive / negative image
statistics and typically leads to robust segmentation [60]. In
practice, we specify K = 2 defined as:

1) Average pixel: we compute the feature F¥ € R as the
average intensity value of a small window of 7x 7 pixels
centered on pixel p [8], [36], [37].

2) RFS feature: we compute F} € R3® as the response of a
set of 38 filters centered on pixel p. The filters used are
the Root Filter Set (RFS) that consists in a mixture of
bar, Gaussian and Laplacian of Gaussian (LoG) filters
with different parameters, respectively [[68]]. Historically,
these have been shown to be effective in characterizing
textured regions.

We describe in the following section how and when these
features are used to segment nematodes.

C. Coarse Image Segmentation

We are interested in computing at each pixel p the posterior
distribution of the class when a subset of image features,
{FPM . has been observed. This is written as

P(LP = I[{FB},) =

=S PUFL e[ =) P(LP =1).

(D

In effect, Eq. (1)) describes the probability that a pixel has label
[ when the features F}, ..., F, have been observed for pixel
p in the image. The equation has three multiplicative terms.
First, the prior probability of the class label for a given pixel,
P(L? = 1) which will be held at 1/2 to indicate an unbiased
prior on the pixel label. Second, the normalization constant
Z =P (F},...,FY,) that can be expressed as

1

P({Fo1L,) =) P(FF,... . FY|L =2)P(LP = 2). (2)

z=0

Third is the likelihood model P({FPIM_ |L = 1) which
describes the likelihood of feature scores when the underlying
pixel is either part of the nematode or the background. While
modeling this likelihood is challenging as it requires having
sufficient data to characterize how each feature affects the

others, we propose to simplify the likelihood by concatenating
all the features together, F* = [F}, ..., F}] and assuming

F Pp1, 2 if =1

P(F? =fIL=1)= G(Fipm, ), i B
G(f;p0,%0), ifl=0

where (f;,%;),¢ = 0,1 are the parameters of a Gaussian

distribution for when the pixel is part of the nematode and
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Fig. 2. Framework of the Texture Feature Model (TFM). At training time, different features Ff and F2p for a given image pixel p are extracted from
a single image with a manual segmentation of the nematode. The feature vectors are concatenated into one F'P and Gaussian likelihood models are then
estimated (shown here in 1-dimension). At test time, F'P is then extracted at each pixel and the likelihood models are used to compute the posterior ratio
(see text for details). The posterior ratio can be visually depicted at each pixel (heat map where green corresponds to small values and red to high values).
To construct a coarse nematode segmentation, that is CP for each pixel p, the posterior ratio is thresholded at a single value.

when it is not. In the following section we describe how to
estimate these parameters from the training image. Despite
representing the likelihood model with Eq. (3) which is a
strong assumption on the image dataset, we will show in
our experiments that this assumption yet allows accurate
segmentations of nematodes.

Given the above, for any test image we can then compute
a coarse estimate of whether or not a pixel belongs to the
nematode or the background by calculating

“)
where § € RT is a sensitivity threshold and where we define

_ PP =1{F L)

P(LP = O|{F¥,’1}{€W:1)7

C? = 1{gr>0},

RP

®)

as the ratio of posterior probability. As such, nematode pixels
are those where the ratio of posterior probability is larger
than the sensitivity threshold. In Fig. 2} we visually depict
for a sample image the relation between RP and C? using a
particular threshold value 6.

D. Feature Likelihood Models

To compute the likelihood models P(EFP|L), L = 0,1, we
proceed in the following manner. For a given feature vector,
FP € R™, we must estimate the class conditional likelihood
model, P(FP|L = 1) and P(FP|L = 0), which we consider to
be Gaussian in nature. That is, P(FF|L = 0) ~ G(FF; u2, £9)
and P(FP|L = 1) ~ G(FF;ul, 1), where ui,p? € RY are
mean vectors of dimension nj and ¥}, X9 € R™*"% are
covariance matrices of size ny X ng.

To estimate the parameters y}., u2, £, £9 for each feature,
we make use of the user-provided training data available, D =
{I1,51}. Using the image I; and its corresponding nematode
segmentation S1, we randomly sample 40% of the pixels that
belong to the background and 40% of the pixels corresponding
to the nematode nematode. At each of the sampled locations,

we compute the feature set responses F7, ..., F%.. We then use
the Maximum Likelihood estimators (MLE) [67]] to estimate
the parameters y}., u9, $1 %9 for each feature response.

E. Selecting Feature Subsets

While we have described a pool of image features, only a
subset {FP}M_, € FP of such features are effectively used
in Eq. (5) when segmenting a particular image sequence.

To select this subset, we first estimate P(FP|L =1),l = 0,1
using the training image I;, for each possible combination of
the image feature subsets. Then, we segment the same training
image, using Eq. (B) and select the subset that segments best.
Written more formally, we solve

{{FTI;L}%:DQ}:argmaXfl(C’gﬂsl)a (6)
qC

Fp.0

where C_’g is the coarse segmentation achieved using the feature
subset ¢ and sensitivity threshold # and F; is the F-score
segmentation accuracy measure [60] defined as

precision X recall

Fi(CE,8) =2 (7)

precision + recall”
In effect, we evaluate each possible feature subset and
sensitivity threshold to select the pair which maximizes the 7
accuracy measure. Both the subset and the threshold are then
used to segment the rest of the image sequence So, ..., Sr.

F. Refined Segmentation

As noted earlier, the majority of previous automatic ne-
matode segmentation algorithms perform some form of mor-
phological operations during post-processing so as to remove
small errors in segmentation. Here, rather, we attempt to rely
on a more principled mechanism. In line with the probabilistic
model introduced above, we use the coarse segmentation
results within a Markov Random Field (MRF).
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Fig. 3. Precision Recall (PR) curves for the coarse segmentation stage across selected motility environments: (a) crawling, (b) swimming in drops, (c)
swimming in gelatin-based solutions (see Supplementary Material in Berri et al. [45])), (d,e) locomotion in microfluidic mazes (see Supplementary Material in
Lockery et al. [S0]), and (f,g) locomotion in wet granular media (see Supplementary Material in Juarez et al. [29]). For each image sequence, we depict the
PR curve for the TFM, intensity-based and MEME approaches, respectively. TFM outperforms previous methods on the majority of sequences. In particular,
TFM provides substantial improvements for polydisperse (f) and monodisperse (g) environments.

For a given test image, we are interested in inferring the true
segmentation S for all pixels p in that image. To this end, we
use a MRF to describe the joint probability distribution of all
pixel labels S and the coarse image segmentation C'. We write
the joint probability distribution for all pixels in the image as

~TIrewis) I pesrs), ®
D JEN,

P(C,S) =

where W, is a 4-connected neighbourhood of pixel p and Z
is a normalizing constant. This model allows one to describe
both the likelihood of a pixel label as well as its relation to
neighbouring pixels and has been shown to be effective in a
number of related segmentation problems [60], [69]. Namely,
this approach is particularly useful to encode smoothness and
coherence.

Given the MRF model, we are interested in estimating
the Maximum Posterior Marginal (MPM), P(S?|C'), which
describes the probability of a pixel label, given the entire
coarse image segmentation. Computing the MPMs can be
achieved in a number of ways and we opt to do so with the
well-established Mean-Field [[66] approximation method. This
method iteratively refines estimates of the MPMs and does so
by first letting P(SP|CP) = pu, = 0 at initialization. Then
for m = 1,..., M iterations we update the P(S?|C?) by
computing

1
Hpt1 = Iupog—|—(1—oz) tanh Z i+ BP(CP|SP) » (9)
JEND

where « is a damping rate, P(C?|SP) o (1+exp(CP?))~! and
[ is known as a so-called temperature. In our experiments,
we set 5 = 0.5, iterate approximately M = 100 times and let
a = 0.5. A detailed derivation of Eq. @) can be found in [66].
Note that the strategy formulated in Eq. (9) is intended
to smooth out incoherences that may have been produced
during the coarse segmentation step. As such, the amount of
smoothing necessary may be directly related to the relative
size of the nematode in the image (i.e., proportion of pixels
belonging to the nematode); this latter property is in part
controlled by the MRF neighbourhood size, i.e., 4 pixel
neighbourhood in the present framework. Hence, while the
selected parameter may be appropriate in some cases, alternate
values may be required for nematodes that appear larger.

G. Nematode Tracking

In the initial coarse segmentation we assumed an unbiased
prior ie., P(L = 1) = P(L = 0) = 1/2. We now show
how an informative prior can be estimated for the purposes
of nematode tracking throughout the remainder of the image
sequences. In particular, when segmenting an image [; at time
step t, we will use the posterior distribution computed at the
previous time step t — 1 to estimate the new prior.

Specifically, we estimate the new prior over the entire image
domain, P(L,), by using traditional Bayesian filtering [70],
defined as

P(Ly) :/P(Lt|Lt_1)P(Lt_1)st_1, (10)
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where P(L;_1) corresponds to the posterior distribution com-
puted for frame I*~! using Eq. and P(L{|Li—1) is a
dynamics model which we assume to be Gaussian with mean
zero and covariance ¥. In other words, we assume no change
from one frame to the next, other than some intrinsic noise
governed by X. In our experiments, we treat X = 8lo,
where [y is the identity matrix of size 2 x 2. As noted
in the the previous subsection, > can be modified to better
model nematode motion across specific sequences [70]. In the
remainder of this article, we will use the term “Prior-TFM” to
denote the use of informative priors, in contrast to TFM.

IV. EXPERIMENTS

In the following section, we provide both quantitative and
qualitative performance results regarding our (Prior-)TFM
methocﬂ We do so by evaluating TFM on real image se-
quences originating from motility assays in various environ-
ments. We compare our approach with existing methods to
show and highlight the benefits of the TFM method.

A. Nematode Image Sequences

We evaluate our method across various motility environ-
ments. First, we make use of a number of representative
backgroundsﬂ (i) crawling on an agar surface (see example
in Fig. [Th), (ii) swimming in an aqueous drop (Fig. [Ib),
(iii) swimming in gelatin-based solutions, and (iv) navi-
gating through microfluidic mazes constructed of micropil-
lars (Fig. [Tk). For each image sequence, approximately 35
manually-labeled nematode segmentations are provided; see
details in [40].

In addition, we introduce 2 new image sequences featur-
ing nematode locomotion in wet granular environments [29].
Briefly, the motility behavior of C. elegans is imaged in
shallow channels filled with an aqueous buffer solution that
contain either monodisperse or polydisperse particles set to a
fixed packing fraction ¢ (i.e., ratio of volume of particles to
total volume). Such environments are believed to mimic more
accurately the soil-like milieus where C. elegans is found [29].
The first sequence contains polydisperse particles (52+10 pym
diameter, ¢ = 0.55), while the second sequence contains
monodisperse particles (60 £ 3 pm diameter, ¢ = 0.55); 36
manually-labeled frames are available for each sequence.

B. Evaluation

For each image sequence, we evaluated our method by
training our TFM method on the first image and evaluating the
remaining images in the corresponding sequence. We compare
our approach against a traditional intensity-based thresholding
method [[11f], [13]], the recent MEME algorithm [40]] and the
segmentation strategy of Lucchi ef al. [71]. In particular, this
latter method extracts intensity histograms and co-occurrence
features from superpixels to learn a radial basis function (RBF)
kernel support vector machine (SVM) classifier. The classifier

!'Source code and data will be made available online on the author webpage.
2Available  for  download  at: http://sites.google.com/site/sznitr/
code-and-datasets

output is then used within a MRF to segment the object of
interest. As with our TFM approach, this strategy also captures
intensity and some amount of texture information, via the co-
occurrence features. In each comparison method, we also only
used the first image of the sequence to train the respective
algorithms. Note that in contrast to traditional intensity-based
thresholding and MEME, the method of Lucchi er al. has
previously never been applied to nematode segmentation.

1) Coarse Segmentation: For the selected motility envi-
ronments, Fig. 3] presents the Precision Recall (PR) curves
obtained from each method. Any single point on a given
curve corresponds to a potential segmentation threshold 6;
curves that have both higher values of precision and recall
are considered better, positioned nearer the top right corner of
each plot, i.e., Precision = Recall = 1.

We see that for the image sequences shown in Fig. 3p,b,f
and g, TFM outperforms all other methods. This is particularly
true for the poly- (Fig. and monodisperse environments
(Fig. Blz), where improvements are significant. In fact, both
MEME and intensity methods are unable to characterize the
nematode whatsoever, i.e., Precision ~ (. For the microfluidic
environments (Fig. ,e), all methods perform similarly while
for the drop scenario (Fig. 3p), the intensity-based method
exhibits only a slightly more advantageous PR curve.

To render the results of Fig. [3] more quantitative, we report
in Table [IT] the best F-score (as introduced in Eq. (7)) for each
segmentation method applied. Namely, we show the best F-
score obtained for each environment over the entire test set
(Table first row) as well as on the single training image
(Table second row). For the TFM method, we also show
how different sets of features (i.e., Average pixel, RFS feature,
and combination of both) perform on different environments.
We notice that when determining with TFM which feature
sets to use from the first training image on an entire image
sequence, our approach selects the best feature set possible
barring the “Drop” image sequence. That is, evaluating each
feature combination over the first training image and selecting
the best one correlates rather well with the best feature set
over the entire image sequence.

In general, we notice that either average pixel intensity or
RFS combined with average pixel intensity perform best. This
observation is reasonable as average intensity is a very strong
visual cue for nematode segmentation [13]], [40]]. It appears
that the TFM method augments in some instances this strong
cue with more texture information such as in scenarios where
environments are visually more complex (i.e., granular media).

When comparing TFM against other methods, our approach
outperforms significantly previous methods on the challenging
poly- and monodispere environments. The best F-scores ob-
tained with TFM over the image stacks are ~ 0.7 and 0.6,
respectively. Comparatively, MEME and the intensity method
both score below 0.1 for each image set. In general, these
results indicate that the coarse segmentation produced by TFM
provides significant improvements for segmenting nematodes
in unstructured environments such as wet granular media,
where the background is both texture-rich and dynamic (i.e.,
particles are displaced as the nematode passes by). In other
environments, TFM performs similarly to the other methods,
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TABLE I
SUMMARY TABLE OF BEST F-SCORES (EQ. ) FOR EACH SEGMENTATION METHOD AND CALCULATED FOR THE VARIOUS MOTILITY ENVIRONMENTS OF
F1G. B} SHOWN ARE THE BEST F-SCORE OBTAINED FOR THE ENTIRE TEST SET (FIRST ROW) AND ON THE SINGLE TRAINING IMAGE (SECOND ROW). FOR
TFM, THE PERFORMANCE OF DIFFERENT SETS OF FEATURES IS ALSO PRESENTED. FOR EACH ENVIRONMENT, WE HIGHLIGHT IN BOLD THE BEST F-BEST
SCORE OBTAINED ACROSS ALL METHODS FOR THE ENTIRE TEST SET.

Method Crawl Drop Gelatin Microfl. I  Microfl. I  Polydisp.  Monodisp.
(n=36) (m=36) (m=29) (n=237) (n = 36) (n = 36) (n = 36)
Av 0.864 0.638 0.717 0.708 0.816 0.158 0.053
g 0.889 0.681 0.885 0.663 0.803 0.133 0.058
E RFS 0.556 0.310 0.443 0.462 0.601 0.600 0.492
=~ 0.609 0.790 0.690 0.365 0.646 0.691 0.724
0.627 0.309 0.436 0.479 0.647 0.697 0.599
Avg. & RES 7 0.822 0.708 0.386 0.690 0.802 0.798
Intensit 0.767 0.739 0.898 0.747 0.784 0.071 0.035
- Y 0.767 0.713 0.913 0.708 0.767 0.104 0.036
£
© MEME 0.555 0.307 0.743 0.637 0.706 0.071 0.045
0.451 0.320 0.659 0.562 0.572 0.074 0.046

i.e., in some cases slightly better and in others slightly worse
(see Table [I). Below, we show how implementing the Fine
Segmentation approach delivers state-of-the-art results on ne-
matode segmentation across all environments.

2) Final Segmentation: To quantitatively evaluate and com-
pare the final segmentation using TFM, we depict in Fig. [
both the nematode segmentation yield and the overall image
segmentation error for the sequences tested in Fig. 3} these
performance metrics have been recently defined [40] and
are also reported here for the MEME, the intensity-based
method and the segmentation strategy of [[71]]. In addition, we
also provide quantitative results for Prior-TFM, which uses
temporal information as described in Sec. [lII-G

We show for each evaluated image sequence in Fig. P the
proportion of the nematode pixels that is correctly segmented
in a given image (i.e., nematode yield). Correspondingly, we
show in Fig. @b the proportion of pixels that is incorrectly
labelled over the entire image (i.e., surface error). In both plots,
the results are produced from the best F-score obtained over
the training set. While values of the nematode yield obtained
from TFM are generally similar to those for MEME and the
intensity-based method applied across traditional environments
(Fig. ), TFM achieves such results by maintaining a sig-
nificantly smaller amount of labelling error over the rest of
the image (Fig. Bp). This point is further highlighted when
using Prior-TFM, where values of the nematode yield improve
drastically for almost all image sequences, at the cost of a
slightly higher surface error due to over segmentations.

Furthermore and importantly, both the MEME and intensity-
based methods are simply unable to recover the nematode
in the poly- and monodisperse environments, yielding high
rates of nematode error. Both TFM and Prior-TFM, on the
other hand, maintain a reasonable surface error rate (< 2%)
and produce nematode segmentations with a yield above

40% and 50% for the mono and polydisperse environments,
respectively. In particular, the Prior-TFM approach delivers
scores nearing or above the 80% mark, underlining the efficacy
of implementing a nematode tracking technique.

When comparing segmentation results to the method of
Lucchi et al., both TFM and Prior-TFM perform better across
the array of traditional motility environments (Fig. fh); yet,
the segmentation approach of [[71]] appears more competitive
for the mono and polydisperse environments where margins
in nematode yield are much closer. In particular, Lucchi et al.
performs similarly to Prior-TFM for the polydisperse sequence
and only slightly worse for the monodisperse case.

In Fig. Bl we depict qualitative results of the final seg-
mentation using TFM and Prior-TFM on the poly- and
monodisperse environments. For comparison, we also show
the corresponding (human) manually-labelled segmentations,
i.e., groundtruth, as well as results produced with MEME
and Lucchi er al. We immediately notice that MEME, as
well as the intensity-based method (not shown here), fail
altogether in providing any reasonable segmentation of the
nematode, further underlining the poor F-scores observed
earlier in the PR curves (Fig. [3) and Table In contrast,
TFM and Prior-TFM provide far more suitable segmentations,
visually capturing the main characteristics of the nematode,
i.e., shape and length. In the case of Lucchi et al., the final
segmentations on these two challenging cases also capture the
main characteristics of nematode but suffer from some jagged
contours due to the superpixel preprocessing step.

Upon closer inspection, we notice that the TFM and Prior-
TFM segmentations are far from perfect however. In fact,
qualitative segmentation errors are apparent when particles
are in the vicinity of the nematode or touching it. Portions
of the nematode tail and head are also incorrectly segmented
and lost. This latter problem has been previously noted and
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Fig. 4. Performance evaluation of final nematode segmentation. For
the environments shown in Fig. the Texture Factor Model (TFM) and
correspondingly the Prior-TFM are compared to a traditional intensity-based
thresholding approach [17], [[18]], as well as the recent methods of Multi-
Environment Model Estimation (MEME) [40] and Lucchi et al. [71]. (a)
Nematode yield: proportion of the nematode region that is correctly segmented
for a given image. (b) Surface error: proportion of pixels misclassified
by a given algorithm over the entire image. For each environment shown,
standard deviations (shown as error bars) are obtained across (manually-
labeled) sequences of n =29 to 37 images. Note that for the intensity-based
method, successful segmentation are not available for both the mono- and
polydisperse environments (see last two columns).

applies to a broader range of (static) backgrounds, including
swimming and microfluidic environments [21]], [40]. Namely,
this problem occurs when the nematode extremities are trans-
parent against the background. Finally, we note that for the
polydisperse environment, the Prior-TFM delivers a discon-
nected nematode segmentation as is the case for the method
of [[71]].

V. DISCUSSION

From a user end, clean and reliable nematode segmentations
represent the first and necessary step prior to extracting
motility phenotypes of C. elegans. Indeed, the wide majority of
quantitative motility traits characterizing C. elegans locomo-
tion (e.g., speed, beating frequency, amplitude, body curvature,

Polydisperse Environment

(b) Ground Truth

(c) MEME

(d) Lucchi et al.

(e) TFM (f) Prior TFM

(h) Ground Truth

(i) MEME

(j) Lucchi et al.

(k) TFM (1) Prior TFM

Fig. 5. Nematode segmentation in unstructured environments featuring
poly- (a-d) and monodisperse (e-h) granular media; see Supplementary
Material in Juarez et al. [29]). (a,e) Snapshots of raw images. Comparisons
between nematode segmentations are respectively shown for (i) the ground
truth (b,f), i.e., hand-segmented nematodes, (ii) the Multi-Environment Model
Estimation (MEME) approach [40] (c,i), (iii) the method of Lucchi et al.
[71] (d,j), (iii) the Texture Factor Model (TFM) shown in (e,k) and (iv) the
corresponding Prior TFM shown in (f]).

etc.) are not directly extracted from whole-body segmentations
but rather from so-called “skeletons” that describe the nema-
tode centerline data [10]-[12], [[19]], [41]. Here, we briefly
discuss the feasibility of using nematode skeletons obtained
with TFM across complex environments such as wet granular
media; to date these latter environments have required tedious
manual labeling to reliably extract usable skeletons [29].

In Fig. [6] tracking of nematode body postures are presented
in both space and time; sample snapshots of the nematode
moving through mono- (Fig. [6p) and polydisperse (Fig. [6b)
wet granular media are shown with the corresponding body
postures (i.e., skeletons). These skeletons are extracted using
the method of [40], where nematode ends points are first
extracted, and then a Bayesian marching algorithm is used to
trace out the centerline between end points of the nematode
using the image segmentation directly.

Changes in motility behavior between the two environments
can be qualitatively captured at a glance from the the evolution
of nematode skeletons over the image sequences. This is
shown in Fig. [6k.d where the time evolution of skeletons is
color-coded as a function of time; envelopes of body postures
are constructed using a principal component analysis (PCA) to
find the skeletons principal axis and orientation at each instant
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in time. Here, we may simply note that the near-symmetrical
waveform seen during swimming in monodisperse medium
(Fig. [6c) is transformed into a somewhat more slithering-
like motion as the nematode evolves in polydisperse medium
(Fig. [6ld); a motility trait that has been previously attributed
to the differences in response and material properties between
the two granular media [29]. Note that further quantitative
locomotive phenotypes including the nematode wavelength
and the amplitude of body undulations can be obtained in
a seamless manner from the construction of such skeleton
envelopes [17], [18],, [20].

While our method provides a useable segmentation frame-
work, some noticeable shortcomings are nevertheless apparent.
In particular, we see that nematode skeletons are somewhat
truncated in length and skeletons do not always sit along
the centerline of the actual body. In general, the first short-
coming is a consequence of the difficult nature in accurately
segmenting the head and tails of nematodes, as they are
often transparent and are extremely similar to (or invisible
against) the background environment. The second shortcoming
results from both errors in the body segmentation (due to the
complex background) and from the skeletonization process,
which assumes that the the correct centerline be equidistant
from the boundaries of the segmented body.

Both of these shortcomings could be partly addressed by
having a stronger model of the overall shape, head and tail
of the nematode, as is the case in the work of Huang et
al. . Yet in general, the method outlined in first
relies on obtaining successful binary nematode segmentations
to determine the correct body outline, from which a nematode
skeleton is then extracted; in particular, this method has
been solely applied to traditional crawling assays for the
purpose of characterizing “foraging” behavior (i.e., rapid, side-
to-side movement of the nematode head as it explores its
environment). Since our method fails to segment the head
and tail in a number of complex environments, integrating
such strategies into our framework appears challenging when
incorrect nematode contours and thus skeletons are generated.

Finally, we note an important limitation to our approach as
a result of the static nature of the model. While we learn
appropriate image features for given sequences, these are
determined from the first image only in an effort to limit the
user’s manual labor and increase the easiness of the method.
Yet, since some environments appear visually different as time
lapses (i.e., as the sequence evolves), the models estimated
from the initial image can become less accurate. This property
is apparent in the discrepancies observed in the F-scores
between the first image and the remaining sequence in a
number of motility environments (see Table . In turn, this
greatly affects the quality of the produced final segmentations
and potentially renders them unusable. In addition, we note
that simply increasing the number of training images (i.e.,
using for instance the first 10 images in an image sequence)
to estimate the texture models does not appear to provide
improved or more stable results (data not shown here). As
such, our approach should not be expected to provide good
nematode segmentations for scenarios where illumination of
the fore- and/or background gradually changes across the

sequence.

Fig. 6. Motility features using nematode skeletons. Micrographs of C.
elegans moving through (a) mono- and (b) polydisperse wet granular media
with a packing fraction of ¢ = 0.55; raw image sequence available from
Supplementary Material in [29]. For each snapshot, the corresponding nema-
tode skeleton is superimposed (red) as obtained after final segmentation using
TFM and applying the skeletonizing algorithm of [40]. Corresponding color-
coded temporal evolution of C. elegans skeletons over an image sequence for
(¢) mono- and (d) polydisperse media, respectively; skeleton lines are evenly
spaced with intervals of 5 frames and centered at the nematode’s center-of-
mass, with head oriented to the right. Results reveal a distinct envelope of
body postures specific to the motility environment.

VI. CONCLUSION AND OUTLOOK

In this paper, we have proposed a novel Texture Feature
Model (TFM) for automatic segmentation of nematode C. el-
egans in complex and dynamic visual environments. Our TFM
method relies on the use of both intensity- and texture-based
image features integrated within a probabilistic framework.
This strategy first provides a coarse nematode segmentation
from which we use a Markov Random Field model to re-
fine our segmentation by inferring pixels belonging to the
nematode by means of an approximate inference technique.
To segment subsequent images in a sequence, we compute
informative priors from the computed segmentations, via
Bayesian filtering, and provide coherent estimates of nematode
locations across time. We validate TFM on a number of image
sequences sampled across different visual environments and
provide state-of-the-art results on challenging environments
while assuring comparative performances to existing methods
on traditional environments. In addition, we show how C.
elegans segmentations delivered with TFM can be used to
compute nematode skeletons from which motility phenotypes
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can then be extracted. This later point is extremely promising
for high-throughput assays of motility phenotyping in complex
environments.

In the future, we plan to extend our method to dynamically
estimate image models as time proceeds in an effort to
provide even better segmentations while improving strategies
to segment the head and tail of nematodes more accurately. In
addition, we will investigate methods for large-scale, automatic
image feature learning that can adapt directly to specific
environments and should provide overall improvements in
nematode segmentations.
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